

LCD Segment Drivers Multi-function LCD Segment Drivers

BU97550KV-M

MAX 528 Segment(66SEG x 8COM)

General Description

The BU97550KV-M is 1/8, 1/7, 1/5, 1/4, 1/3, or Static general-purpose LCD driver.

The BU97550KV-M can drive up to 528 LCD Segments directly. The BU97550KV-M can also control up to 9 General-Purpose/PWM output ports.

These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wiring

Features

- AEC-Q100 Qualified (Note)
- Key Input Function for Up to 30 Keys (A key scan is performed only when a key is pressed.)
- Either 1/8, 1/7, 1/5, 1/4, 1/3 or Static
 Can be Selected with The Serial Control Data.
 1/8 duty drive: Up to 528 Segments can be driven
 1/7 duty drive: Up to 469 Segments can be driven
 1/5 duty drive: Up to 345 Segments can be driven
 1/4 duty drive: Up to 280 Segments can be driven
 1/3 duty drive: Up to 210 Segments can be driven
 Static drive: Up to 70 Segments can be driven
- Serial Data Control of Frame Frequency for Common and Segment output Waveforms.
- Serial Data Control of Switching Between The Segment output Port, PWM output Port and General-Purpose output Port Functions.(Max 9 ports)
- Built-in Oscillation circuit
- Integrated Voltage Detected Type Power on Reset(VDET) circuit
- No External Component
- Low Power Consumption Design
- Supports Line and Frame Inversion (Note) Grade 3

Typical Application Circuit

Key Specifications

·, •p	oomoutono		
	Supply Voltage Range:		+2.7V to +6.0V
	Operating Temperature	Range:	-40°C to +85°C
	Max Segments:	-	528 Segments
	Display Duty	Static, 1/3,	1/4, 1/5, 1/7, 1/8
			Selectable
	Bias:	1/2, 1/3	3, 1/4 Selectable
	Interface:	3wire	Serial Interface

Applications

 Car Audio, Home Electrical Appliance, Meter Equipment etc.

Package

W (Typ) x D (Typ) x H (Max)

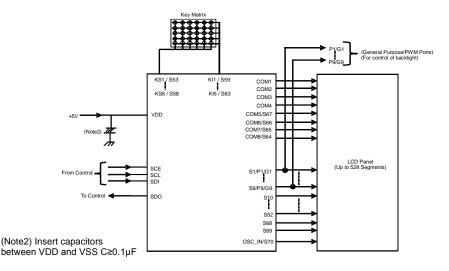


Figure 1. Typical Application Circuit

OProduct structure : Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays.

Block Diagram

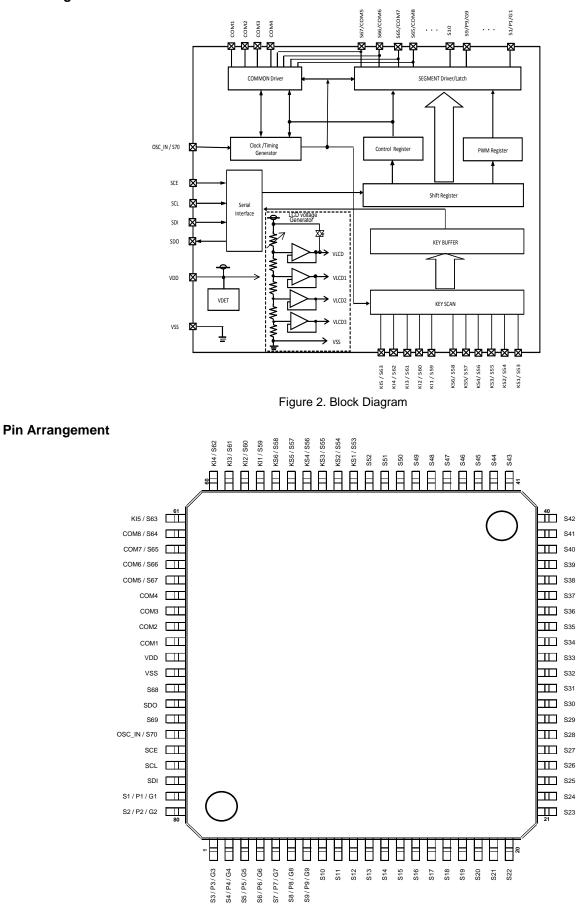


Figure 3. Pin Configuration (TOP VIEW)

Absolute Maximum Ratings (VSS = 0V)

Parameter	Symbol	Pin	Rating	Unit
Maximum Supply Voltage	VDD	VDD	-0.3 to +7.0	V
Input Voltage	V _{IN1}	SCE, SCL, SDI	-0.3 to +7.0	V
	V _{IN2}	KI1 to KI5	-0.3 to +7.0	V
Allowable Loss	Pd		1.2 ^(Note3)	W
Operating Temperature	Topr		-40 to +85	°C
Storage Temperature	Tstg		-55 to +125	S°

(Note3) When use more than Ta=25°C, subtract 12mW per degree. (Using ROHM standard board)

(Board size: 70mm×70mm×1.6mm material: FR4 board copper foil: land pattern only)

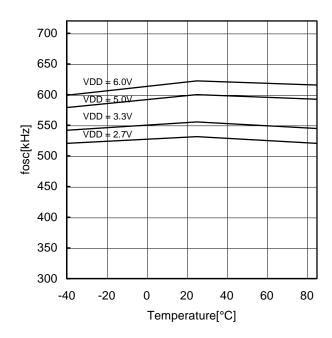
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommend Operating Conditions (Ta = -40°C to +85°C, VSS = 0V)

Boromotor Symbol		Conditions		Linit		
Parameter	Symbol	Symbol Conditions	Min	Тур	Max	Unit
Supply Voltage	VDD		2.7	5.0	6.0	V

Electrical Characteristics (Ta = -40 to $+85^{\circ}$ C, VDD = 2.7V to 6.0V, VSS = 0V)

Parameter	Symbol	Pin	Conditions		Limit	1	Unit
	-		Conditions	Min	Тур	Max	Onit
Hysteresis	V _{H1}	SCE, SCL, SDI		-	0.03 VDD	-	v
	V _{H2}	KI1 to KI5		-	0.1 VDD	-	v
Power-on Detection Voltage	Vdet	VDD		1.3	1.8	2.2	V
"H" Level Input Voltage	VIH1	SCE, SCL, SDI	4.5V ≤ VDD ≤ 6.0V	0.4VDD	-	VDD	
	VIH2	SCE, SCL, SDI	2.7V ≤ VDD < 4.5V	0.8VDD	-	VDD	V
	V _{IH3}	KI1 to KI5		0.7VDD	-	VDD	
"L" Level Input Voltage	V _{IL1}	SCE, SCL, SDI KI1 to KI5		0	-	0.2VDD	V
Input Floating Voltage	VIF	KI1 to KI5		-	-	0.05VDD	V
Pull-down Resistance	RPD	KI1 to KI5	VDD=5.0V	50	100	250	kΩ
Output Off Leakage Current	IOFFH	SDO	Vo=6.0V	-	-	6.0	μA
"H" Level Input Current	Іін1	SCE, SCL, SDI	$V_{I} = 5.5V$	-	-	5.0	μA
"L" Level Input Current	IIL1	SCE, SCL, SDI	$V_I = 0V$	-5.0	-	-	μA
"H" Level Output Voltage	V _{OH1}	S1 to S70	I ₀ = -20μΑ, VLCD=1.00*VDD	VDD-0.9	-	-	
	Voh2	COM1 to COM8	I ₀ = -100μA, VDD=1.00*VDD	VDD-0.9	-	-	V
	V _{OH3}	P1/G1 to P9/G9	$I_0 = -1mA$	VDD-0.9	-	-	
	V _{OH4}	KS1 to KS6	I ₀ = -500μA	VDD-1.0	VDD-0.5	VDD-0.2	
"L" Level	Vol1	S1 to S70	$I_0 = 20\mu A$	-	-	0.9	
Output Voltage	Vol2	COM1 to COM8	$I_0 = 100 \mu A$	-	-	0.9	
	V _{OL3}	P1/G1 to P9/G9	$I_0 = 1 \text{mA}$	-	-	0.9	V
	V _{OL4}	KS1 to KS6	$I_0 = 25\mu A$	0.2	0.5	1.5	
	Vol5	SDO	$I_0 = 1 \text{mA}$	-	0.1	0.5	
Middle Level	V _{MID1}	S1 to S70	$1/2$ bias I ₀ = $\pm 20\mu$ A	1/2 VDD	-	1/2 VDD	
Output Voltage			VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID2}	COM1 to COM8	$1/2$ bias $I_0 = \pm 100 \mu A$	1/2 VDD	-	1/2 VDD	
			VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID3}	S1 to S70	$1/3$ bias I ₀ = $\pm 20\mu$ A	2/3 VDD	-	2/3 VDD	
			VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID4}	S1 to S70	$1/3$ bias $I_0 = \pm 20 \mu A$	1/3 VDD	-	1/3 VDD	
			VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID5}	COM1 to COM8	$1/3 \text{ bias } I_0 = \pm 100 \mu \text{A}$	2/3 VDD	-	2/3 VDD	V
		00144 00140	VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID6}	COM1 to COM8	$1/3 \text{ bias } I_0 = \pm 100 \mu A$	1/3 VDD	-	1/3 VDD	
		044.070	VLCD=1.00*VDD	-0.9		+0.9	_
	V _{MID7}	S1 to S70	$1/4 \text{ bias } I_0 = \pm 20 \mu A$	1/2 VDD	-	1/2 VDD	
	V		VLCD=1.00*VDD	-0.9		+0.9	-
	V _{MID8}	COM1 to COM8	$1/4 \text{ bias } I_0 = \pm 100 \mu A$	3/4 VDD	-	3/4 VDD	
	. V	COM1 to COM8	VLCD=1.00*VDD	-0.9 1/4 VDD	_	+0.9 1/4 VDD	
	V _{MID9}		$1/4 \text{ bias } I_0 = \pm 100 \mu A$		-		
			VLCD=1.00*VDD	-0.9		+0.9	


Electrical Characteristics – continued

Parameter	Symbol	Pin Cor	Conditions		Limit		
	Symbol	PIN	Conditions	Min	Тур	Max	Unit
Current Consumption	I _{DD1}	VDD	Power-saving mode	-	-	15	
	I _{DD2}	VDD	VDD = 5.0V Output open, 1/2 bias Frame frequency=80Hz VLCD=1.00*VDD	-	105	220	
	Іддз	VDD	VDD = 5.0V Output open,1/3 bias Frame frequency=80Hz VLCD=1.00*VDD	-	130	270	μA
	IDD4	VDD	VDD = 5.0V Output open,1/4 bias Frame frequency=80Hz VLCD=1.00*VDD	-	160	330	

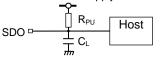
Oscillation Characteristics (Ta = -40 to +85°C, VDD = 2.7V to 6.0V, VSS = 0.0V)

Parameter	Symbol Pin	Din	Conditions	Limit			Unit
Falameter	Symbol	FIII	Conditions	Min	Тур	Max	Unit
scillator Frequency 1	fosc1	-	VDD = 2.7V to 6.0V	300	-	720	kHz
Oscillator Frequency 2	fosc2	-	VDD = 5.0V	540	600	660	kHz
Oscillator Frequency 3	fosc3	-	VDD = 6.0V	562	625	688	kHz
External Clock Frequency ^(Note4)	fosc4			30	-	1000	kHz
External Clock Rise Time	tr	OSC_IN/S70	External clock mode	-	160	-	ns
External Clock Fall Time	tf		(OC=1)	-	160	-	ns
External Clock Duty	t DTY			30	50	70	%

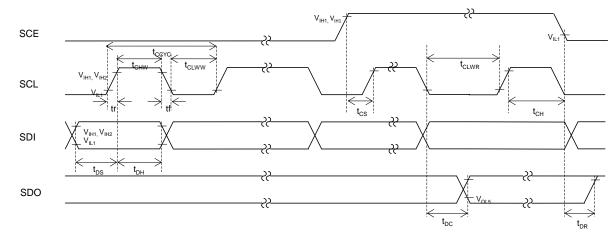
(Note4) Frame frequency is decided external frequency and dividing ratio of FC0 to FC3 setting.

[Reference Data]

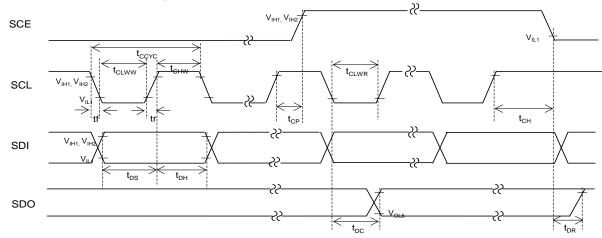
Figure 4. Frame Frequency Typical Temperature Characteristics

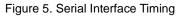

MPU Interface Characteristics (Ta=-40 to +85°C, VDD = 2.7V to 6.0V, VSS=0V)

			,				
Deremeter	Sumbol	Pin	Conditions		Limit		Unit
Parameter	Symbol	PIN	Conditions	Min	Тур	Max	Unit
Data Setup Time	t _{DS}	SCL, SDI		120	-	-	ns
Data Hold Time	t _{DH}	SCL, SDI		120	-	-	ns
SCE Wait Time	tcp	SCE, SCL		120	-	-	ns
SCE Setup Time	tcs	SCE, SCL		120	-	-	ns
SCE Hold Time	t _{CH}	SCE, SCL		120	-	-	ns
Clock Cycle Time	tccyc	SCL		320	-	-	ns
High-level Clock Pulse Width	tснw	SCL		120	-	-	ns
Low-level Clock Pulse Width (Write)	tclww	SCL		120	-	-	ns
Low-level Clock Pulse Width (Read)	t CLWR	SCL	$\begin{array}{l} R_{PU}=4.7k\Omega\\ C_{L}=10pF^{(Note5)} \end{array}$	1.6	-	-	μs
Rise Time	tr	SCE, SCL, SDI		-	160	-	ns
Fall Time	tf	SCE, SCL, SDI		-	160	-	ns
SDO Output Delay Time	t _{DC}	SDO	$\begin{array}{l} R_{PU}=4.7k\Omega\\ C_{L}=10pF^{(Note5)} \end{array}$	-	-	1.5	μs
SDO Rise Time	t _{DR}	SDO	$\begin{array}{l} R_{PU}=4.7k\Omega\\ C_{L}=10pF^{(Note5)} \end{array}$	-	-	1.5	μs


(Note5) Since SDO is an open-drain output, "t_{Dc}" and "t_{DR}" depend on the resistance of the pull-up resistor R_{PU} and the load capacitance C_L. R_{PU}: 1kΩ≤RPU≤10kΩ is recommended.

C_L: A parasitic capacitance in an application circuit. Any component is not necessary to be attached.


Power supply for I/O level



1. When SCL is stopped at the low level

2. When SCL is stopped at the high level

Pin Description

Symbol	Pin No.	Function	Active	I/O	Handling when unused
S1/P1/G1 to S9/P9/G9	79,80, 1 to 7	Segment output for displaying the display data transferred by serial data input. The S1/P1/G1 to S9/P9/G9 pins can also be used as General-Purpose or PWM output when so set up by the control data.	-	0	OPEN
S10 to S52 S68, S69	8 to 50 72, 74	Segment output for displaying the display data transferred by serial data input.	-	0	OPEN
KS1/S53 to KS6/S58	51 to 56	Key scan outputs Although normal key scan timing lines require diodes to be inserted in the timing lines to prevent shorts, since these outputs are unbalanced CMOS transistor outputs, these outputs will not be damaged by shorting when these outputs are used to form a key matrix. The KS1/S53 to KS6/S58 pins can be used as Segment outputs when so specified by the control data.	-	0	OPEN
KI1/S59 to KI5/S63	57 to 61	Key scan inputs These pins have built-in pull-down resistors. The KI1/S59 to KI5/S63 pins can be used as Segment outputs when so specified by the control data.	-	I/O	OPEN
COM1 to COM4	66 to 69	Common driver output pins. The frame frequency is fo[Hz].	-	0	OPEN
COM5/S67 COM6/S66 COM7/S65 COM8/S64	65 64 63 62	Common / Segment output for LCD driving Assigned as Common output in 1/8, 1/7 and 1/5 Duty modes and Segment output in Static, 1/3 and 1/4 Duty modes.	-	0	OPEN
OSC_IN/S70	75	Segment output for displaying the display data transferred by serial data input. The OSC_IN/S70 pin can be used as external frequency input pin when set up by the control data.	-	I/O	OPEN
		Serial data transfer inputs. Must be connected to the controller.			
SCE	76	SCE: Chip enable	<u>H</u>	I	-
SCL	77	SCL: Synchronization clock	^	I	-
SDI	78	SDI: Transfer data	-		-
SDO	73	Output data	-	0	OPEN
VDD	70	Power supply pin of the IC A power voltage of 2.7V to 6.0V must be applied to this pin.	-	-	-
VSS	71	Power supply pin. Must be connected to ground.	-	-	-

IO Equivalent Circuit

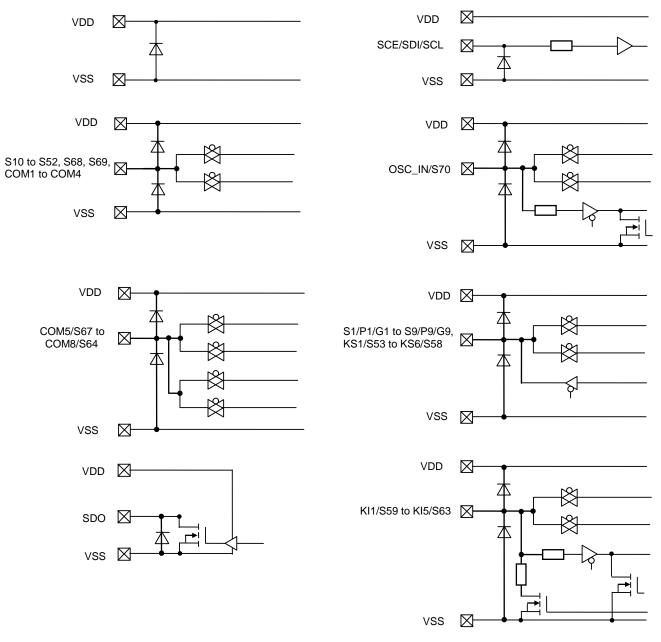
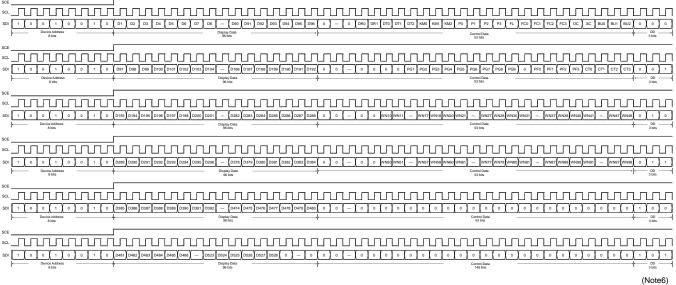



Figure 6. I/O Equivalent Circuit

Serial Data Transfer Formats

1. 1/8 Duty

(1) When SCL is stopped at the low level

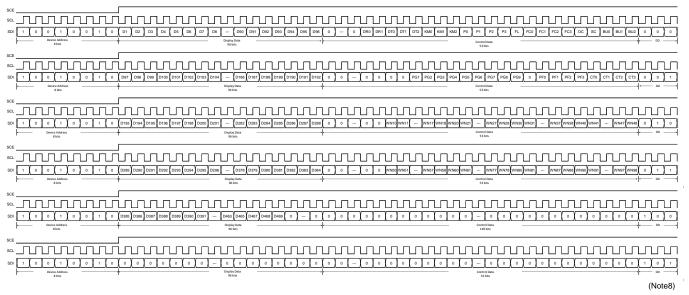
(Note6) DD is direction data.

Figure 7. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

SCE	
SDI 1 0 0 1 0 0 1 0	
Device Address	Open Oni Control Date OD Sib bits 3 bits 3 bits 3 bits
SDI 1 0 0 1 0 0 1 0	
8 bits	Districtura Control Dura Control Dura Control Dura Control Dura Control Dura Control Dura Stata Stata Stata Stata
SCE	
Device Address	
8 bits	96 bin 7 30 bin 7 30 bin 7 30 bin 97 50 bin 97
SDI 1 0 0 1 0 0 1 0	
Device Address 8 bits	Dipip Data Correl Otas 00 8 bits 51 bits 3 bits
SCE	
SDI 1 0 0 1 0 0 1 0 0 1 0	2038 [D398 [D399 [D391 [D392] D474 [D475 [D476 [D477 [D478 [D479 [D
8 bits	i dons i
SCE	
SDI 1 0 0 1 0 0 1 0	
- Device Address	
0.000	
	(Note7)

Figure 8. 3-SPI Data Transfer Format


(Note7) DD is direction data.

D1 to D528D P0 to P3S	ey Scan output port/Segment output port switching control data hisplay data hegment/PWM/General-Purpose output port switching control data
	ine Inversion or Frame Inversion switching control data /4 bias driver, 1/3 bias driver or 1/2 bias driver switching control data
DT0 to DT21	/8-duty drive, 1/7-duty drive, 1/5-duty drive, 1/4-duty drive, 1/3-duty drive r Static drive switching control data
FC0 to FC3 ·····C	common/Segment output waveform frame frequency setting control data nternal oscillator operating mode/External clock operating mode switching control data
	lormal mode/Power-saving mode control data
PF0 to PF3·····P CT0 to CT3 ·····L W10 to W18, W20 to W28, W30 to W3	WM/General-Purpose output port select data WM output waveform frame frequency setting control data. CD bias voltage VLCD setting control data. 8,W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98 WM output duty setting control data

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

2. 1/7 Duty

(1) When SCL is stopped at the low level

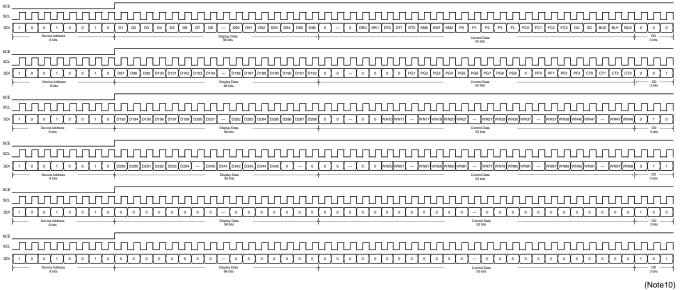
(Note8) DD is direction data.

Figure 9. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

SCE	
Device Address	
scesc.	
SDI 1 0 0 1 0 0 1 0	
SCE	
SDI (1) 0 0 1 0 0 0 1 0 0 1 0	
sce scl ПППППППГ	
SDI 1 0 0 1 0 0 1 0 0 1 0	
sce sc. П П П П П П П П	
SDI 1 0 0 1 0 0 1 0	
sce sc.\ППППППППП	
SDI 1 0 0 1 0 1 0 1 0	
	(Note9)

Figure 10. 3-SPI Data Transfer Format


(Note9) DD is direction data.

Device code ····· KM0 to KM2 ····· D1 to D469·····	Key Scan output port/Segment output port switching control data
	· Segment/PWM/General-Purpose output port switching control data
	Line Inversion or Frame Inversion switching control data
DR0 to DR1·····	 1/4 bias driver, 1/3 bias driver or 1/2 bias driver switching control data
DT0 to DT2 ·····	 1/8-duty drive, 1/7-duty drive, 1/5-duty drive, 1/4-duty drive, 1/3-duty drive
	or Static drive switching control data
FC0 to FC3 ·····	 Common/Segment output waveform frame frequency setting control data
	Internal oscillator operating mode/External clock operating mode switching control data
SC·····	
	Normal mode/Power-saving mode control data
	 PWM/General-Purpose output port select data
	· PWM output waveform frame frequency setting control data.
	 LCD bias voltage VLCD setting control data.
	V38,W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98
	 PWM output duty setting control data

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

3. 1/5 Duty

(1) When SCL is stopped at the low level

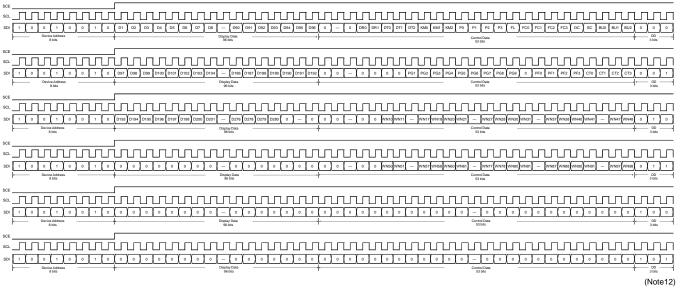
(Note10) DD is direction data.

Figure 11. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

SCE	
SCL	
SCESCL_SCL	
SCE SCL 1 0 0 1 0 0 1 0 0 1 0 SCL 0 0 0 1 0 0 1 0 0 1 0 0	
SCE ScL 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 Diversities	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SCE SCL 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 Device Address 8 Bas	
SCE SCL	
	(Note11)
	Figure 12, 2 CDI Date Transfer Format

Figure 12. 3-SPI Data Transfer Format


(Note11) DD is direction data.

D1 to D345 P0 to P3 FL DR0 to DR1	 Key Scan output port/Segment output port switching control data Display data Segment/PWM/General-Purpose output port switching control data Line Inversion or Frame Inversion switching control data 1/4 bias driver, 1/3 bias driver or 1/2 bias driver switching control data
FC0 to FC3 OC SC BU0 to BU2 PG1 to PG9	 1/8-duty drive, 1/7-duty drive, 1/5-duty drive, 1/4-duty drive, 1/3-duty drive or Static drive switching control data Common/Segment output waveform frame frequency setting control data Internal oscillator operating mode/External clock operating mode switching control data Segment on/off control data Normal mode/Power-saving mode control data PWM/General-Purpose output port select data PWM output waveform frame frequency setting control data.
CT0 to CT3 W10 to W18, W20 to W28, W30 to V	•• LCD bias voltage VLCD setting control data. •• LCD bias voltage VLCD setting control data. N38, W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98 •• PWM output duty setting control data

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

4. 1/4 Duty

(1) When SCL is stopped at the low level

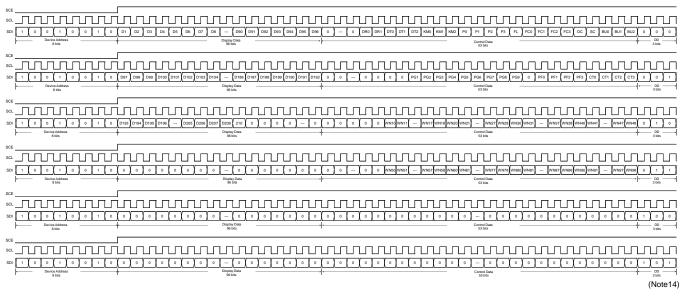
(Note12) DD is direction data.

Figure 13. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

SCE	
SCL	
SCESCL_SCL	میں ہے ہوئے ہوئے ہوئے ہوئے ہوئے ہوئے ہوئے ہ
SDI (1) 0 0 1 0 0 1 0 0 1 0 Device Address SCE SCL 0 0 0 0 0 1 0	
SDI (1) 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0	
SCLSDI /SDI / SDI /D 0 / 1 / 0 / 0 / 1 / 0 Device Address 8 bits	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $

Figure 14. 3-SPI Data Transfer Format


(Note13) DD is direction data.

D1 to D280 P0 to P3 FL DR0 to DR1	 Key Scan output port/Segment output port switching control data Display data Segment/PWM/General-Purpose output port switching control data Line Inversion or Frame Inversion switching control data 1/4 bias driver, 1/3 bias driver or 1/2 bias driver switching control data
FC0 to FC3 OC SC	
PG1 to PG9 PF0 to PF3 CT0 to CT3 W10 to W18, W20 to W28, W30 to V	 Normal mode/Power-saving mode control data PWM/General-Purpose output port select data PWM output waveform frame frequency setting control data. LCD bias voltage VLCD setting control data. N38, W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98 PWM output duty setting control data

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

5. 1/3 Duty

(1) When SCL is stopped at the low level

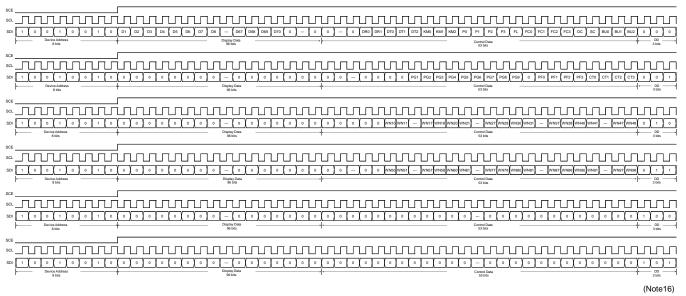
(Note14) DD is direction data.

Figure 15. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

SCE	
SCLSDI	
SCESCL_SCL	
SCE SCI	
SCE SCL	
SCE SCL	
SCE SCL 1 0 0 1 0 0 1 0 SCN 1 0 0 1 0 0 1 0 0 1 0 Covice Address Basis	
	(Note15)

Figure 16. 3-SPI Data Transfer Format


(Note15) DD is direction data.

D1 to D210 P0 to P3 FL DR0 to DR1	Key Scan output port/Segment output port switching control data
FC0 to FC3 OC SC BU0 to BU2 PG1 to PG9 PF0 to PF3 CT0 to CT3 W10 to W18, W20 to W28, W30 to V	or Static drive switching control data ·· Common/Segment output waveform frame frequency setting control data ·· Internal oscillator operating mode/External clock operating mode switching control data

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

6. Static

(1) When SCL is stopped at the low level

(Note16) DD is direction data.

Figure 17. 3-SPI Data Transfer Format

(2) When SCL is stopped at the high level

0.05	
ScL	
SCESCL_SCL	
SCE SCL SCL SCL SCL SCL SCL SCL SCL SCL SCL	
SCESCL_SCL	∫ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
SCESCL _SC	
	(Note17)

Figure 18. 3-SPI Data Transfer Format

(Note17) DD is direction data.

CT0 to CT3LCD bias voltage VLCD setting control data. W10 to W18, W20 to W28, W30 to W38, W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98 	D1 to D70 Disp P0 to P3 Seg FL Line DR0 to DR1 1/4 I DT0 to DT2 1/8- or S FC0 to FC3 OC Intel SC Seg BU0 to BU2 Norr PG1 to PG9 PWI	Scan output port/Segment output port switching control data olay data ment/PWM/General-Purpose output port switching control data Inversion or Frame Inversion switching control data olas driver, 1/3 bias driver or 1/2 bias driver switching control data duty drive, 1/7-duty drive, 1/5-duty drive, 1/4-duty drive, 1/3-duty drive tatic drive switching control data mon/Segment output waveform frame frequency setting control data rnal oscillator operating mode/External clock operating mode switching control data
W10 to W18, W20 to W28, W30 to W38, W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98		
F WW Output duty setting control data	CT0 to CT3LCD W10 to W18, W20 to W28, W30 to W38, V	bias voltage VLCD setting control data. W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88, W90 to W98

When it is coincident with device code, BU97550KV-M capture display data and control data at falling edge of SCE. So, please transfer the bit number of send display data and control data as specified number in the above figure. Specified number of bits is 160bit (Device code: 8bit, Display data and Control data: 149bit, DD: 3bit).

Control Data Functions

1. KM0, KM1 and KM2: Key Scan output port/Segment output port switching control data

These control data bits switch the functions of the KS1/S53 to KS6/S58 output pins between key scan output and Segment output.

KM0	KM1	KM2			Output		Maximum Number	Reset		
KIVIU	NIVI I		KS1/S53	KS2/S54	KS3/S55	KS4/S56	KS5/S57	KS6/S58	of Input keys	condition
0	0	0	KS1	KS2	KS3	KS4	KS5	KS6	30	-
0	0	1	S53	KS2	KS3	KS4	KS5	KS6	25	-
0	1	0	S53	S54	KS3	KS4	KS5	KS6	20	-
0	1	1	S53	S54	S55	KS4	KS5	KS6	15	-
1	0	0	S53	S54	S55	S56	KS5	KS6	10	-
1	0	1	S53	S54	S55	S56	S57	KS6	5	-
1	1	0	S53	S54	S55	S56	S57	S58	0	-
1	1	1	S53	S54	S55	S56	S57	S58	0	0

2. P0, P1, P2 and P3: Segment/PWM/General-Purpose output port switching control data

These control bits are used to select the function of the S1/P1/G1 to S9/P9/G9 output Pins (Segment output Pins or PWM output Pins or General-Purpose output Pins).

P0	P1	P2	P3	S1/P1/G1	S2/P2/G2	S3/P3/G3	S4/P4/G4	S5/P5/G5	S6/P6/G6	S7/P7/G7	S8/P8/G8	S9/P9/G9	Reset condition
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
0	0	0	1	P1/G1	S2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	0	P1/G1	P2/G2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	1	P1/G1	P2/G2	P3/G3	S4	S5	S6	S7	S8	S9	-
0	1	0	0	P1/G1	P2/G2	P3/G3	P4/G4	S5	S6	S7	S8	S9	-
0	1	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	S6	S7	S8	S9	-
0	1	1	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	S7	S8	S9	-
0	1	1	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	S8	S9	-
1	0	0	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	S9	-
1	0	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	P9/G9	-
1	0	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	0	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	0

PWM output or General-Purpose output is selected by PGx(x=1 to 9) control data bit.

When the General-Purpose output Port Function is selected, the correspondence between the output Pins and the respective display data is given in the table below.

Output Ding	Corresponding Display Data						
Output Pins	1/8 Duty mode	1/7 Duty mode	1/5 Duty mode	1/4 Duty mode	1/3 Duty mode	Static	
S1/P1/G1	D1	D1	D1	D1	D1	D1	
S2/P2/G2	D9	D8	D6	D5	D4	D2	
S3/P3/G3	D17	D15	D11	D9	D7	D3	
S4/P4/G4	D25	D22	D16	D13	D10	D4	
S5/P5/G5	D33	D29	D21	D17	D13	D5	
S6/P6/G6	D41	D36	D26	D21	D16	D6	
S7/P7/G7	D49	D43	D31	D25	D19	D7	
S8/P8/G8	D57	D50	D36	D29	D22	D8	
S9/P9/G9	D65	D57	D41	D33	D25	D9	

When the General-Purpose output Port Function is selected, the respective output pin outputs a "H" level when its corresponding display data is set to "1". Likewise, it will output a "L" level, if its corresponding display data is set to "0". For example, at 1/4 Duty mode, S4/P4/G4 is used as a General-Purpose output Port, if its corresponding display data D13 is set to "1", then S4/P4/G4 will output "H" level. Likewise, if D13 is set to "0", then S4/P4/G4 will output "L" level.

3. FL: Line Inversion or Frame Inversion switching control data

This control data bit selects either line inversion mode or frame inversion mode.

FL	Inversion mode	Reset condition
0	Line Inversion	0
1	Frame Inversion	-

4. DR: 1/4 bias drive, 1/3 bias drive, 1/2 bias drive or 1/1 bias drive switching control data

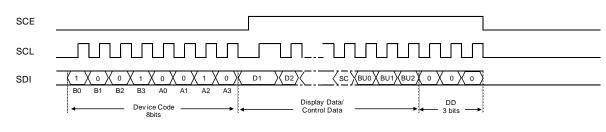
DR0	DR1	Bias drive scheme	Reset condition
0	0	1/3 Bias	0
0	1	1/1 Bias	-
1	0	1/4 Bias	-
1	1	1/2 Bias	-

5. DT: 1/8 duty drive, 1/7 duty drive, 1/5 duty drive, 1/4 duty drive, 1/3 duty drive or Static switching control data These control data bits select either 1/8 duty drive, 1/7 duty drive, 1/5 duty drive, 1/4 duty drive, 1/3 duty drive or Static

_ !	nese control da	la bils select elli	ier 1/8 duty drive	, 1/7 duly drive, 1/5 duly drive, 1/4 duly drive,	1/3 duly drive of Stall
	DT0	DT1	DT2	Duty drive scheme	Reset condition
	0	0	0	Static drive	-
ſ	0	0	1	1/3 duty drive	-
F	0	1	0	1/4 duty drive	0
	0	1	1	1/5 duty drive	-
	1	0	0	1/7 duty drive	-
	1	0	1	1/8 duty drive	-
	1	1	0	1/4 duty drive	-
	1	1	1	1/4 duty drive	-

6. FC0, FC1, FC2 and FC3: Common/Segment output waveform frame frequency setting control data These control data bits set the frame frequency for Common and Segment output waveforms.

These control data bits set the frame nequency for common and Segment output wavelorms.									
FC0	FC1	FC2	FC3	Frame Frequency fo(Hz)	Reset condition				
0	0	0	0	fosc ^(Note18) / 12288	0				
0	0	0	1	fosc / 10752	-				
0	0	1	0	fosc / 9216	-				
0	0	1	1	fosc / 7680	-				
0	1	0	0	fosc / 6144	-				
0	1	0	1	fosc / 4608	-				
0	1	1	0	fosc / 3840	-				
0	1	1	1	fosc / 3072	-				
1	0	0	0	fosc / 2880	-				
1	0	0	1	fosc / 2688	-				
1	0	1	0	fosc / 2496	-				
1	0	1	1	fosc / 2304	-				
1	1	0	0	fosc / 2112	-				
1	1	0	1	fosc / 1920	-				
1	1	1	0	fosc / 1728	-				
1	1	1	1	fosc / 1536	-				


(Note18)fosc: Internal Oscillation Frequency (600 [kHz] Typ)

7. OC: Internal oscillator operating mode/External clock operating mode switching control data This control data hit selects oscillation mode

This control uata	DIL SEIECIS OSCIIIALION MODE.		
OC	Operating mode	In/Out pin(OSC/S70) status	Reset condition
0	Internal oscillator	S70 (Segment output)	0
1	External Clock	OSC_IN (clock input)	-

<External Clock input timing function>

Internal oscillation / external clock select signal behavior is below. Input external clock after serial data sending.

Internal oscillation Extarnal Clock

8. SC: Segment on/off control data

This control data bit controls the on/off state of the Segments.

SC	Display state	Reset condition
0	ON	-
1	OFF	0

Note that when the Segments are turned off by setting SC to "1", the Segments are turned off by outputting Segment off waveforms from the Segment output pins.

9. BU0, BU1 and BU2: Normal mode/Power-saving mode control data These control data bits select either normal mode or Power-saving mode

BUO	BU1	BU2	Mode	OSC	Segment outputs	-	itput Pii		s During ndbv	Key So	can	Reset
200		202	mouo	Oscillator	Common outputs	KS1	KS2	KS3	KS4	KS5	KS6	condition
0	0	0	Normal	Operating	Operating	Н	Н	Н	Н	Н	Н	-
0	0	1				L	L	L	L	L	Н	-
0	1	0				L	L	L	L	Н	Н	-
0	1	1	Davida		ed Low(VSS)	L	L	L	Н	Н	Н	-
1	0	0	Power-	Stopped		L	L	Н	Н	Н	Н	-
1	0	1	saving			L	Н	Н	Н	Н	Н	-
1	1	0				Н	Н	Н	Н	Н	Н	-
1	1	1				Н	Н	Н	Н	Н	Н	0

Power-saving mode status: S1/P1/G1 to S9/P9/G9 = active only General-Purpose output

S10 to OSC_IN/S70 = low (VSS)

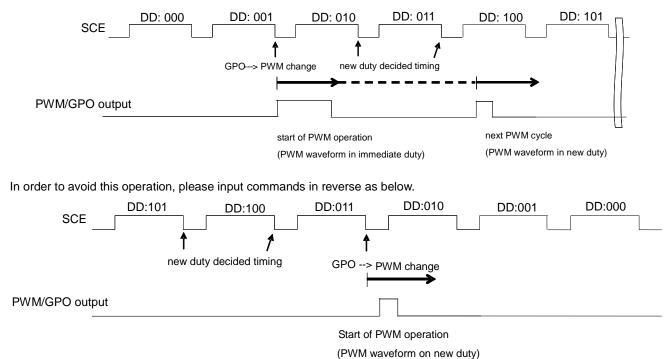
COM1 to COM8 = low (VSS)

Shut off current to the LCD drive bias voltage generation circuit

Stop the Internal oscillation circuit

However, serial data transfer is possible when at Power-saving mode.

10. PG1, PG2, PG3, PG4, PG5, PG6, PG7, PG8 and PG9: PWM/ General-Purpose output port control data This control data bit select either PWM output or General-Purpose output of Sx/Px/Gx pins. (x=1 to 9)


PGx(x=1 to 9)	Mode	Reset condition
0	PWM output	0
1	General-Purpose output	-

[PWM<->GPO Changing function]

Normal behavior of changing GPO to PWM is below.

- PWM operation is started by command import timing of DD: 001 during GPO \rightarrow PWM change.

- Please take care of reflect timing of new duty setting of DD: 010 and DD: 011 is from the next PWM.

11. PF0, PF1, PF2, and PF3: PWM output waveform frame frequency setting control data These control data bits set the frame frequency for PWM output waveforms.

I nese control data bits set the frame frequency for PWM output waveforms.									
PF0	PF1	PF2	PF3	PWM output Frame Frequency fp(Hz)	Reset condition				
0	0	0	0	fosc / 4096	0				
0	0	0	1	fosc / 3840	-				
0	0	1	0	fosc / 3584	-				
0	0	1	1	fosc / 3328	-				
0	1	0	0	fosc / 3072	-				
0	1	0	1	fosc / 2816	-				
0	1	1	0	fosc / 2560	-				
0	1	1	1	fosc / 2304	-				
1	0	0	0	fosc / 2048	-				
1	0	0	1	fosc / 1792	-				
1	0	1	0	fosc / 1536	-				
1	0	1	1	fosc / 1280	-				
1	1	0	0	fosc / 1024	-				
1	1	0	1	fosc / 768	-				
1	1	1	0	fosc / 512	-				
1	1	1	1	fosc / 256	-				

12. CT0, CT1, CT2 and CT3: Display Contrast setting control data These control data bits set display contrast

nese control data bits set display contrast								
CT0	CT1	CT2	CT3	LCD Drive bias voltage for VLCD Level	Reset condition			
0	0	0	0	1.000*VDD	0			
0	0	0	1	0.975*VDD	-			
0	0	1	0	0.950*VDD	-			
0	0	1	1	0.925*VDD	-			
0	1	0	0	0.900*VDD	-			
0	1	0	1	0.875*VDD	-			
0	1	1	0	0.850*VDD	-			
0	1	1	1	0.825*VDD	-			
1	0	0	0	0.800*VDD	-			
1	0	0	1	0.775*VDD	-			
1	0	1	0	0.750*VDD	-			
1	0	1	1	0.725*VDD	-			
1	1	0	0	0.700*VDD	-			
1	1	0	1	0.675*VDD	-			
1	1	1	0	0.650*VDD	-			
1	1	1	1	0.625*VDD	-			

Avoid setting VLCD voltage under 2.5V. And ensure "VDD – VLCD > 0.6V" condition is satisfied.

Unstable IC output voltage may result if the above conditions are not satisfied.

The relationship of LCD display contrast setting and VLCD voltage

CT Setting	formula	VDD= 6.000	VDD= 5.500	VDD= 5.000	VDD= 4.500	VDD= 4.000	VDD= 3.000	[V]
0	VDD	VLCD= 6.000	VLCD= 5.500	VLCD= 5.000	VLCD= 4.500	VLCD= 4.000	VLCD= 3.000	[V]
1	0.975*VDD	VLCD= 5.850	VLCD= 5.363	VLCD= 4.875	VLCD= 4.388	VLCD= 3.900	VLCD= 2.925	[V]
2	0.950*VDD	VLCD= 5.700	VLCD= 5.225	VLCD= 4.750	VLCD= 4.275	VLCD= 3.800	VLCD= 2.850	[V]
3	0.925*VDD	VLCD= 5.550	VLCD= 5.088	VLCD= 4.625	VLCD= 4.163	VLCD= 3.700	VLCD= 2.775	[V]
4	0.900*VDD	VLCD= 5.400	VLCD= 4.950	VLCD= 4.500	VLCD= 4.050	VLCD= 3.600	VLCD= 2.700	[V]
5	0.875*VDD	VLCD= 5.250	VLCD= 4.813	VLCD= 4.375	VLCD= 3.938	VLCD= 3.500	VLCD= 2.625	[V]
6	0.850*VDD	VLCD= 5.100	VLCD= 4.675	VLCD= 4.250	VLCD= 3.825	VLCD= 3.400	VLCD= 2.550	[V]
7	0.825*VDD	VLCD= 4.950	VLCD= 4.538	VLCD= 4.125	VLCD= 3.713	VLCD= 3.300	VLCD= 2.475	[V]
8	0.800*VDD	VLCD= 4.800	VLCD= 4.400	VLCD= 4.000	VLCD= 3.600	VLCD= 3.200	VLCD= 2.400	[V]
9	0.775*VDD	VLCD= 4.650	VLCD= 4.263	VLCD= 3.875	VLCD= 3.488	VLCD= 3.100	VLCD= 2.325	[V]
10	0.750*VDD	VLCD= 4.500	VLCD= 4.125	VLCD= 3.750	VLCD= 3.375	VLCD= 3.000	VLCD= 2.250	[V]
11	0.725*VDD	VLCD= 4.350	VLCD= 3.988	VLCD= 3.625	VLCD= 3.263	VLCD= 2.900	VLCD= 2.175	[V]
12	0.700*VDD	VLCD= 4.200	VLCD= 3.850	VLCD= 3.500	VLCD= 3.150	VLCD= 2.800	VLCD= 2.100	[V]
13	0.675*VDD	VLCD= 4.050	VLCD= 3.713	VLCD= 3.375	VLCD= 3.038	VLCD= 2.700	VLCD= 2.025	[V]
14	0.650*VDD	VLCD= 3.900	VLCD= 3.575	VLCD= 3.250	VLCD= 2.925	VLCD= 2.600	VLCD= 1.950	[V]
15	0.625*VDD	VLCD= 3.750	VLCD= 3.438	VLCD= 3.125	VLCD= 2.813	VLCD= 2.500	VLCD= 1.875	[V]

Disabled

13. W10 to W18^(Note19), W20 to W28, W30 to W38, W40 to W48, W50 to W58, W60 to W68, W70 to W78, W80 to W88 and W90 to W98: PWM output waveform duty setting control data. These control data bits set the high level pulse width (duty) for PWM output waveforms.
n = 1 to 9. To = 1/fo

										n = 1 to 9, $Tp = 1/fp$
Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	Wn6	Wn7	Wn8	PWM duty	Reset condition
0	0	0	0	0	0	0	0	0	(0/256) x Tp	0
0	0	0	0	0	0	0	0	1	(1/256) x Tp	-
0	0	0	0	0	0	0	1	0	(2/256) x Tp	-
0	0	0	0	0	0	0	1	1	(3/256) x Tp	-
0	0	0	0	0	0	1	0	0	(4/256) x Tp	-
0	0	0	0	0	0	1	0	1	(5/256) x Tp	-
0	0	0	0	0	0	1	1	0	(6/256) x Tp	-
0	0	0	0	0	0	1	1	1	(7/256) x Tp	-
0	0	0	0	0	1	0	0	0	(8/256) x Tp	-
0	0	0	0	0	1	0	0	1	(9/256) x Tp	-
0	0	0	0	0	1	0	1	0	(10/256) x Tp	-
0	0	0	0	0	1	0	1	1	(11/256) x Tp	-
0	0	0	0	0	1	1	0	0	(12/256) x Tp	-
0	0	0	0	0	1	1	0	1	(13/256) x Tp	-
0	0	0	0	0	1	1	1	0	(14/256) x Tp	-
0	0	0	0	0	1	1	1	1	(15/256) x Tp	-
0	0	0	0	1	0	0	0	0	(16/256) x Tp	-
0	0	0	0	1	0	0	0	1	(17/256) x Tp	-
0	0	0	0	1	0	0	1	0	(18/256) x Tp	-
0	0	0	0	1	0	0	1	1	(19/256) x Tp	-
0	0	0	0	1	0	1	0	0	(20/256) x Tp	-
										-
0	1	1	1	0	1	0	1	1	(235/256) x Tp	-
0	1	1	1	0	1	1	0	0	(236/256) x Tp	-
0	1	1	1	0	1	1	0	1	(237/256) x Tp	-
0	1	1	1	0	1	1	1	0	(238/256) x Tp	-
0	1	1	1	0	1	1	1	1	(239/256) x Tp	-
0	1	1	1	1	0	0	0	0	(240/256) x Tp	-
0	1	1	1	1	0	0	0	1	(241/256) x Tp	-
0	1	1	1	1	0	0	1	0	(242/256) x Tp	-
0	1	1	1	1	0	0	1	1	(243/256) x Tp	-
0	1	1	1	1	0	1	0	0	(244/256) x Tp	-
0	1	1	1	1	0	1	0	1	(245/256) x Tp	-
0	1	1	1	1	0	1	1	0	(246/256) x Tp	-
0	1	1	1	1	0	1	1	1	(247/256) x Tp	-
0	1	1	1	1	1	0	0	0	(248/256) x Tp	-
0	1	1	1	1	1	0	0	1	(249/256) x Tp	-
0	1	1	1	1	1	0	1	0	(250/256) x Tp	-
0	1	1	1	1	1	0	1	1	(251/256) x Tp	-
0	1	1	1	1	1	1	0	0	(252/256) x Tp	-
0	1	1	1	1	1	1	0	1	(253/256) x Tp	-
0	1	1	1	1	1	1	1	0	(254/256) x Tp	-
0	1	1	1	1	1	1	1	1	(255/256) x Tp	-
1	0	0	0	0	0	0	0	0	(256/256) x Tp	-
1	0	0	0	0	0	0	0	1	(256/256) x Tp	-
1	0	0	0	0	0	0	1	0	(256/256) x Tp	-
1	0	0	0	0	0	0	1	1	(256/256) x Tp	-
										-
1	1	1	1	1	1	1	0	0	(256/256) x Tp	-
1	1	1	1	1	1	1	0	1	(256/256) x Tp	-
1	1	1	1	1	1	1	1	0	(256/256) x Tp	-
1	1	1 S1/P1/G1 PW	1	1	1	1	1	1	(256/256) x Tp	-

(Note19) W10 to W18:S1/P1/G1 PWM duty data W20 to W28:S2/P2/G2 PWM duty data W30 to W38:S3/P3/G3 PWM duty data W40 to W48:S4/P4/G4 PWM duty data W50 to W58:S5/P5/G5 PWM duty data W60 to W68:S6/P6/G6 PWM duty data W70 to W78:S7/P7/G7 PWM duty data W80 to W88:S8/P8/G8 PWM duty data W90 to W98:S9/P9/G9 PWM duty data

Display Data and Output Pin Correspondence 1. 1/8 Duty

1/8 Duty Output Pin ^(Note20)	COM1	COM2	COM3	COM4	COM5	COM6	COM7	COM8
S1/P1/G1	D1	D2	D3	D4	D5	D6	D7	D8
S2/P2/G2	D9	D10	D11	D12	D13	D14	D15	D16
S3/P3/G3	D17	D18	D19	D20	D21	D22	D23	D24
S4/P4/G4	D25	D26	D27	D28	D29	D30	D31	D32
S5/P5/G5	D33	D34	D35	D36	D37	D38	D39	D40
S6/P6/G6	D41	D42	D43	D44	D45	D46	D47	D48
S7/P7/G7	D49	D50	D51	D52	D53	D54	D55	D56
S8/P8/G8	D57	D58	D59	D60	D61	D62	D63	D64
S9/P9/G9	D65	D66	D67	D68	D69	D70	D71	D72
S10	D73	D74	D75	D76	D77	D78	D79	D80
S11	D81	D82	D83	D84	D85	D86	D87	D88
S12	D89	D90	D91	D92	D93	D94	D95	D96
S13	D97	D98	D99	D100	D101	D102	D103	D104
S14	D105	D106	D107	D108	D109	D110	D111	D112
S15	D113	D114	D115	D116	D117	D118	D119	D120
S16	D121	D122	D123	D124	D125	D126	D127	D128
S17	D129	D130	D131	D132	D133	D134	D135	D136
S18	D137	D138	D139	D140	D141	D142	D143	D144
S19	D145	D146	D147	D148	D149	D150	D151	D152
S10 S20	D143	D140	D155	D140	D143	D158	D159	D160
S20	D161	D162	D163	D150	D165	D166	D103	D168
\$21 \$22	D169	D102 D170	D103	D104	D103	D100	D107	D100
\$22 \$23	D109	D170	D179	D172	D173	D174 D182	D173	D176
S24	D185	D186	D173	D188	D189	D102	D103	D104
S25	D103	D100	D107	D100	D103	D190	D191	D192 D200
S26	D193	D194 D202	D193	D190 D204	D197 D205	D198	D199 D207	D200
S20	D201 D209	D202 D210	D203	D204 D212	D203	D200 D214	D207 D215	D208 D216
S28	D209 D217	D210 D218	D211 D219	D212 D220	D213 D221	D214 D222	D215 D223	D216 D224
S29	D225	D226	D227	D228	D229	D230	D231	D232
\$30	D233	D234	D235	D236	D237	D238	D239	D240
S31	D241	D242	D243	D244	D245	D246	D247	D248
\$32	D249	D250	D251	D252	D253	D254	D255	D256
S33	D257	D258	D259	D260	D261	D262	D263	D264
S34	D265	D266	D267	D268	D269	D270	D271	D272
S35	D273	D274	D275	D276	D277	D278	D279	D280
S36	D281	D282	D283	D284	D285	D286	D287	D288
S37	D289	D290	D291	D292	D293	D294	D295	D296
S38	D297	D298	D299	D300	D301	D302	D303	D304
S39	D305	D306	D307	D308	D309	D310	D311	D312
S40	D313	D314	D315	D316	D317	D318	D319	D320
S41	D321	D322	D323	D324	D325	D326	D327	D328
S42	D329	D330	D331	D332	D333	D334	D335	D336
S43	D337	D338	D339	D340	D341	D342	D343	D344
S44	D345	D346	D347	D348	D349	D350	D351	D352
S45	D353	D354	D355	D356	D357	D358	D359	D360
S46	D361	D362	D363	D364	D365	D366	D367	D368
S47	D369	D370	D371	D372	D373	D374	D375	D376
S48	D377	D378	D379	D380	D381	D382	D383	D384
S49	D385	D386	D387	D388	D389	D390	D391	D392
S50	D393	D394	D395	D396	D397	D398	D399	D400
S51	D401	D402	D403	D404	D405	D406	D407	D408
S52	D409	D410	D411	D412	D413	D414	D415	D416
KS1/S53	D417	D418	D419	D420	D421	D422	D423	D424
KS2/S54	D425	D426	D427	D428	D429	D430	D431	D432
KS3/S55	D433	D434	D435	D436	D437	D438	D439	D440
KS4/S56	D441	D442	D443	D444	D445	D446	D447	D448
KS5/S57	D449	D450	D451	D452	D453	D454	D455	D456
KS6/S58	D457	D458	D459	D460	D461	D462	D463	D464
KI1/S59	D465	D466	D467	D468	D469	D470	D471	D472
KI2/S60	D473	D474	D475	D476	D477	D478	D479	D480
KI3/S61	D481	D482	D483	D484	D485	D486	D487	D488
KI4/S62	D489	D490	D491	D492	D493	D494	D495	D496

Display Data and Output Pin Correspondence – continued

Output Pin	COM1	COM2	COM3	COM4	COM5	COM6	COM7	COM8
COM8/S64								
COM7/S65								
COM6/S66								
COM5/S67								
S68	D505	D506	D507	D508	D509	D510	D511	D512
S69	D513	D514	D515	D516	D517	D518	D519	D520
OSC_IN/S70	D521	D522	D523	D524	D525	D526	D527	D528

(Note20) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, K11/S59 to KI5/S63 and OSC_IN/S70. Also, COM8/S64, COM7/S65, COM6/S66, COM5/S67 pins are used as Common outputs.

To illustrate further, the states of the S21 output pin is given in the table below.

	Display Data									
D161	D162	D163	D164			D167	D168	State of S21 output Pin		
0	0	0	0	0	0	0	0	LCD Segments corresponding to COM1 to COM8 are OFF.		
0	0	0	0	0	0	0	1	LCD Segment corresponding to COM8 is ON.		
0	0	0	0	0	0	1	0	LCD Segment corresponding to COM7 is ON.		
0	0	0	0	0	0	1	1	LCD Segments corresponding to COM7 and COM8 are ON.		
0	0	0	0	0	1	0	0	LCD Segment corresponding to COM6 is ON.		
0	0	0	0	0	1	0	1	LCD Segments corresponding to COM6 and COM8 are ON.		
0	0	0	0	0	1	1	0	LCD Segments corresponding to COM6 and COM7 are ON.		
0	0	0	0	0	1	1	1	LCD Segments corresponding to COM6, COM7 and COM8 are ON.		
0	0	0	0	1	0	0	0	LCD Segment corresponding to COM5 is ON.		
0	0	0	0	1	0	0	1	LCD Segments corresponding to COM5 and COM8 are ON.		
0	0	0	0	1	0	1	0	LCD Segments corresponding to COM5 and COM7 are ON.		
0	0	0	0	1	0	1	1	LCD Segments corresponding to COM5, COM7 and COM8 are ON.		
0	0	0	0	1	1	0	0	LCD Segments corresponding to COM5 and COM6 are ON.		
0	0	0	0	1	1	0	1	LCD Segments corresponding to COM5, COM6, and COM8 are ON.		
0	0	0	0	1	1	1	0	LCD Segments corresponding to COM5, COM6, and COM7 are ON.		
0	0	0	0	1	1	1	1	LCD Segments corresponding to COM5, COM6, COM7 and COM8 are ON.		
0	0	0	1	0	0	0	0	LCD Segment corresponding to COM4 is ON.		
0	0	0	1	0	0	0	1	LCD Segments corresponding to COM4 and COM8 are ON.		
0	0	0	1	0	0	1	0	LCD Segments corresponding to COM4 and COM7 are ON.		
0	0	0	1	0	0	1	1	LCD Segments corresponding to COM4, COM7 and COM8 are ON.		
0	0	0	1	0	1	0	0	LCD Segments corresponding to COM4 and COM6 are ON.		
0	0	0	1	0	1	0	1	LCD Segments corresponding to COM4, COM6 and COM8 are ON.		
0	0	0	1	0	1	1	0	LCD Segments corresponding to COM4, COM6 and COM7 are ON.		
0	0	0	1	0	1	1	1	LCD Segments corresponding to COM4, COM6, COM7 and COM8 are ON.		
0	0	0	1	1	0	0	0	LCD Segments corresponding to COM4 and COM5 are ON.		
0	0	0	1	1	0	0	1	LCD Segments corresponding to COM4, COM5 and COM8 are ON.		
0	0	0	1	1	0	1	0	LCD Segments corresponding to COM4, COM5 and COM7 are ON.		
0	0	0	1	1	0	1	1	LCD Segments corresponding to COM4, COM5, COM7 and COM8 are ON.		
0	0	0	1	1	1	0	0	LCD Segments corresponding to COM4, COM5 and COM6 are ON.		
0	0	0	1	1	1	0	1	LCD Segments corresponding to COM4, COM5, COM6 and COM8 are ON.		
0	0	0	1	1	1	1	0	LCD Segments corresponding to COM4, COM5, COM6 and COM7 are ON.		
1	1	1	1	1	1	1	1	LCD Segments corresponding to COM1 to COM8 are ON.		

Display Data and Output Pin Correspondence – continued 2. 1/7 Duty

1/7 Duty							
Output Pin ^(Note21)	COM1	COM2	COM3	COM4	COM5	COM6	COM7
S1/P1/G1	D1	D2	D3	D4	D5	D6	D7
S2/P2/G2	D8	D9	D10	D11	D12	D13	D14
S3/P3/G3	D15	D16	D17	D18	D19	D20	D21
S4/P4/G4	D22	D23	D24	D25	D26	D27	D28
S5/P5/G5	D29	D30	D31	D32	D33	D34	D35
S6/P6/G6	D36	D37	D38	D39	D40	D41	D42
S7/P7/G7	D43	D44	D45	D46	D47	D48	D49
S8/P8/G8	D50	D51	D52	D53	D54	D55	D56
S9/P9/G9	D57	D58	D59	D60	D61	D62	D63
S10	D64	D65	D66	D67	D68	D69	D70
S11	D71	D72	D73	D74	D75	D76	D77
S12	D78	D79	D80	D81	D82	D83	D84
S13	D85	D86	D87	D88	D89	D90	D91
S14	D00 D92	D93	D94	D95	D96	D97	D98
S15	D92	D100	D101	D33	D103	D104	D30
	D106	D100	D101	D102	D103	D104	D103
	D106 D113	D107 D114	D108 D115	D109 D116	D110	D118	D112 D119
S17 S18					D117 D124		
	D120	D121	D122	D123		D125	D126
S19	D127	D128	D129	D130	D131	D132	D133
S20	D134	D135	D136	D137	D138	D139	D140
S21	D141	D142	D143	D144	D145	D146	D147
S22	D148	D149	D150	D151	D152	D153	D154
S23	D155	D156	D157	D158	D159	D160	D161
S24	D162	D163	D164	D165	D166	D167	D168
S25	D169	D170	D171	D172	D173	D174	D175
S26	D176	D177	D178	D179	D180	D181	D182
S27	D183	D184	D185	D186	D187	D188	D189
S28	D190	D191	D192	D193	D194	D195	D196
S29	D197	D198	D199	D200	D201	D202	D203
S30	D204	D205	D206	D207	D208	D209	D210
S31	D211	D212	D213	D214	D215	D216	D217
S32	D218	D219	D220	D221	D222	D223	D224
S33	D225	D226	D227	D228	D229	D230	D231
S34	D232	D233	D234	D235	D236	D237	D238
S35	D239	D240	D241	D242	D243	D244	D245
S36	D246	D247	D248	D249	D250	D251	D252
S37	D253	D254	D255	D256	D257	D258	D259
S38	D260	D261	D262	D263	D264	D265	D266
S39	D267	D268	D269	D270	D271	D272	D273
S40	D274	D275	D276	D277	D278	D279	D280
S41	D281	D282	D283	D284	D285	D286	D287
S42	D288	D289	D290	D291	D292	D293	D294
S43	D200	D296	D290	D298	D292	D230	D204
	D295	D290	D297	D298	D299 D306	D300	D301
	D302	D303 D310	D304	D305	D308	D307 D314	D308
	D309 D316	D310 D317	D318	D312 D319	D313 D320	D314 D321	D315 D322
	D318 D323	D317 D324	D318 D325	D319 D326	D320	D321 D328	D322 D329
S48	D330	D331	D332	D333	D334	D335 D342	D336
S49	D337	D338	D339	D340	D341		D343
S50	D344	D345	D346	D347	D348	D349	D350
S51	D351	D352	D353	D354	D355	D356	D357
S52	D358	D359	D360	D361	D362	D363	D364
KS1/S53	D365	D366	D367	D368	D369	D370	D371
KS2/S54	D372	D373	D374	D375	D376	D377	D378
KS3/S55	D379	D380	D381	D382	D383	D384	D385
KS4/S56	D386	D387	D388	D389	D390	D391	D392
KS5/S57	D393	D394	D395	D396	D397	D398	D399
KS6/S58	D400	D401	D402	D403	D404	D405	D406
KI1/S59	D407	D408	D409	D410	D411	D412	D413
KI2/S60	D414	D415	D416	D417	D418	D419	D420
KI3/S61	D421	D422	D423	D424	D425	D426	D427
KI4/S62	D428	D429	D430	D431	D432	D433	D434

Display Data and Output Pin Correspondence – continued

Output Pin	COM1	COM2	COM3	COM4	COM5	COM6	COM7
COM8 / S64	D442	D443	D444	D445	D446	D447	D448
COM7 / S65							
COM6 / S66							
COM5 / S67							
S68	D449	D450	D451	D452	D453	D454	D455
S69	D456	D457	D458	D459	D460	D461	D462
OSC_IN/S70	D463	D464	D465	D466	D467	D468	D469
(Nista 04) That Os area and a star	at Dant from attack to a	and the second sec	- 4		00/00/00 1/04/01		1050 to 1/15/000

(Note21) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, KI1/S59 to KI5/S63 and OSC_IN/S70. Also, COM7/S65, COM6/S66, COM5/S67 pins are used as Common outputs.

To illustrate further, the states of the S21 output pin is given in the table below.

		Dis	splay da	ata			State of \$21 output Din				
D141	D142	D143		D145	D146	D147	State of S21 output Pin				
0	0	0	0	0	0	0	LCD Segments corresponding to COM1 to COM7 are OFF.				
0	0	0	0	0	0	1	LCD Segment corresponding to COM7 is ON.				
0	0	0	0	0	1	0	LCD Segment corresponding to COM6 is ON.				
0	0	0	0	0	1	1	LCD Segments corresponding to COM6 and COM7 are ON.				
0	0	0	0	1	0	0	LCD Segment corresponding to COM5 is ON.				
0	0	0	0	1	0	1	LCD Segments corresponding to COM5 and COM7 are ON.				
0	0	0	0	1	1	0	LCD Segments corresponding to COM5 and COM6 are ON.				
0	0	0	0	1	1	1	LCD Segments corresponding to COM5, COM6 and COM7 are ON.				
0	0	0	1	0	0	0	LCD Segment corresponding to COM4 is ON.				
0	0	0	1	0	0	1	LCD Segments corresponding to COM4 and COM7 are ON.				
0	0	0	1	0	1	0	LCD Segments corresponding to COM4 and COM6 are ON				
0	0	0	1	0	1	1	LCD Segments corresponding to COM4, COM6 and COM7 are ON.				
0	0	0	1	1	0	0	LCD Segments corresponding to COM4 and COM5 are ON.				
0	0	0	1	1	0	1	LCD Segments corresponding to COM4, COM5, and COM7 are ON.				
0	0	0	1	1	1	0	LCD Segments corresponding to COM4, COM5, and COM6 are ON.				
0	0	0	1	1	1	1	LCD Segments corresponding to COM4, COM5, COM6 and COM7 are ON.				
0	0	1	0	0	0	0	LCD Segment corresponding to COM3 is ON.				
0	0	1	0	0	0	1	LCD Segments corresponding to COM3 and COM7 are ON.				
0	0	1	0	0	1	0	LCD Segments corresponding to COM3 and COM6 are ON.				
0	0	1	0	0	1	1	LCD Segments corresponding to COM3, COM6 and COM7 are ON.				
0	0	1	0	1	0	0	LCD Segments corresponding to COM3 and COM5 are ON.				
0	0	1	0	1	0	1	LCD Segments corresponding to COM3, COM5 and COM7 are ON.				
0	0	1	0	1	1	0	LCD Segments corresponding to COM3, COM5 and COM6 are ON.				
0	0	1	0	1	1	1	LCD Segments corresponding to COM3, COM5, COM6 and COM7 are ON.				
0	0	1	1	0	0	0	LCD Segments corresponding to COM3 and COM4 are ON.				
0	0	1	1	0	0	1	LCD Segments corresponding to COM3, COM4 and COM7 are ON.				
0	0	1	1	0	1	0	LCD Segments corresponding to COM3, COM4 and COM6 are ON.				
0	0	1	1	0	1	1	LCD Segments corresponding to COM3, COM4, COM6 and COM7 are ON.				
0	0	1	1	1	0	0	LCD Segments corresponding to COM3, COM4 and COM5 are ON.				
0	0	1	1	1	0	1	LCD Segments corresponding to COM3, COM4, COM5 and COM7 are ON.				
0	0	1	1	1	1	0	LCD Segments corresponding to COM3, COM4, COM5 and COM6 are ON.				
1	1	1	1	1	1	1	LCD Segments corresponding to COM1 to COM7 are ON.				

Display Data and Output Pin Correspondence – continued 3. <u>1/5 duty</u>

Output Pin ^(Note22)	COM1	COM2	COM3	COM4	COM5
S1/P1/G1	D1	D2	D3	D4	D5
S2/P2/G2	D6	D7	D8	D9	D10
S3/P3/G3	D11	D12	D13	D14	D15
S4/P4/G4	D16	D17	D18	D19	D20
S5/P5/G5	D21	D22	D23	D24	D25
S6/P6/G6	D26	D27	D28	D29	D30
S7/P7/G7	D31	D32	D33	D34	D35
S8/P8/G8	D36	D37	D38	D39	D40
S9/P9/G9	D41	D42	D43	D44	D45
S10	D46	D47	D48	D49	D50
S11	D51	D52	D53	D54	D55
S12	D56	D57	D58	D59	D60
S13	D61	D62	D63	D64	D65
S14	D66	D67	D68	D69	D70
S15	D71	D72	D73	D74	D75
S16	D76	D77	D78	D79	D80
S17	D81	D82	D83	D84	D85
S18	D86	D87	D88	D89	D90
S19	D00	D92	D93	D03	D95
S20	D96	D92	D93	D94	D95
S21	D101	D102	D103	D33	D100
S22	D106	D102	D108	D104	D100
S23	D100	D107	D103	D103	D110
S23	D116	D112	D118	D114	D113
S25	D121	D122	D1123	D119 D124	D120
S26	D126	D122	D123	D124	D120
S27	D120	D127	D123	D123	D135
S28	D136	D132	D133	D134	D133
S29	D130	D137	D138	D139	D140
S30	D141	D142	D143	D144	D143
S31	D140	D147 D152	D148	D149 D154	D150
S32	D156	D152	D153	D154	D155
S33	D150	D162	D163	D159	D165
	D166	D162	D168	D164	D185
S35	D100	D107	D108	D109	D170
S36	D176	D172	D178	D174	D173
S37	D178	D182	D178	D179 D184	D180
S38	D186	D182	D183	D184	D185
S39	D180	D187 D192	D188	D189	D190
S40	D191	D192	D193	D194	D195
	D196	D197	D198	D199 D204	D200
S42 S43	D206 D211	D207 D212	D208 D213	D209 D214	D210 D215
S44 S45	D216 D221	D217 D222	D218 D223	D219 D224	D220 D225
					-
S46	D226	D227	D228	D229	D230
S47	D231	D232	D233	D234	D235
S48	D236	D237	D238	D239	D240
S49	D241	D242	D243	D244	D245
S50	D246	D247	D248	D249	D250
S51	D251	D252	D253	D254	D255
\$52	D256	D257	D258	D259	D260
KS1/S53	D261	D262	D263	D264	D265
KS2/S54	D266	D267	D268	D269	D270
KS3/S55	D271	D272	D273	D274	D275
KS4/S56	D276	D277	D278	D279	D280
KS5/S57	D281	D282	D283	D284	D285
KS6/S58	D286	D287	D288	D289	D290
KI1/S59	D291	D292	D293	D294	D295
KI2/S60	D296	D297	D298	D299	D300
KI3/S61	D301	D302	D303	D304	D305
KI4/S62	D306	D307	D308	D309	D310
KI5/S63	D311	D312	D313	D314	D315

Display Data and Output Pin Correspondence – continued

Output Pin	COM1	COM2	COM3	COM4	COM5
COM8/S64	D316	D317	D318	D319	D320
COM7/S65	D321	D322	D323	D324	D325
COM6/S66	D326	D327	D328	D329	D330
COM5/S67					
S68	D331	D332	D333	D334	D335
S69	D336	D337	D338	D339	D340
OSC_IN/S70	D341	D342	D343	D344	D345
(Note22) The Segment output	It Part function is assume	d to be colected for the out	out pipe S1/D1/C1 to S0/	D0/C0 KS1/S52 to KS6/S	59 K11/950 to K15/962

(Note22) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, KI1/S59 to KI5/S63 and OSC_IN/S70. Also, COM5/S67 pins are used as Common outputs.

To illustrate further, the states of the S21 output pin is given in the table below.

	Display Data			1	
D101	D102	D103	D104	D105	State of S21 output Pin
0	0	0	0	0	LCD Segments corresponding to COM1 to COM5 are OFF.
0	0	0	0	1	LCD Segment corresponding to COM5 is ON.
0	0	0	1	0	LCD Segment corresponding to COM4 is ON.
0	0	0	1	1	LCD Segments corresponding to COM4 and COM5 are ON.
0	0	1	0	0	LCD Segment corresponding to COM3 is ON.
0	0	1	0	1	LCD Segments corresponding to COM3 and COM5 are ON.
0	0	1	1	0	LCD Segments corresponding to COM3 and COM4 are ON.
0	0	1	1	1	LCD Segments corresponding to COM3, COM4 and COM5 are ON.
0	1	0	0	0	LCD Segment corresponding to COM2 is ON.
0	1	0	0	1	LCD Segments corresponding to COM2 and COM5 are ON.
0	1	0	1	0	LCD Segments corresponding to COM2 and COM4 are ON.
0	1	0	1	1	LCD Segments corresponding to COM2, COM4 and COM5 are ON.
0	1	1	0	0	LCD Segments corresponding to COM2 and COM3 are ON.
0	1	1	0	1	LCD Segments corresponding to COM2, COM3, and COM5 are ON.
0	1	1	1	0	LCD Segments corresponding to COM2, COM3, and COM4 are ON.
0	1	1	1	1	LCD Segments corresponding to COM2, COM3, COM4 and COM5 are ON.
1	0	0	0	0	LCD Segment corresponding to COM1 is ON.
1	0	0	0	1	LCD Segments corresponding to COM1 and COM5 are ON.
1	0	0	1	0	LCD Segments corresponding to COM1 and COM4 are ON.
1	0	0	1	1	LCD Segments corresponding to COM1, COM4 and COM5 are ON.
1	0	1	0	0	LCD Segments corresponding to COM1 and COM3 are ON.
1	0	1	0	1	LCD Segments corresponding to COM1, COM3 and COM5 are ON.
1	0	1	1	0	LCD Segments corresponding to COM1, COM3 and COM4 are ON.
1	0	1	1	1	LCD Segments corresponding to COM1, COM3, COM4 and COM5 are ON.
1	1	0	0	0	LCD Segments corresponding to COM1 and COM2 are ON.
1	1	0	0	1	LCD Segments corresponding to COM1, COM2 and COM5 are ON.
1	1	0	1	0	LCD Segments corresponding to COM1, COM2 and COM4 are ON.
1	1	0	1	1	LCD Segments corresponding to COM1, COM2, COM4 and COM5 are ON.
1	1	1	0	0	LCD Segments corresponding to COM1, COM2 and COM3 are ON.
1	1	1	0	1	LCD Segments corresponding to COM1, COM2, COM3 and COM5 are ON.
1	1	1	1	0	LCD Segments corresponding to COM1, COM2, COM3 and COM4 are ON.
1	1	1	1	1	LCD Segments corresponding to COM1 to COM5 are ON.

Display Data and Output Pin Correspondence – continued 4. 1/4 duty

	Output Pin ^(Note23) S1/P1/G1	COM1	COM2	COM3	COM4
	S1/P1/G1	D 4			
		D1	D2	D3	D4
F	S2/P2/G2	D5	D6	D7	D8
	S3/P3/G3	D9	D10	D11	D12
F	S4/P4/G4	D13	D14	D15	D16
-	S5/P5/G5	D13		D19	
-			D18		D20
-	S6/P6/G6	D21	D22	D23	D24
	S7/P7/G7	D25	D26	D27	D28
L	S8/P8/G8	D29	D30	D31	D32
	S9/P9/G9	D33	D34	D35	D36
	S10	D37	D38	D39	D40
	S11	D41	D42	D43	D44
	S12	D45	D46	D47	D48
-	S12	D49	D50	D51	D 10
-	S14	D43	D54	D55	D52
_	S15	D57	D58	D59	D60
L	S16	D61	D62	D63	D64
L	S17	D65	D66	D67	D68
	S18	D69	D70	D71	D72
	S19	D73	D74	D75	D76
	S20	D77	D78	D79	D80
F	S21	D81	D82	D83	D84
-	S22	D85	D86	D87	D88
\vdash	S23	D85	D80	D91	D88
-					
_	S24	D93	D94	D95	D96
L	S25	D97	D98	D99	D100
L	S26	D101	D102	D103	D104
	S27	D105	D106	D107	D108
	S28	D109	D110	D111	D112
	S29	D113	D114	D115	D116
	S30	D117	D118	D119	D120
	S31	D121	D122	D123	D124
-	S32	D125	D122	D123	D124
_					
_	S33	D129	D130	D131	D132
L	S34	D133	D134	D135	D136
L	S35	D137	D138	D139	D140
	S36	D141	D142	D143	D144
	S37	D145	D146	D147	D148
	S38	D149	D150	D151	D152
	S39	D153	D154	D155	D156
	S40	D157	D158	D159	D160
_	S41	D161	D162	D163	D164
-					
	S42	D165	D166	D167	D168
F	S43	D169	D170	D171	D172
L	S44	D173	D174	D175	D176
L	S45	D177	D178	D179	D180
	S46	D181	D182	D183	D184
Γ	S47	D185	D186	D187	D188
F	S48	D189	D190	D191	D192
┢	S49	D103	D194	D195	D192
\vdash	S50	D193	D194	D193	D190
╞					
	S51	D201	D202	D203	D204
F	S52	D205	D206	D207	D208
L	KS1/S53	D209	D210	D211	D212
L	KS2/S54	D213	D214	D215	D216
	KS3/S55	D217	D218	D219	D220
F	KS4/S56	D221	D222	D223	D224
	KS5/S57	D225	D226	D227	D228
┢	KS6/S58	D229	D230	D231	D220
\vdash					
╞	KI1/S59	D233	D234	D235	D236
F	KI2/S60	D237	D238	D239	D240
L	KI3/S61	D241	D242	D243	D244
1	KI4/S62	D245	D246	D247	D248
			D250	D251	D252

Display Data and Output Pin Correspondence – continued

Output Pin	COM1	COM2	COM3	COM4
COM8/S64	D253	D254	D255	D256
COM7/S65	D257	D258	D259	D260
COM6/S66	D261	D262	D263	D264
COM5/S67	D265	D266	D267	D268
S68	D269	D270	D271	D272
S69	D273	D274	D275	D276
OSC_IN/S70	D277	D278	D279	D280

(Note23) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, KI1/S59 to KI5/S63 and OSC_IN/S70.

To illustrate further, the states of the S21 output pin is given in the table below.

	Display Data			State of \$21 output Din
D81	D82	D83	D84	State of S21 output Pin
0	0	0	0	LCD Segments corresponding to COM1 to COM4 are OFF.
0	0	0	1	LCD Segment corresponding to COM4 is ON.
0	0	1	0	LCD Segment corresponding to COM3 is ON.
0	0	1	1	LCD Segments corresponding to COM3 and COM4 are ON.
0	1	0	0	LCD Segment corresponding to COM2 is ON.
0	1	0	1	LCD Segments corresponding to COM2 and COM4 are ON.
0	1	1	0	LCD Segments corresponding to COM2 and COM3 are ON.
0	1	1	1	LCD Segments corresponding to COM2, COM3 and COM4 are ON.
1	0	0	0	LCD Segment corresponding to COM1 is ON.
1	0	0	1	LCD Segments corresponding to COM1 and COM4 are ON.
1	0	1	0	LCD Segments corresponding to COM1 and COM3 are ON.
1	0	1	1	LCD Segments corresponding to COM1, COM3 and COM4 are ON.
1	1	0	0	LCD Segments corresponding to COM1 and COM2 are ON.
1	1	0	1	LCD Segments corresponding to COM1, COM2, and COM4 are ON.
1	1	1	0	LCD Segments corresponding to COM1, COM2, and COM3 are ON.
1	1	1	1	LCD Segments corresponding to COM1 to COM4 are ON.

Display Data and Output Pin Correspondence – continued 5. 1/3 duty

1/3 duty					
Output Pin ^(Note24)	COM1	COM2	COM3		
S1/P1/G1	D1	D2	D3		
S2/P2/G2	D4	D5	D6		
S3/P3/G3	D7	D8	D9		
S4/P4/G4	D10	D11	D12		
S5/P5/G5	D13	D14	D15		
S6/P6/G6	D16	D17	D18		
S7/P7/G7	D19	D20	D21		
S8/P8/G8	D22	D23	D24		
S9/P9/G9	D25	D26	D27		
S10	D28	D29	D30		
S11	D31	D32	D33		
S12	D34	D35	D36		
S13	D37	D38	D39		
S14	D40	D41	D42		
S15	D43	D44	D45		
S16	D46	D47	D48		
S17	D49	D50	D51		
S18	D52	D53	D54		
S19	D55	D56	D57		
S20	D58	D59	D60		
S21	D61	D62	D63		
S22	D64	D65	D66		
S23	D67	D68	D69		
S24	D70	D71	D72		
S25	D73	D74	D75		
S26	D76	D77	D78		
S27	D79	D80	D81		
S28	D82	D83	D84		
S29	D85	D85	D87		
S30	D88	D89	D90		
S31	D91	D92	D93		
S32	D94	D95	D96		
S33	D97	D98	D99		
S34	D100	D101	D102		
S35	D103	D104	D105		
S36	D106	D107	D108		
\$37	D109	D110	D111		
S38	D112	D113	D114		
S39	D115	D116	D117		
S40	D118	D119	D120		
S41	D121	D122	D123		
S42	D124	D125	D126		
S43	D127	D128	D129		
S44	D130	D131	D132		
S45	D133	D134	D135		
S46	D136	D137	D138		
S47	D139	D140	D141		
S48	D142	D143	D144		
S49	D145	D146	D147		
S50	D148	D149	D150		
S51	D151	D152	D153		
S52	D154	D155	D156		
KS1/S53	D157	D158	D159		
KS2/S54	D160	D161	D162		
KS3/S55	D163	D164	D165		
KS4/S56	D166	D167	D168 D171		
KS5/S57	D169	D170			
KS6/S58	D172	D173	D174		
KI1/S59	D175	D176	D177		
KI2/S60	D178	D179	D180		
KI3/S61	D181	D182	D183		
KI4/S62	D184	D185	D186		
KI5/S63	D187	D188	D189		

Display Data and Output Pin Correspondence – continued

Output Pin	COM1	COM2	COM3
COM8/S64	D190	D191	D192
COM7/S65	D193	D194	D195
COM6/S66	D196	D197	D198
COM5/S67	D199	D200	D201
S68	D202	D203	D204
S69	D205	D206	D207
OSC_IN/S70	D208	D209	D210

(Note24) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, KI1/S59 to KI5/S63 and OSC_IN/S70.

To illustrate further, the states of the S21 output pin is given in the table below.

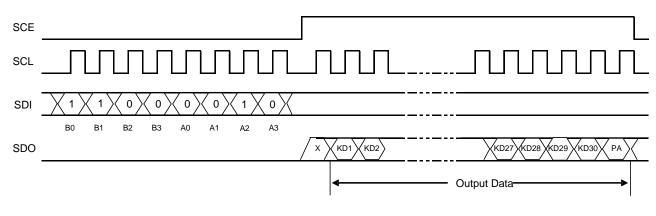
Display Data		ata	State of S21 output Pin		
D61	D62	D63			
0	0	0	LCD Segments corresponding to COM1 to COM3 are OFF.		
0	0	1	LCD Segment corresponding to COM3 is ON.		
0	1	0	LCD Segment corresponding to COM2 is ON.		
0	1	1	LCD Segments corresponding to COM2 and COM3 are ON.		
1	0	0	LCD Segment corresponding to COM1 is ON.		
1	0	1	LCD Segments corresponding to COM1 and COM3 are ON.		
1	1	0	LCD Segments corresponding to COM1 and COM2 are ON.		
1	1	1	LCD Segments corresponding to COM1 to COM3 are ON.		

Display Data and Output Pin Correspondence – continued 6. Static

Static	
Output Pin ^(Note25)	COM1
S1/P1/G1	D1
S2/P2/G2	D2
S3/P3/G3	D3
S4/P4/G4	D4
S5/P5/G5	D5
S6/P6/G6	D6
S7/P7/G7	D7
S8/P8/G8	D8
S9/P9/G9	D9
S10	D10
	D10
S11	D11
S12	D12
S13	D13
S14	D14
S15	D15
S16	D16
S17	D17
S18	D18
S19	D19
S20	D20
S21	D21
S22	D22
S23	D23
S24	D24
S25	D25
S26	D26
S27	D27
S28	D28
S29	D29
S30	D30
S31	D31
S32	D32
S33	D33
S34	D34
S35	D35
S36	D36
S37	D37
S38	D38
S39	D39
S40	D40
S41	D41
S42	D42
S43	D43
S44	D44
S45	D45
S46	D46
S47	D47
S48	D48
S49	D49
S50	D50
<u>S51</u>	D51
S52	D52
KS1/S53	D53
KS2/S54	D54
KS3/S55	D55
KS4/S56	D56
KS5/S57	D57
	D58
KS6/S58	
	D59
KI1/S59	D59
KI1/S59 KI2/S60	D60
KI1/S59 KI2/S60 KI3/S61	D60 D61
KI1/S59 KI2/S60	D60

Display Data and Output Pin Correspondence – continued

Output Pin	COM1
COM8/S64	D64
COM7/S65	D65
COM6/S66	D66
COM5/S67	D67
S68	D68
S69	D69
OSC_IN/S70	D70


(Note25) The Segment output Port function is assumed to be selected for the output pins – S1/P1/G1 to S9/P9/G9, KS1/S53 to KS6/S58, KI1/S59 to KI5/S63 and OSC_IN/S70.

To illustrate further, the states of the S21 output pin is given in the table below.

Display Data D21	State of S21 output Pin
0	LCD Segment corresponding to COM1 is OFF.
1	LCD Segment corresponding to COM1 is ON.

Serial Data Output

1. When SCL is stopped at the low level^(Note26)

(Note26)

1. X=Don't care 2. B0 to B3, A0 to A3: Serial Interface address

2. When SCL is stopped at the high level^(Note27)

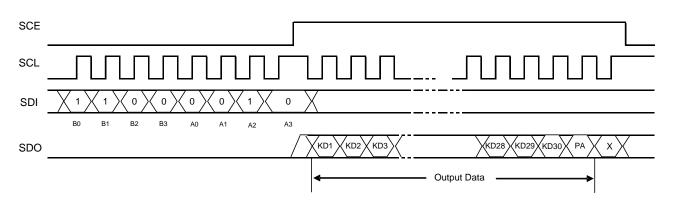


Figure 20. Serial Data Output Format

(Note27)

- 1. X=Don't care
- 2. B0 to B3, A0 to A3: Serial Interface address
- 3. Serial Interface address: 43H
- 4. KD1 to KD30: Key data
- 5. PA: Power-saving acknowledge data 6. If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and Power-saving acknowledge data (PA) will be invalid.

Output Data

1. KD1 to KD30: KEY DATA

When a key matrix of up to 30 keys is formed from the KS1 to KS6 output pins and the KI1 to KI5 input pins and one of those keys is pressed, the key output data corresponding to that key will be set to 1. The table shows the relationship between those pins and the key data bits.

Item	KI1	KI2	KI3	KI4	KI5
KS1	KD1	KD2	KD3	KD4	KD5
KS2	KD6	KD7	KD8	KD9	KD10
KS3	KD11	KD12	KD13	KD14	KD15
KS4	KD16	KD17	KD18	KD19	KD20
KS5	KD21	KD22	KD23	KD24	KD25
KS6	KD26	KD27	KD28	KD29	KD30

2. PA: Power-saving Acknowledge Data

This output data is set to the state of normal mode or Power-saving mode.

PA is set to 1 in the Power-saving mode and to 0 in the normal mode.

Power-saving Mode

Power-saving mode is activated when least one of control data BU0 or BU1 or BU2 is set to 1. All Segment and Common outputs will go low. The oscillation circuit will stop (It can be restarted by a key press), thus reducing power consumption. This mode can be disabled when control data bits BU0, BU1 and BU2 are all set to 0. However, note that the S1/P1/G1 to S9/P9/G9 outputs can still be used as General-Purpose output ports according to the state of the P0 to P2 control data bits, even in Power-saving mode. (See Control Data Functions.)

Key Scan Operation Functions

1. Key Scan Timing

The key scan period is 4608T(s). To reliably determine the on/off state of the keys, the BU97550KV-M scans the keys twice and determines that a key has been pressed when the key data agrees. Then it outputs a key data read request (a low level on SDO) 9840T(s) after starting a key scan. If the key data does not agree and a key was pressed at that point, it scans the keys again. Thus the BU97550KV-M cannot detect a key press shorter than 9840T(s).

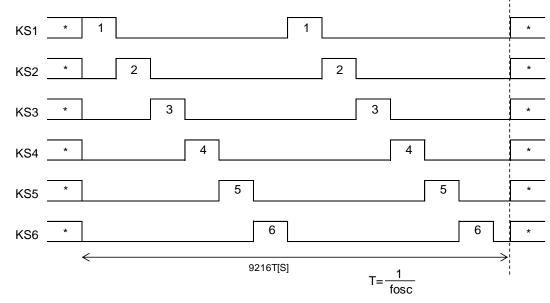
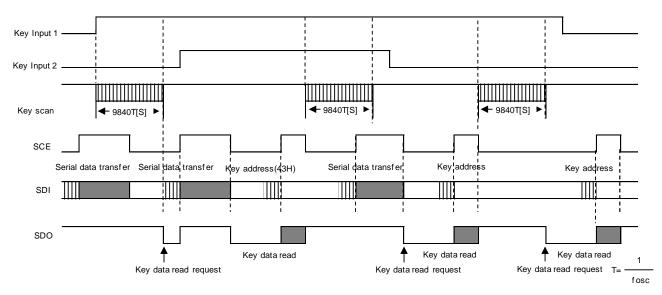


Figure 21. Key Scan Timing^(Note28)

(Note28) In Power-saving mode, the "H" or "L" state of these pins is determined by the BU0 to BU2 bits in the control data. Key scan output signals are not output from pins that are set "L".


2. In Normal Mode

The pins KS1 to KS6 output are set "H".

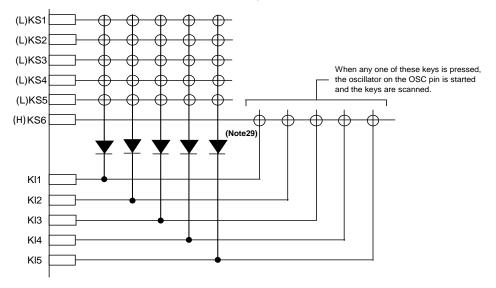
When a key is pressed a key scan is started and the keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.

If a key is pressed for longer than 9840T(s) (Where T=1/fosc) the BU97550KV-M outputs a key data read request (a low level on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high during a serial data transfer, SDO will be set high.

After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU97550KV-M performs another key scan. Also note that SDO, being an open-drain output, requires a pull-up resistor (between $1k\Omega$ to $10k\Omega$).

3. In Power-saving Mode

The pins KS1 to KS6 output high or low level by the BU0 to BU2 bits in the control data. (See the control data Functions for details.)


If a key on one of the lines corresponding to a KS1 to KS6 pin which is set high is pressed, the oscillator on the OSC_IN pin is started and a key scan is performed. Keys are scanned until all keys are released. Multiple key presses are recognized by determining whether multiple key data bits are set.

If a key is pressed for longer than 9840T(s)(Where T=1/fosc) the BU97550KV-M outputs a key data read request (a low level on SDO) to the controller. The controller acknowledges this request and reads the key data. However, if SCE is high during a serial data transfer, SDO will be set high.

After the controller reads the key data, the key data read request is cleared (SDO is set high) and the BU97550KV-M performs another key scan. However, this does not clear Power-saving mode. Also note that SDO, being an open-drain output, requires a pull-up resistor (between 1 k Ω to 10k Ω).

Power-saving mode key scan example

Example: BU0=0, BU1=0, BU2=1 (only KS6 high level output)

(Note 29)

These diodes are required to reliable recognize multiple key presses on the KS6 line when Power-saving mode state with only KS6 high, as in the above example.

That is, these diodes prevent incorrect operations due to sneak currents in the KS6 key scan output signal when keys on the KS1 to KS5 lines are pressed at the same time.

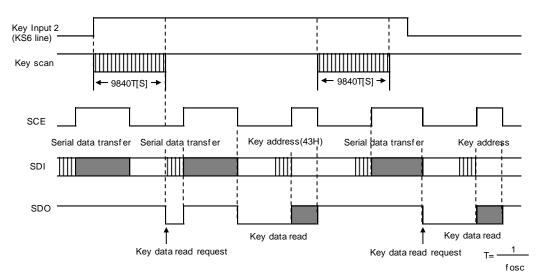
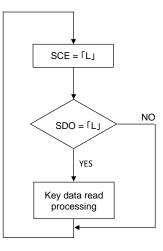


Figure 23. Key scan operation in Power-saving mode

4. Multiple Key Presses


Although the BU97550KV-M is capable of key scanning without inserting diodes for dual key presses, triple key presses on the KI1 to KI5 input pin lines, or multiple key presses on the KS1 to KS6 output pin lines, multiple presses other than these cases may result in keys that were not pressed recognized as having been pressed. Therefore, a diode must be inserted in series with each key. Applications that do not recognize multiple key presses of three or more keys should check the key data for three or more 1 bit and ignore such data.

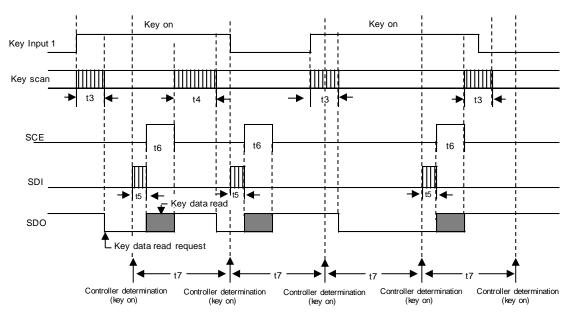
5. Controller Key Data Read Techniques

When the controller receives a key data read request from BU97550KV-M, it performs a key data read acquisition operation using either the Timer Based Key Data Acquisition or the Interrupt Based Key Data Acquisition.

6. Timer Based Key Data Acquisition Technique

Under the Timer Based Key Data Acquisition Technique, the controller uses a timer to determine the states of the keys (on or off) and read the key data. Please refer to the flowchart below.

Key data read processing: Refer to "Serial Data Output"


Figure 24. Flowchart

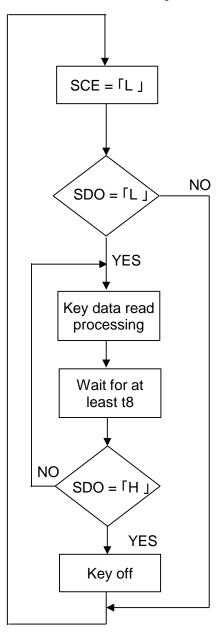
In this technique, the controller uses a timer to determine key on/off states and read the key data. The controller must check the SDO state when SCE is low every t7 period without fail. If SDO is low, the controller recognizes that a key has been pressed and executes the key data read operation.

The period t7 in this technique must satisfy the following condition.

t7>t4+t5+t6

If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and Power-saving acknowledge data (PA) will be invalid.

t3: Key scan execution time when the key data agreed for two key scans. (9840T[s])

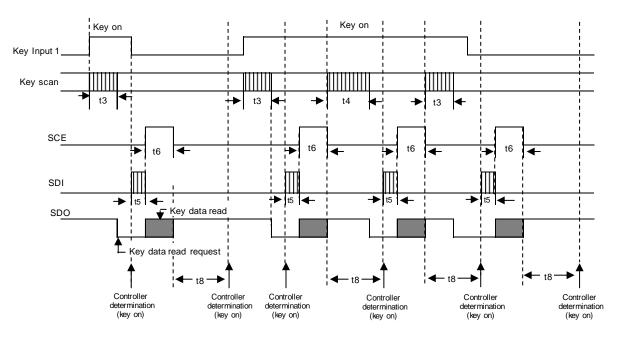

t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (19680T[s]) T = 1 / fosc

t5: Key address (43H) transfer time

t6: Key data read time

Figure 25. Timer based key data read operation

7. Interrupt Based Key Data Acquisition Technique Under the Interrupt Based Key Data Acquisition Technique, the controller uses interrupts to determine the state of the keys (on or off) and read the key data. Please refer to the flow chart diagram below.



Key data read processing: Refer to "Serial Data Output"

Figure 26. Flowchart

In this technique, the controller uses interrupts to determine key on/off states and read the key data. The controller must check the SDO state when SCE is low. If SDO is low, the controller recognizes that a key has been pressed and executes the key data read operation. After that the next key on/off determination is performed after the time t8 has elapsed by checking the SDO state when SCE is low and reading the key data. The period t8 in this technique must satisfy t8 > t4.

If a key data read operation is executed when SDO is high, the read key data (KD1 to KD30) and power-saving acknowledge data (PA) will be invalid.

t3: Key scan execution time when the key data agreed for two key scans. (9840T[s])

t4: Key scan execution time when the key data did not agree for two key scans and the key scan was executed again. (19680T[s]) T = 1 / fosc

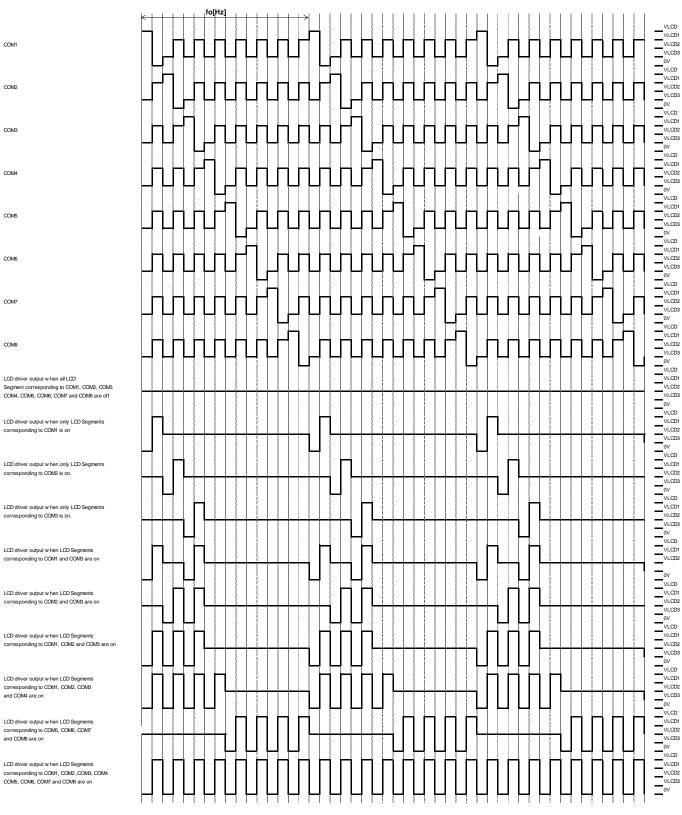
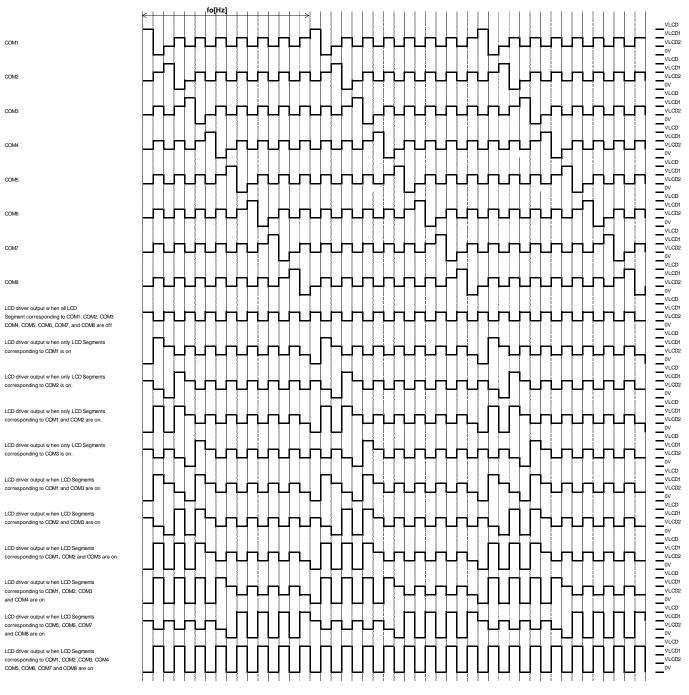
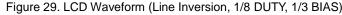
t5: Key address (43H) transfer time

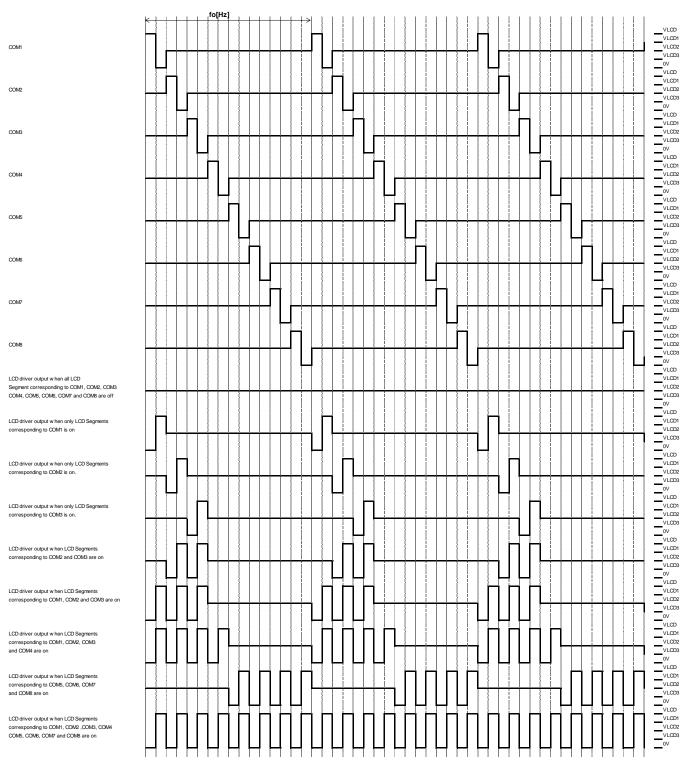
t6: Key data read time

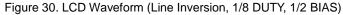
Figure 27. Interrupt Based Key Data Read Operation

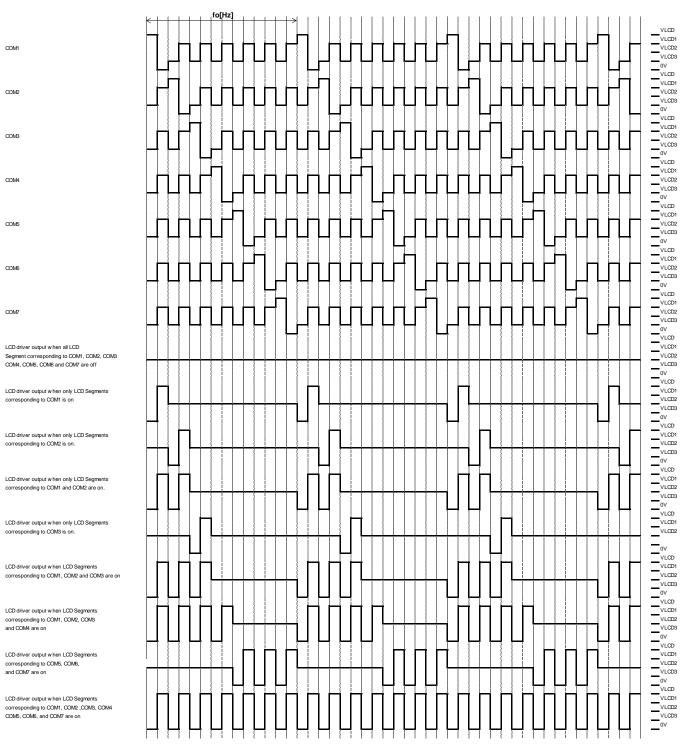
LCD Driving Waveforms

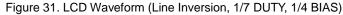
1. Line Inversion 1/8-Duty 1/4-Bias Drive Scheme


Figure 28. LCD Waveform (Line Inversion, 1/8 DUTY, 1/4 BIAS)


2. Line Inversion 1/8-Duty 1/3-Bias Drive Scheme




3. Line Inversion 1/8-Duty 1/2-Bias Drive Scheme

4. Line Inversion 1/7-Duty 1/4-Bias Drive Scheme

5. Line Inversion 1/5-Duty 1/3-Bias Drive Scheme

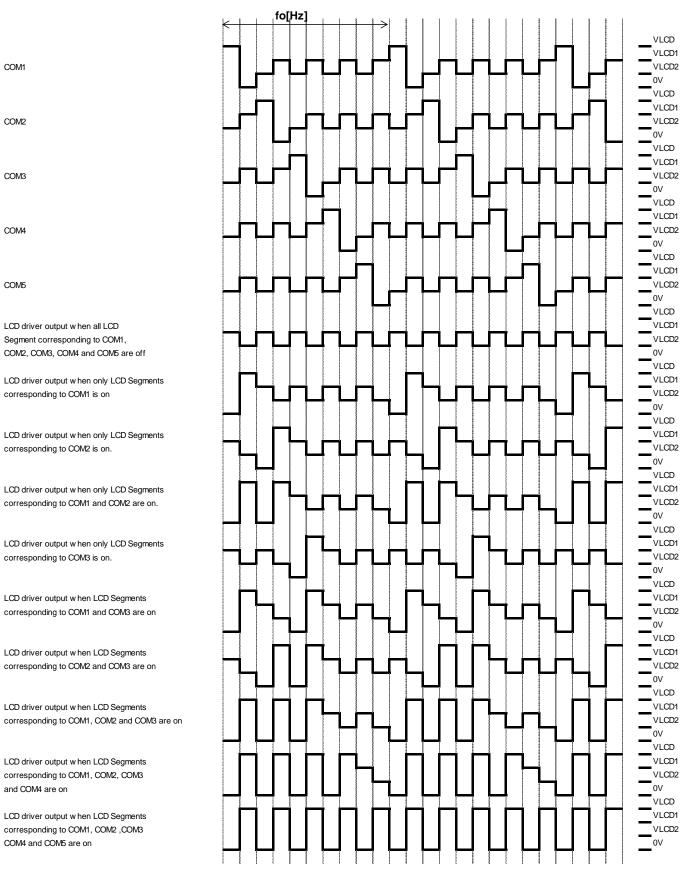


Figure 32. LCD Waveform (Line Inversion, 1/5 DUTY, 1/3 BIAS)

6. Line Inversion 1/5-Duty 1/2-Bias Drive Scheme



Figure 33. LCD Waveform (Line Inversion, 1/5 DUTY, 1/2 BIAS)

7. Line Inversion 1/4-Duty 1/3-Bias Drive Scheme

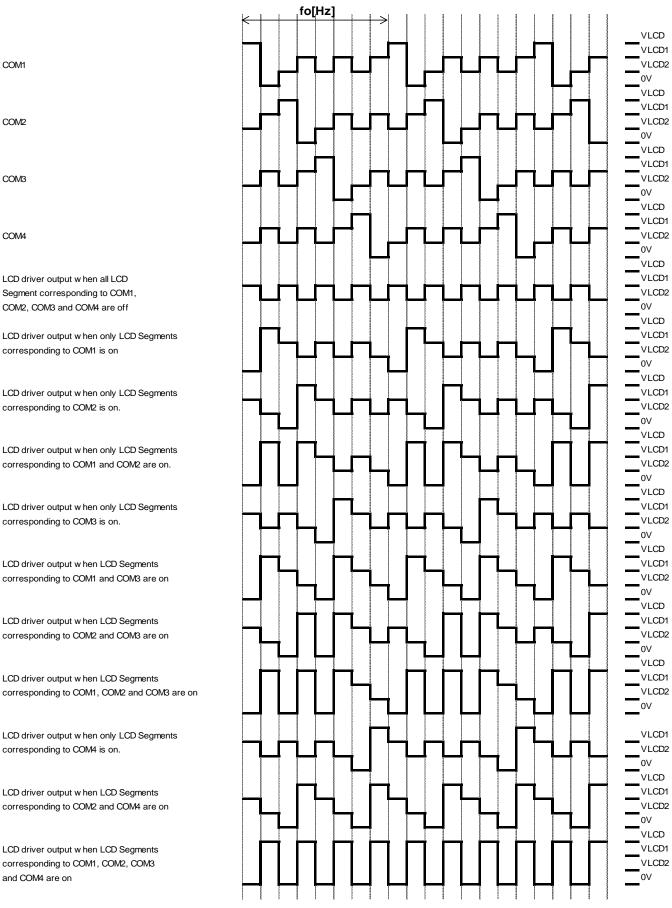
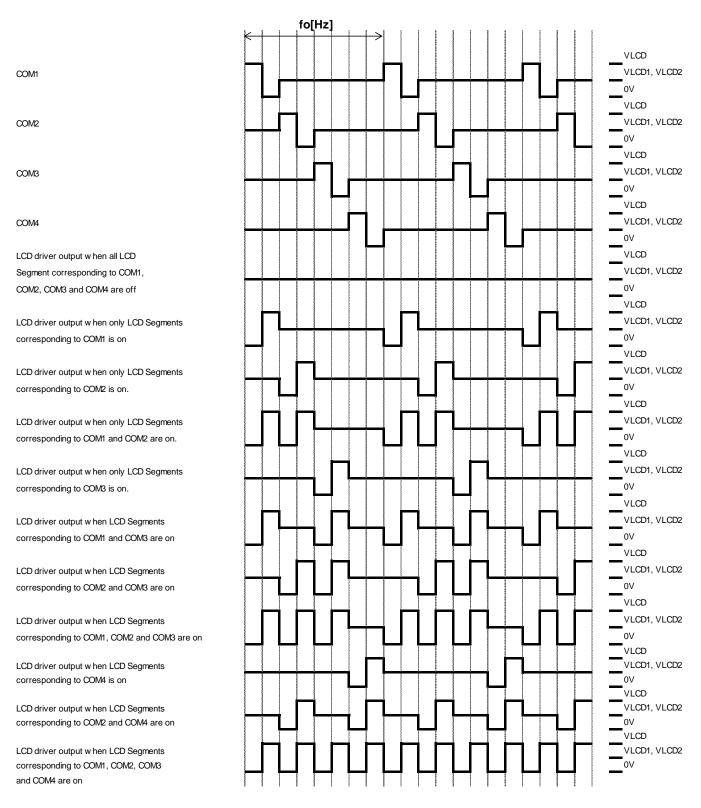
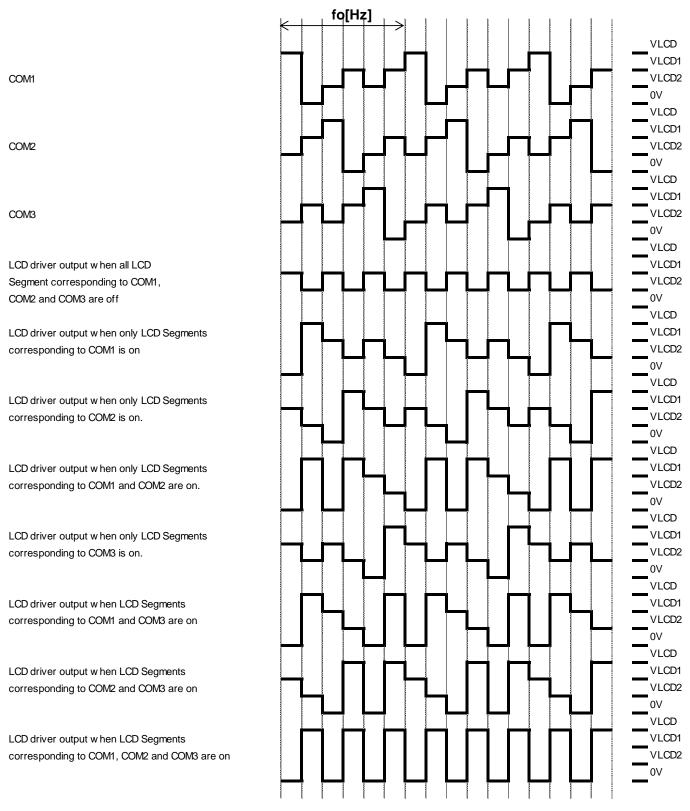
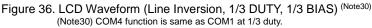
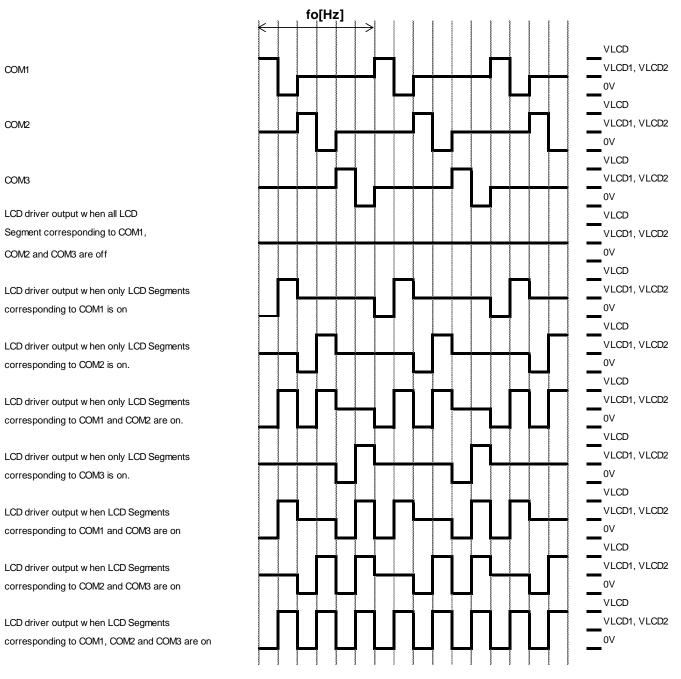
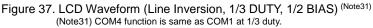


Figure 34. LCD Waveform (Line Inversion, 1/4 DUTY, 1/3 BIAS)

8. Line Inversion 1/4-Duty 1/2-Bias Drive Scheme


Figure 35. LCD Waveform (Line Inversion, 1/4 DUTY, 1/2 BIAS)


9. Line Inversion 1/3-Duty 1/3-Bias Drive Scheme

10. Line Inversion 1/3-Duty 1/2-Bias Drive Scheme

11. Line Inversion Static Drive Scheme

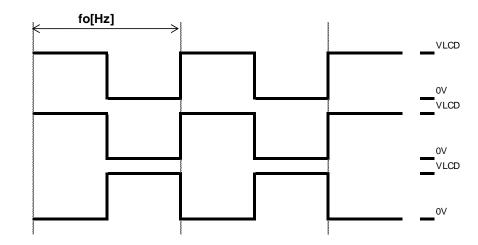


Figure 38. LCD Waveform (Line Inversion, Static) (Note32) (Note32) COM2, COM3 and COM4 function are same as COM1 at Static.

COM1

LCD driver output when all LCD Segments corresponding to COM1 is off

LCD driver output when all LCD Segments corresponding to COM1 is on

LCD Driving Waveforms – continued 12. Frame Inversion, 1/8-Duty 1/4-Bias Drive Scheme

	fo[Hz]	
COM1		
COM2		
СОМЗ		
COM4		
COM5		
COM6		
COM7		VLCC
COM8		
LCD driver output when all LCD Segment corresponding to COM1, COM2, COM3, COM4 COM5, COM5 COM7 and COM8 are off		
LCD driver output when only LCD Segments corresponding to COM1 is on		
LCD driver output when only LCD Segments corresponding to COM2 is on.		
LCD driver output when only LCD Segments corresponding to COM1 and COM2 are on.		
LCD driver output when only LCD Segments corresponding to COMB is on.		
LCD driver output when LCD Segments corresponding to COM1, COM2 and COM3 are on		VLC
LCD driver output when LCD Segments corresponding to COM1, COM2, COM3 and COM4 are on		
LCD driver output when LCD Segments corresponding to COM5, COM6, COM7 and COM8 are on		
LCD driver output when LCD Segments corresponding to COM1, COM2, COM3, COM4 COM5, COM5, COM7 and COM8 are on		

Figure 39. LCD Waveform (Frame Inversion, 1/8 DUTY, 1/4BIAS)

LCD Driving Waveforms – continued 13. Frame Inversion 1/5-Duty 1/3-Bias Drive Scheme

		fo[Hz]		L 、	l				
	, ,								
COM1									
COM2									
COM3									
COM4									
2017/4									
COM5									
				Ī					
_CD driver output when all LCD									
Segment corresponding to COM1,			ĺ						
COM2, COM3, COM4 and COM5 are off									
CD driver output when only LCD Segments									
orresponding to COM1 is on								 	
CD driver output when only LCD Segments									
prresponding to COM2 is on.								 	
						-			
CD driver output when only LCD Segments orresponding to COM1 and COM2 are on.									
.CD driver output when only LCD Segments									
orresponding to COM3 is on.		8							
CD driver output when LCD Segments						200			
orresponding to COM1 and COM3 are on									
CD driver output when LCD Segments						5			
orresponding to COM2 and COM3 are on									
CD driver output when LCD Segments corresponding to COM1, COM2 and COM3 are on									
CD driver output when LCD Segments corresponding to COM1, COM2, COM3				***					
and COM4 are on				ļ					
_CD driver output w hen LCD Segments									
corresponding to COM1, COM2, COM3,									
COM4 and COM5 are on			<u> </u>		ļ				

Figure 40. LCD Waveform (Frame Inversion, 1/5 DUTY, 1/3BIAS)

LCD Driving Waveforms – continued 14. Frame Inversion 1/5-Duty 1/2-Bias Drive Scheme

	ł., 1		fo[Hz]		I	4				1		
	<				\longrightarrow								
												-	VLCD
COM1													VLCD1, VLCD2
												-	
0010													VLCD VLCD1, VLCD2
COM2												-	0V
												-	VLCD
COM3												-	VLCD1, VLCD2
												-	VLCD
COM4												-	VLCD1, VLCD2
									ſ				0V
													VLCD
COM5													VLCD1, VLCD2
													0V
LCD driver output when all LCD												-	VLCD
Segment corresponding to COM1,													VLCD1, VLCD2
COM2, COM3, COM4 and COM5 are off												-	0V
												-	VLCD
LCD driver output when only LCD Segments													VLCD1, VLCD2
corresponding to COM1 is on										ŀ		-	OV VLCD
CD driver eutrut when only LCD Segments												-	VLCD1, VLCD2
LCD driver output when only LCD Segments corresponding to COM2 is on.												-	0V
											F		VLCD
LCD driver output when only LCD Segments												-	VLCD1, VLCD2
corresponding to COM1 and COM2 are on.												-	0V
													VLCD
LCD driver output when only LCD Segments													VLCD1, VLCD2
corresponding to COM3 is on.													0V
												-	VLCD
LCD driver output when LCD Segments						.		ļĻ					VLCD1, VLCD2
corresponding to COM1 and COM3 are on										Ļ		-	0V
												-	VLCD
LCD driver output when LCD Segments												-	VLCD1, VLCD2
corresponding to COM2 and COM3 are on											_		0V VLCD
CD driver extruit when LCD Segments												-	VLCD1, VLCD2
LCD driver output when LCD Segments corresponding to COM1, COM2 and COM3 are on								-				-	0V
			1										VLCD
LCD driver output when LCD Segments													VLCD1, VLCD2
corresponding to COM4 is on												-	
LCD driver output when LCD Segments												-	VLCD VLCD1, VLCD2
corresponding to COM2 and COM4 are on									-			-	0V
· -							-						VLCD
LCD driver output when LCD Segments									Ţ			-	VLCD1, VLCD2
corresponding to COM1, COM2, COM3 and COM4 are on	<u> </u>		1							Ļ			0V VLCD
							1					-	VLCD1, VLCD2
LCD driver output when LCD Segments										L			ov
corresponding to COM1, COM2, COM3,													
COM4 and COM5 are on		l	1										

Figure 41. LCD Waveform (Frame Inversion, 1/5 DUTY, 1/2BIAS)

LCD Driving Waveforms – continued 15. Frame Inversion 1/4-Duty 1/3-Bias Drive Scheme

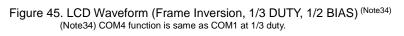
		fo	[Hz]		8	8	ł	1	8 8	8	
											VLCD
											VLCD1
COM1											VLCD2
			Í								VLCD1
COM2											VLCD2
				Í							VLCD1
COM3			ļ	ļ							VLCD2
											VLCD1
COM4				ļ							VLCD2
LCD driver output w hen all LCD											VLCD1
Segment corresponding to COM1,							<u> </u>				VLCD2
COM2, COM3 and COM4 are off											
LCD driver output when only LCD Segments						5					VLCD1
corresponding to COM1 is on											VLCD2
		4									
LCD driver output when only LCD Segments							2				VLCD1
corresponding to COM2 is on.											
											VLCD
LCD driver output when only LCD Segments											VLCD1
corresponding to COM1 and COM2 are on.											
											VLCD
LCD driver output when only LCD Segments								İ.			VLCD1
corresponding to COM3 is on.											VLCD2 0V
											VLCD
LCD driver output when LCD Segments											VLCD1
corresponding to COM1 and COM3 are on											VLCD2 0V
		4		4							
LCD driver output when LCD Segments							Ì	İ.			VLCD1
corresponding to COM2 and COM3 are on									i		VLCD2 0V
				4							
LCD driver output when LCD Segments											VLCD1
corresponding to COM1, COM2 and COM3 are on											VLCD2 0V
				4							VLCD
LCD driver output when LCD Segments											VLCD1
corresponding to COM1, COM2, COM3											
and COM4 are on											
	(¢.	1	1	¢	6	¢	1	¢ 8	8	

Figure 42. LCD Waveform (Frame Inversion, 1/4 DUTY, 1/3BIAS)

LCD Driving Waveforms – continued 16. Frame Inversion 1/4-Duty 1/2-Bias Drive Scheme

	fo[Hz]	
		VLCD
COM1		VLCD1, VLCD2
		٥V
2017		
COM2		VLCD1, VLCD2
		VLCD
COM3		VLCD1, VLCD2
COM4		VLCD1, VLCD2
		V
LCD driver output w hen all LCD Segment corresponding to COM1,		VLCD VLCD1, VLCD2
COM2, COM3 and COM4 are off		0V
		VLCD
LCD driver output when only LCD Segments corresponding to COM1 is on		VLCD1, VLCD2
		VLCD
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM2 is on.		OV VLCD
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM1 and COM2 are on.		
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM3 is on.		ov
		VLCD VLCD1, VLCD2
LCD driver output w hen LCD Segments corresponding to COM1 and COM3 are on		0V
		VLCD
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM2 and COM3 are on		
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM1, COM2 and COM3 are on		
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM4 is on		
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM2 and COM4 are on		OV VLCD
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM1, COM2, COM3 and COM4 are on		0V

Figure 43. LCD Waveform (Frame Inversion, 1/4 DUTY, 1/2BIAS)


LCD Driving Waveforms – continued 17. Frame Inversion 1/3-Duty 1/3-Bias Drive Scheme

	fo[Hz]
COM1	
001/0	
COM2	
COM3	
LCD driver output when all LCD Segment corresponding to COM1,	VLCD2
COM2, and COM3 are off	
LCD driver output when only LCD Segments corresponding to COM1 is on	
LCD driver output when only LCD Segments corresponding to COM2 is on.	
	OV
LCD driver output when only LCD Segments	
corresponding to COM1 and COM2 are on.	
LCD driver output when only LCD Segments	
corresponding to COM3 is on.	
LCD driver output when LCD Segments corresponding to COM1 and COM3 are on	
LCD driver output when LCD Segments corresponding to COM2 and COM3 are on	
LCD driver output when LCD Segments corresponding to COM1, COM2 and COM3 are on	

Figure 44. LCD Waveform (Frame Inversion, 1/3 DUTY, 1/3BIAS) (Note33) (Note33) COM4 function is same as COM1 at 1/3 duty.

LCD Driving Waveforms – continued 18. Frame Inversion 1/3-Duty 1/2-Bias Drive Scheme

	fo[Hz]	
		VLCD
COM1		VLCD1, VLCD2
		ov
2017		VLCD VLCD1, VLCD2
COM2		0V
		VLCD
COM3		VLCD1, VLCD2
LCD driver output w hen all LCD		
Segment corresponding to COM1,		VLCD1, VLCD2
COM2, and COM3 are off		0V
LCD driver output when only LCD Segments		VLCD VLCD1, VLCD2
corresponding to COM1 is on		0V
		VLCD
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM2 is on.		
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM1 and COM2 are on.		
LCD driver output when only LCD Segments		VLCD1, VLCD2
corresponding to COM3 is on.		0V
LCD driver output w hen LCD Segments corresponding to COM1 and COM3 are on		VLCD1, VLCD2
		VLCD
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM2 and COM3 are on		
LCD driver output when LCD Segments		VLCD1, VLCD2
corresponding to COM1, COM2 and COM3 are on		0V

LCD driver output when all LCD

LCD driver output when all LCD

COM1

LCD Driving Waveforms – continued 19. Frame Inversion Static Drive Scheme

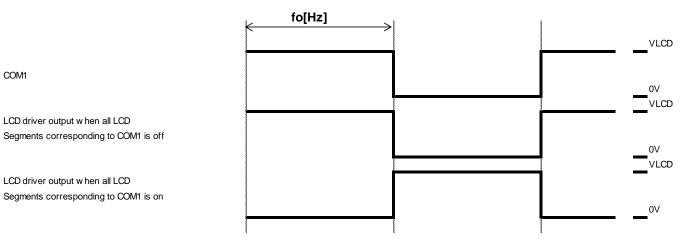


Figure 46. LCD Waveform (Frame Inversion, Static) (Note35) (Note35) COM2, COM3 and COM4 function are same as COM1 at Static.

www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001

Oscillation Stabilization Time of the Internal Oscillation Circuit

It must be noted that the oscillation of the internal oscillation circuit is unstable for a maximum of 100µs (oscillation stabilization time) after oscillation has started.

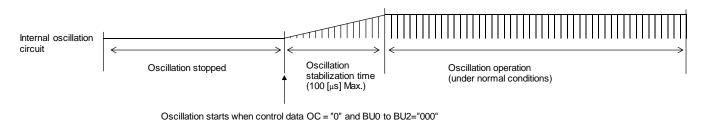


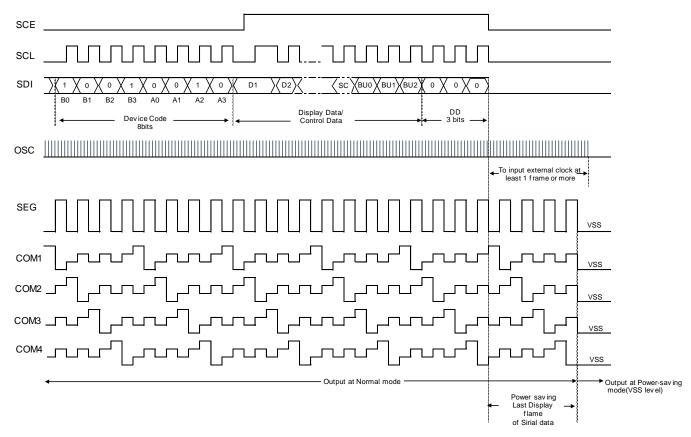
Figure 47. Oscillation Stabilization Time

Power-saving mode operation in external clock mode

After receiving [BU0,BU1,BU2]=[1,1,1], BU97550KV-M enter to Power-saving mode synchronized with frame then Segment and Common ports output VSS level.

Therefore, in external clock mode, it is necessary to input the external clock based on each frame frequency setting after sending [BU0,BU1,BU2]=[1,1,1].

For the required number of clock, refer to "Control Data Functions 6. FC0, FC1, FC2 and FC3".


For example, please input the external clock as below.

[FC0,FC1,FC2,FC3]=[0,0,0,0]: In case of fosc/12288 setting, it needs over 12288clk,

[FC0,FC1,FC2,FC3]=[0,1,0,1]: In case of fosc/4608 setting, it needs over 4608clk,

[FC0,FC1,FC2,FC3]=[1,1,1,1]: In case of fosc/1536 setting, it needs over 1536clk

Please refer to the timing chart below.

Voltage Detection Type Reset Circuit (VDET)

The Voltage Detection Type Reset Circuit generates an output signal that resets the system when power is applied for the first time and when the power supply voltage drops (that is, for example, the power supply voltage is less than or equal to the power down detection voltage ($V_{DET} = 1.8V$ Typ). To ensure that this reset function works properly, it is recommended that a capacitor be connected to the power supply line so that both the power supply voltage (VDD) rise time when power is first applied and the power supply voltage (VDD) fall time when the voltage drops are at least 1ms.

To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the occurrence of disturbances on transmission and reception.

Figure 48. VDET Detection Timing

Power supply voltage VDD fall time: t1 > 1ms Power supply voltage VDD rise time: t2 > 1ms Internal reset power supply retain time: t3 > 1ms

When it is difficult to keep above conditions, it is possibility to cause meaningless display due to no IC initialization. Please execute the IC initialization as quickly as possible after Power-On to reduce such an affect. See the IC initialization flow as below.

But since commands are not received when the power is OFF, the IC initialization flow is not the same function as VDET.

Set [BU0,BU1,BU2]=[1,1,1](power-saving mode) and SC=1(Display Off) as quickly as possible after Power-On. BU97550KV-M can receive commands in 0ns after Power-On(VDD level is 90%).

	VDD	Display data and control data transfe			VDET(Min)
Internal data D1 to D96, DR0, DR1, DT0 to D KM0 to KM2, P0 to P3, FL,	T2, Undefined Def	Note2)	Defined		Undefined
FC0 to FC3, OC, SC, BU0 to B				1	
D97 to D192, PG1 to PG9, PF0 to PF3, CT0 to DT3		Default	Defined 《		Undefined
Internal data D193 to D288, W10 to W48	Undefined	Default	Defined	$ \rightarrow $	Undefined
Internal data D289 to D384, W50 to W98		Default	Defined	>	Undefined
D385 to D480		Default	Defined		Undefined
Internal data D481 to D528		Default	Defined		Undefined

(Note1) t1≥0, t2≥0, tc: Min 10µs

When VDD level is over 90%, there may be cases where command is not received correctly in unstable VDD. (Note2) Display data are undefined. Regarding default value, refer to Reset Condition.

Reset Condition

When BU97550KV-M is initialized, the internal status after power supply has been reset as the following table.

Instruction	At Reset Condition	
Key Scan Mode	[KM0,KM1,KM2]=[1,1,1]:Key scan no use	
S1/P1/G1 to S9/P9/G9 Pin	[P0,P1,P2,P3]=[0,0,0,0]:all Segment output	
Inversion Mode	FL=0:Line Inversion	
LCD Bias	[DR0,DR1]=[0,0]:1/3 bias	
LCD Duty	[DT0,DT1,DT2]=[0,1,0]:1/4 duty	
DISPLAY Frequency	PLAY Frequency [FC0,FC1,FC2,FC3]=[0,0,0,0]:fosc/12288	
Display Clock Mode	V Clock Mode OC=0:Internal oscillator	
LCD Display	SC=1:OFF	
Power Mode	[BU0,BU1,BU2]=[1,1,1]:Power saving mode	
PWM/GPO output	PGx=0:PWM output(x=1 to 9)	
PWM Frequency	[PF0,PF1,PF2,PF3]=[0,0,0,0]: fosc /4096	
PWM Duty	[Wn0 to Wn8]=[0,0,0,0,0,0,0,0]:0/256)xTp (n=1 to 9,Tp=1/fp)	
Display Contrast Setting	[CT0,CT1,CT2,CT3]=[0,0,0,0]:VLCD Level is 1.00*VDD	

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. Operation Under Strong Electromagnetic Field

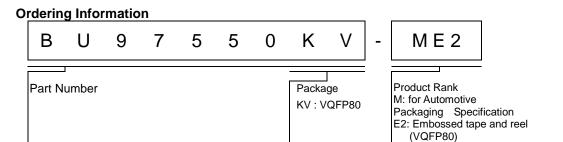
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

9. Testing on Application Boards

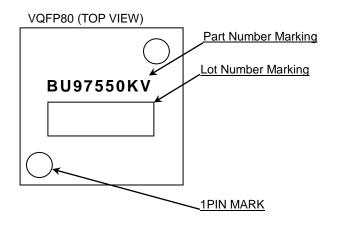
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.


Operational Notes – continued

11. Unused Input Pins


Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

12. Regarding the Input Pin of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC.

Marking Diagram

Physical Dimension, Tape and Reel Information VQFP80 Package Name 14.0 ± 0.2 12.0 ± 0.1 61 **4**0 п 2 -----п 14.0 ± 0.0 0 = 0. H ш п . -----2 ----------15 2 25 0 ± 0 . $5\pm 0.$ 1. 80 -T 21 ÷ 0. ĦĦ 20 1 1PIN MARK 1.25 $0\,.\ 1\ 4\ 5\ {}^{+0.\ 0\ 5}_{-0.\ 0\ 3}$ S 6 MAX $4^{\circ + 6^{\circ}}$ -4 нннннннннннннннн ÷ 0.5 0 5 $4 \pm 0.$ $1\pm 0.$ 0.5 ± 0.1 \supset 0. 08 S ÷ 0. $0. \quad 2^{\,+\,0.}_{\,-\,0.} \,\,{}^{0\,5}_{\,0\,4}$ \oplus 0. 08 \widehat{M} (UNIT:mm)PKG: VQFP80 Drawing No. EX253-5001-2 <Tape and Reel information> Таре Embossed carrier tape (with dry pack) Quantity 1000pcs E2 Direction The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand of feed 0000 0000000 \cap \cap È È 3 UUC) ndonn Direction of feed 1pin Reel * Order quantity needs to be multiple of the minimum quantity

Revision History

Date	Revision	Changes			
30.Mar.2015	001	New Release			
09.Jul.2015	002	Modified Absolute Maximum Ratings(6.5V to 7.0V) table in Page 3.			
		Modified comment of figure.48 in Page 64.			
21.Mar.2017 003		Page.3 Delete temperature condition in Absolute Maximum Ratings			
		Page.4 Add tr,tf item in Oscillation Characteristics			
		Page.7 Modify Figure.6 I/O Equivalent Circuit			
		Page.22 Add notice of External Clock input timing function			
		Page.25 Add The relationship of LCD display contrast setting and VLCD voltage			
		Page.65Add notice of Power-saving mode operation in external clock mode			
		Page.66 Add notice in Voltage Detection Type Reset Circuit (VDET)			
		Change from "1/1 duty" to "Static"			
		Add Reset condition in each Control Data Function			
		Change "Sleep mode" to" Power-saving mode"			
		Correction of errors			
18 Jun 2019	004	Page. 9,11,13,15,17 and 19 Add Description			

Notice

Precaution on using ROHM Products

 If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

JAPAN	USA	EU	CHINA
CLASSII	CLASSⅢ	CLASS II b	CLASSⅢ
CLASSⅣ	CLASSI	CLASSII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:

[a] Installation of protection circuits or other protective devices to improve system safety

[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure

- 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.