MOSFET – Power, Single, N-Channel 80 V, 5.5 mΩ, 89 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free, Beryllium Free and are RoHS Compliant

Typical Applications

- Synchronous Rectification
- AC-DC and DC-DC Power Supplies
- AC-DC Adapters (USB PD) SR
- Load Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

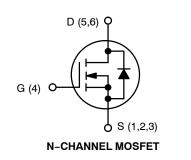
Beromotor Symbol Value III-it					11
Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	80	V	
Gate-to-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Steady	$T_C = 25^{\circ}C$	۱ _D	89	A
Power Dissipation $R_{\theta JC}$ (Note 1)	State		P _D	104	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	۱ _D	17	A
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	Olale		P _D	3.8	W
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	468	А
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +175	°C	
Source Current (Body Diode)		۱ _S	87	А	
Single Pulse Drain–to–Source Avalanche Energy (I_{AV} = 5.9 A)		E _{AS}	465	mJ	
Lead Temperature Soldering Reflow for Solder- ing Purposes (1/8" from case for 10 s)		ΤL	300	°C	

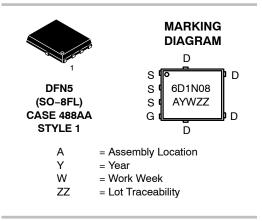
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{\theta JC}$	1.44	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	40	

 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Surface-mounted on FR4 board using 1 in² pad size, 1 oz. Cu pad.

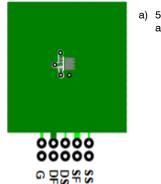


ON Semiconductor®

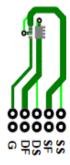
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	5.5 m Ω @ 10 V	89 A
	8.0 mΩ @ 6 V	09 A

ORDERING INFORMATION

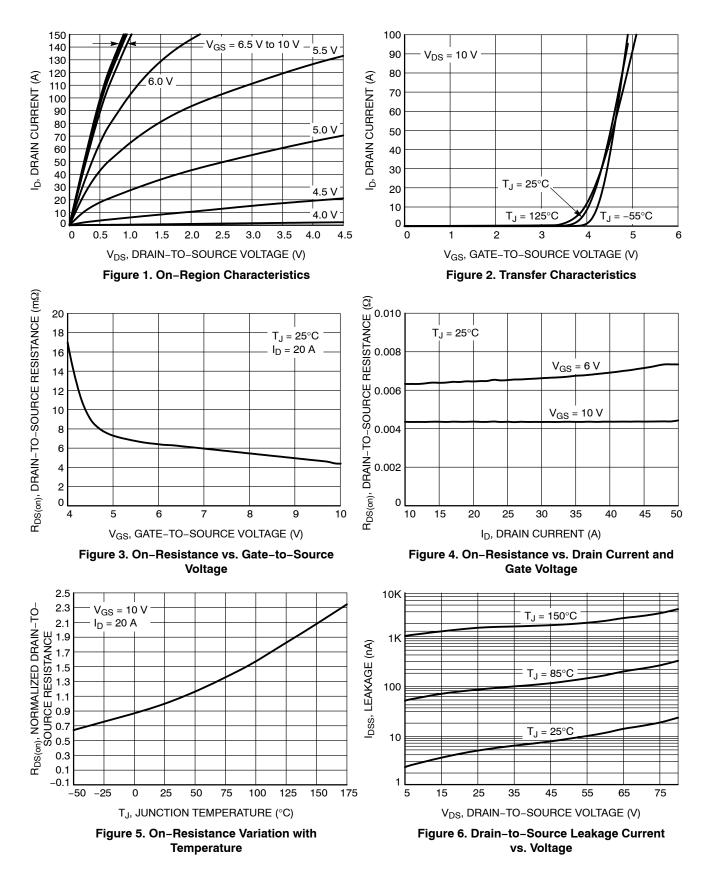

Device	Package	Shipping†
NTMFS6D1N08HT1G	DFN5 (Pb-Free)	1500 / Tape & Reel

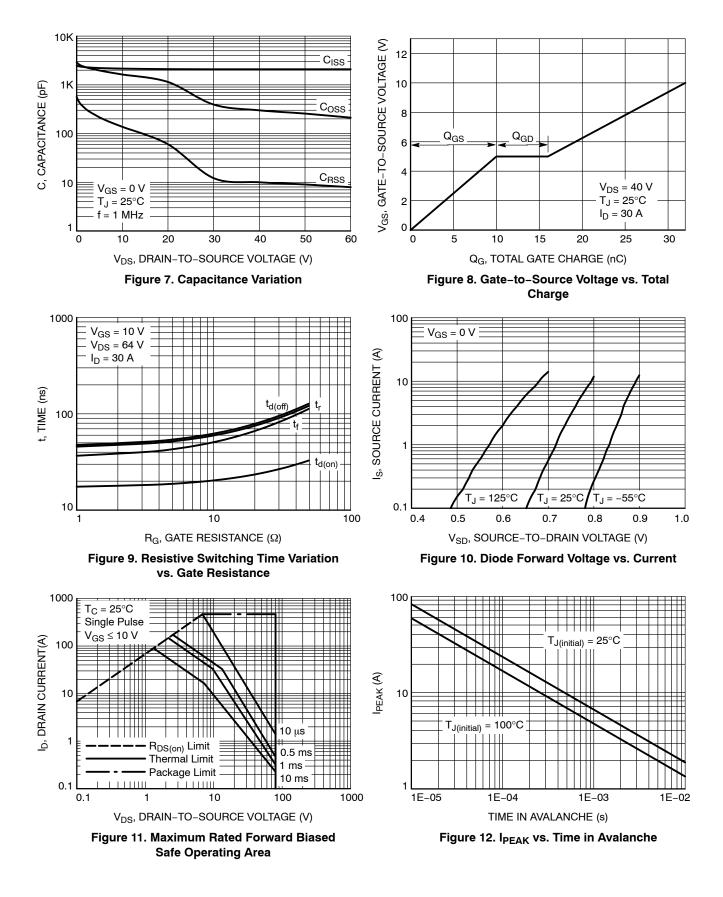
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I_D = 250 µA, ref to 25°C			43.8		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			10	μA
		V _{DS} = 80 V	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	= 120 μA	2.0		4.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref to 25°C			-7.08		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 20 A		4.5	5.5	mΩ
		V _{GS} = 6 V, I _D = 10 A			6.4	8.0	
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 20 A			80		S
Gate-Resistance	R _G	$T_A = 25^{\circ}C$			1.0		Ω
CHARGES & CAPACITANCES	-						-
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 40 V			2085		pF
Output Capacitance	C _{OSS}				300		
Reverse Transfer Capacitance	C _{RSS}				10		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 6 V, V_{DS} = 40 V, I_{D} = 30 A			10		nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 40 V, I_{D} = 30 A			32		nC
Gate-to-Source Charge	Q _{GS}				10		
Gate-to-Drain Charge	Q _{GD}				6		
Plateau Voltage	V _{GP}				5		V
SWITCHING CHARACTERISTICS (Note 3	3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 64 V, I_{D} = 30 A, R_{G} = 2.5 Ω			18		ns
Rise Time	tr				50		
Turn-Off Delay Time	t _{d(OFF)}				48		1
Fall Time	t _f	1			39		1
DRAIN-SOURCE DIODE CHARACTERIS	STICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		0.8	1.2	V
		I _S = 20 A	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 20 A			49		ns
Reverse Recovery Charge	Q _{RR}				60		nC
Charge Time	t _a	$V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A}/\mu\text{s}, \\ I_S = 20 \text{ A}$			30		ns
Discharge Time	t _b				19		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Switching characteristics are independent of operating junction temperatures
R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.


a) 53°C/W when mounted on a 1 in² pad of 2 oz copper.


b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 5. Pulse Test: pulse width < 300 μ s, duty cycle < 2%. 6. E_{AS} of 465 mJ is based on started T_J = 25°C, I_{AS} = 5.9 A, V_{DD} = 80 V, V_{GS} = 10 V. 100% test at I_{AS} = 8.4 A. 7. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

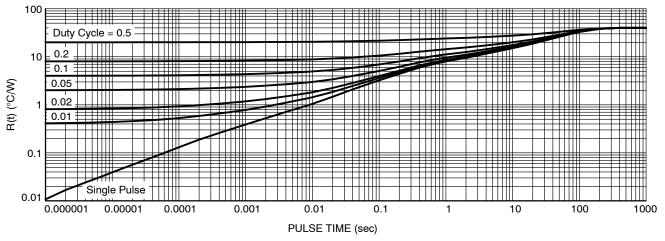
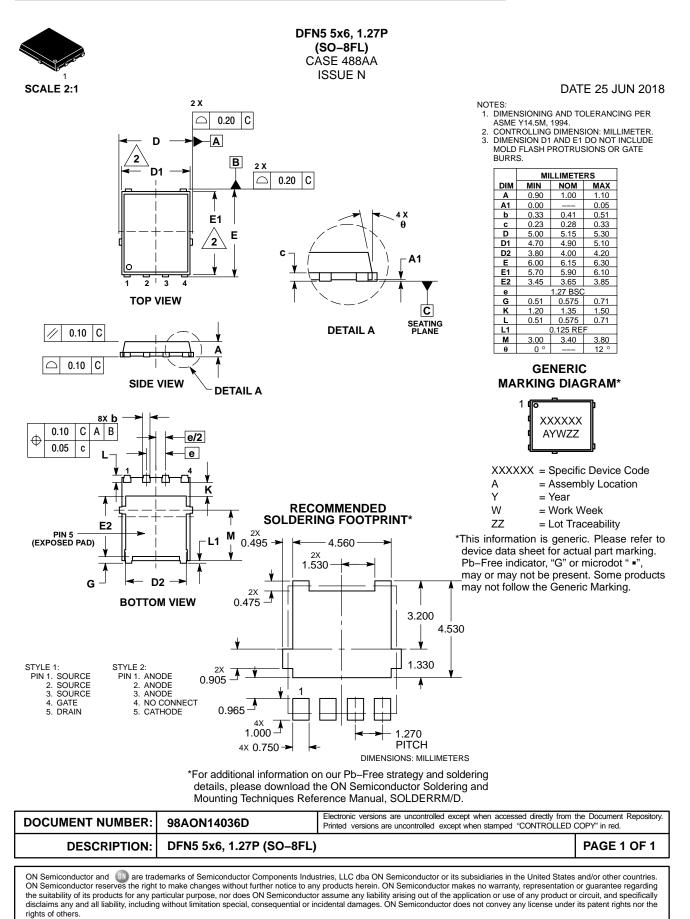



Figure 13. Thermal Characteristics

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative