Data Sheet

RTC5606H

0.1 GHz - 6.0 GHz SPDT Switch

Description

The RTC5606H is a SPDT antenna switch in GaAs pHEMT technology operating from 0.1 GHz up to 6.0 GHz frequency range. This device exhibits low insertion loss, high isolation and low DC power consumption characteristics over broadband range. Due to the excellent performance, RTC5606H undertakes the wonderful choice of transmit/ receive function in wireless applications such as mobile phones, Bluetooth[®], WLAN, and IEEE 802.11 a/b/g/n/ac.

Functional Block Diagram

Features

- Frequency Range : 0.1 6.0 GHz
- Low Insertion Loss :
 - 0.8 dB @ 2.5 GHz
 - 1.0 dB @ 5.9 GHz
- High Isolation :
 - 33 dB @ 2.5 GHz
 - 29 dB @ 5.9 GHz
- High Power Handling :
 - P1dB = +36 dBm @ 2.5 GHz
 - P1dB = +34 dBm @ 5.9 GHz
- 6L QFN-2.0mm x 3.0mm x 0.8mm(max) Plastic Package
- RoHS Compliant, Pb-free, Halogen Free
- Moisture Sensitivity Level : MSL 3

Applications

- IEEE 802.11a/b/g/n/ac WLAN Networks
- WiMAX 802.16
- Bluetooth[®]
- L, S Band Digital Cellular Or Cordless Telephones

RichWave

0.1 GHz - 6.0 GHz SPDT Switch

Pin Assignments

Pin No.	Pin Name	Description	
1	RF1	RF port 1. A DC blocking capacitor is needed	
2	GND	Ground	
3	RF2	RF port 2. A DC blocking capacitor is needed	
4	V2	DC control voltage 2	
5	RFC	Antenna port. A DC blocking capacitor is needed	
6	V1	DC control voltage 1	
Exposed Paddle		It must be connected to a ground through PCB via for best performance	

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Control Voltage	V1, V2	+6.0	V
Input power	P _{IN}	+36	dBm
Operating Ambient Temperature	T _A	-40 ~ +85	٦°
Storage Temperature	T _{stg}	-40 ~ +150	°C

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	f	0.1		6.0	GHz
Control Voltage High (H)	V1(H), V2(H)	2.5	3.3	5.0	V
Control Voltage Low (L)	V1(L), V2(L)	0		0.3	V

NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Truth Table

V1	V2	RFC – RF1	RFC – RF2
High	Low	ON	OFF
Low	High	OFF	ON

NOTE: High = $2.5 \sim 5.0 \text{ V}$, Low = $0 \sim 0.3 \text{ V}$

0.1 GHz - 6.0 GHz SPDT Switch

Electrical Specifications

$T_{A} = +25^{\circ}C, \ 50\Omega \ system \ with \ control \ voltage \ V = 3.3 \ V \ / \ 0 \ V, \ P_{_{IN}} = 0 \ dBm, \ C_{_{Block}} = 47 \ pF, \ unless \ otherwise \ noted$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
	IL_1	0.1 – 0.5 GHz		0.60		dB
Insertion Loss	IL_2	0.5 – 2.0 GHz		0.65	0.85	dB
RFC to RF1 or RF2	IL_3	2.0 – 2.5 GHz		0.80	1.0	dB
	IL_4	2.5 – 3.5 GHz		0.95	1.15	dB
	IL_5	3.5 – 6.0 GHz		1.0	1.25	dB
	lso_1	0.1 – 0.5 GHz		39		dB
	lso_2	0.5 – 2.0 GHz	30	35		dB
Isolation BEC to BE1 or BE2	lso_3	2.0 – 2.5 GHz	28	33		dB
	lso_4	2.5 – 3.5 GHz	27	32		dB
	lso_5	3.5 – 6.0 GHz	24	29		dB
	lso_6	0.1 – 0.5 GHz	35	39		dB
	lso_7	0.5 – 2.0 GHz	31	35		dB
Isolation BE1 to BE2	lso_8	2.0 – 2.5 GHz	29	34		dB
	lso_9	2.5 – 3.5 GHz	28	33		dB
	lso_10	3.5 – 6.0 GHz	25	30		dB
	RL_1	0.1 – 0.5 GHz	15	25		dB
Return Loss	RL_2	0.5 – 2.0 GHz	15	23		dB
(Insertion Loss State)	RL_3	2.0 – 2.5 GHz	15	21		dB
		2.5 – 3.5 GHz	13	17		dB
	RL_5	3.5 – 6.0 GHz	12	14		dB
Input Power for 1dB	D1dB	2.5 GHz		+36		dBm
Compression	PTUB	5.9 GHz		+34		dBm
2nd Harmonic	2fo	f = 2.5 GHz, CW		71		dBc
3rd Harmonic	3fo	Pin = +25 dBm		73		dBc
Linear Power	P _{IN} _2G	f = 2.45 GHz, 802.11g, OFDM, 54Mbps, 64QAM, P _{IN} for 2.5% EVM		24		dBm
Switch Rise/Fall Time	tr, tf	Rise, Fall (10%/90% RF to 90%/10% RF)		100		ns
Switch On/Off Time	ton, toff	On, Off (50% V to 90%/10% RF)		150		ns
Control Current	Ictl	No RF		3	50	μA

RichWave

0.1 GHz - 6.0 GHz SPDT Switch

Application Circuits

NOTE :

- 1. C_{BLOCK} = 47 pF for operation 0.1 ~ 6.0 GHz is required on all RF ports.
- 2. Larger Capacitance recommended for lower frequency operation.
- 3. Exposed paddle in the bottom must be grounded.
- 4. It is recommended to add L_{ESD} to provide a good approach for increasing the ESD protection on a specific RF port, typically the port attached to the antenna.
- 5. The L_{ESD} value may be tailored to provide specific electrical responses.
- 6. The RF ground connections should be kept as short as possible and directly connected to a good RF ground for best performance.
- 7. Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

Component	Value	Description	Supplier	Part Number
IC		RTC5606H	RichWave	
CBLOCK	47 pF	DC block capacitor	Walsin	0402N470J500LT

0.1 GHz - 6.0 GHz SPDT Switch

Recommended Footprint Patterns

NOTE :

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

RTC5606H

0.1 GHz - 6.0 GHz SPDT Switch

Package Dimensions

Top View

Side View

Bottom View

6L QFN 2 X 3 X 0.8 - A				
SYMBOL	MIN	MAX		
A	0.700	0.800		
A1	0.000	0.050		
b	0.250	0.450		
D	2.900	3.100		
D1	1.072	1.372		
е	0.950) BSC		
E	1.900	2.100		
E1	0.691	1.041		
E2	0.150	0.250		
L	0.217	0.367		

NOTE :

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

0.1 GHz - 6.0 GHz SPDT Switch

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.