Description

The FPF1504/FPF1504L are low- R_{DS} P-channel MOSFET load switches of the IntelliMAXTM family. Integrated slew-rate control prevents excessive inrush current from the supply rails with capacitive loads common in power applications. In addition, the FPF1504/FPF1504L feature output discharge capability.

The input voltage range operates from 1.0 V to 3.6 V to fulfill today's mobile device supply requirements. Switch control is by a logic input (ON pin) capable of interfacing directly with low-voltage CMOS control signals and GPIOs in embedded processors.

Features

- 1.0 V to 3.6 V Input Voltage Operating Range
- Typical R_{DS(ON)}:
 - 15 m Ω at V_{IN} = 3.3 V
 - + 20 m Ω at V_{IN} = 1.8 V
 - 40 m Ω at V_{IN} = 1.0 V
- Slew Rate Control
- Output Discharge Function
- Low <1 μ A Quiescent Current at V_{ON} = V_{IN}
- ESD Protected: 4000 V HBM, 2000 V CDM
- GPIO/CMOS-Compatible Enable Circuitry
- Active HIGH and active LOW versions

Applications

- Mobile Devices and Smart Phones
- Portable Media Devices
- Digital Cameras
- Advanced Notebook, UMPC, and MID
- Portable Medical Devices
- GPS and Navigation Equipment

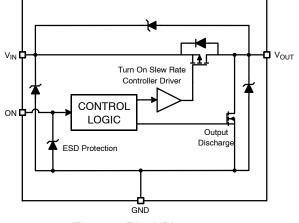


Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

WLCSP4 CASE 567RH

MARKING DIAGRAM

= Space Designator

G

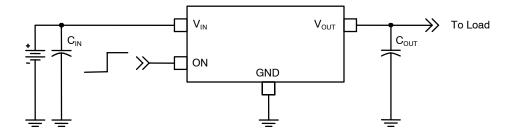
&K

4

&2 &.

&Ε

&Z = Assembly Plant Code


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Top Mark	Switch (Typical) At 1.8 V _{IN}	Input Buffer	Output Discharge	ON Pin Activity	Package
FPF1504UCX	G4	20 mΩ	CMOS	YES	Active HIGH	4-Ball, WLCSP, 0.5 mm Pitch
FPF1504BUCX	G4	20 mΩ	CMOS	YES	Active HIGH	4-Ball, WLCSP with Backside Laminate, 0.5 mm Pitch
FPF1504LUCX	GZ	20 mΩ	CMOS	YES	Active LOW	4-Ball, WLCSP, 0.5 mm Pitch
FPF1504LBUCX	GZ	20 mΩ	CMOS	YES	Active LOW	4-Ball, WLCSP with Backside Laminate, 0.5 mm Pitch

Application Diagram

NOTES: 1. $C_{IN} = 1 \ \mu$ F, X5R, 0603, for example Murata GRM185R60J105KE26. 2. $C_{OUT} = 1 \ \mu$ F, X5R, 0805, for example Murata GRM216R61A105KA01.

Figure 2. Typical Application

Pin Configurations

Figure 3. 1 x 1 mm WLCSP Bumps Facing Down

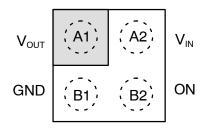


Figure 5. Pin Assignments (Top View)

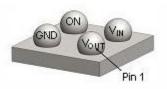


Figure 4. 1 x 1 mm WLCSP Bumps Facing Up

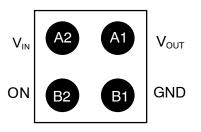


Figure 6. Pin Assignments (Bottom View)

PIN DEFINITIONS

Pin #	Name	Description		
A1	V _{OUT}	Switch Output		
A2	V _{IN}	Supply Input; Input to the Power Switch		
B1	GND	Ground		
B2	ON	ON/OFF Control		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Max.	Unit
V _{IN}	V _{IN} , V _{OUT} , V _{ON} to GND		-0.3	4.0	V
I _{SW}	Maximum Continuous Switch Current			1.5	А
PD	Power Dissipation at T _A = 25°C			1.0	W
T _{STG}	Storage Junction Temperature			+150	°C
T _A	Operating Temperature Range		-40	+85	°C
θја	Thermal Resistance, Junction-to-Ambient	n-to-Ambient 1S2P with 1 Thermal Via		95	°C/W
		1S2P without Thermal Via		187	
ESD	Electrostatic Discharge Capability	lectrostatic Discharge Capability Human Body Model, JESD22-A114			kV
		Charged Device Model, JESD22-C101	2]

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.0	3.6	V
T _A	Ambient Operating Temperature	-40	+85	°C

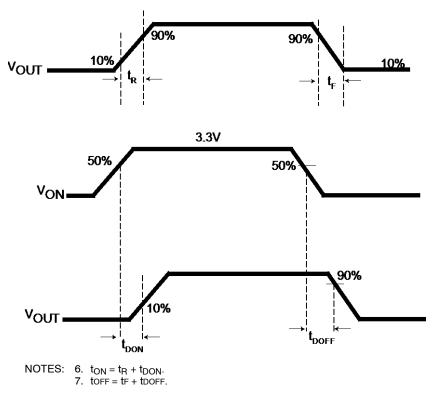
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, V_{IN} = 1.0 to 3.6 V, T_A = -40 to +85°C; Typical Values are at V_{IN} = 3.3 V and T_A = 25°C.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
SIC OPERAT	ION						
V _{IN}	Supply Voltage			1.0		3.6	V
I _{Q(OFF)}	Off Supply Current	FPF1504	V _{ON} = GND, V _{OUT} = Open		0.25		μΑ
		FPF1504L	V _{ON} = V _{IN} , V _{OUT} = Open		0.3		
I _{SD(OFF)} C	Off Switch Current	FPF1504	V _{ON} = GND, V _{OUT} = GND		0.25		
		FPF1504L	V _{ON} = V _{IN} , V _{OUT} = GND		0.3		
Ι _Q	Quiescent Current	FPF1504	$I_{OUT} = 0$ mA, $V_{IN} = 3.6$ V, $V_{ON} = V_{IN}$		0.08		
			IOUT = 0 mA, VON = VIH(MIN)		0.75		
		FPF1504L	I _{OUT} = 0 mA, V _{IN} = 3.6 V, V _{ON} = GND		0.08		
		$I_{OUT} = 0 \text{ mA}, \text{ Von} = \text{Vil(max)}$		0.95			
R _{ON}	On Resistance		V_{IN} = 3.3 V, I_{OUT} = 200 mA, T_A = 25°C		15	30	mΩ
			V_{IN} = 1.8 V, I_{OUT} = 200 mA, T_A = 25°C		20	40	
			V_{IN} = 1.5 V, I_{OUT} = 200 mA, T _A = 25°C		30		
			V_{IN} = 1.0 V, I_{OUT} = 200 mA, T_A = 25°C		40	80	
			V _{IN} = 1.8 V, I _{OUT} = 200 mA, T _A = 85°C (Note 3)		35	50	
R _{PD}	Output Discharge Pull-Down Resistance		$V_{ON} = 0 \text{ V or } V_{IN}, I_{OUT} = -20 \text{ mA}$		65	95	Ω
VIH	On Input Logic High Voltage	FPF1504		0.8			V
V _{IL}	On Input Logic Low Voltage	FPF1504				0.3	
I _{ON}	On Input Leakage		V _{ON} = V _{IN} or GND			1	μA
	RACTERISTICS				4		
t _{DON}	Turn-On Delay (Note 4)	FPF1504	R_L = 10 Ω, C_L = 0.1 μF, V _{IN} = 3.3 V, T_A = 25°C		80		μs
t _R	V _{OUT} Rise Time (Note 4)	FPF1504	$V_{IN} = 3.3 \text{ V}, \text{ I}_{A} = 25^{\circ}\text{C}$		130		-
t _{ON}	Turn–On Time (Note 4)	FPF1504			210		
t _{DON}	Turn-On Delay (Note 4)	FPF1504	$R_L = 500 \Omega$, $C_L = 0.1 \mu$ F,		70	100	μs
		FPF1504L	$V_{IN} = 3.3 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$		95		
t _R	V _{OUT} Rise Time (Note 4) FPF1504				110	150	1
		FPF1504L			115		
t _{ON}	Turn–On Time (Note 4)	FPF1504	7		180	250	
		FPF1504L			210		1
t _{DOFF}	Turn-Off Delay (Note 4)	FPF1504	$R_L=10 \Omega, C_L=0.1 \mu F,$		25	30	μs
t _F	V _{OUT} Fall Time (Note 4)	FPF1504	$V_{IN} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$		2		
t _{OFF}	Turn–Off Time (Note 4)	FPF1504			27	1	

ELECTRICAL CHARACTERISTICS (continued)


Unless otherwise noted, V_{IN} = 1.0 to 3.6 V, T_A = -40 to +85°C; Typical Values are at V_{IN} = 3.3 V and T_A = 25°C.

Symbol	Par	Parameter		Min.	Тур.	Max.	Units
DYNAMIC CHA	RACTERISTICS						
t _{DOFF}	t _{DOFF} Turn-Off Delay (Note 4)	FPF1504	$R_L = 500 \Omega$, $C_L = 0.1 \mu$ F,		25		μs
		FPF1504L	V _{IN} = 3.3 V, T _A = 25°C		2		
t _F	t _F V _{OUT} Fall Time (Note 4)	FPF1504			12		
		FPF1504L			14		
t _{OFF}	(Note 4)	FPF1504			37]
		FPF1504L		16	16]

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. This parameter is guaranteed by design and characterization; not production tested.

4. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 7. 5. Output discharge path is enabled during off.

Timing Diagram – FPF1504

TYPICAL PERFORMANCE CHARACTERISTICS FOR FPF1504

Applicable to active high version only.

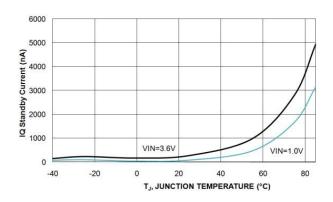


Figure 1. Shutdown Current vs. Temperature

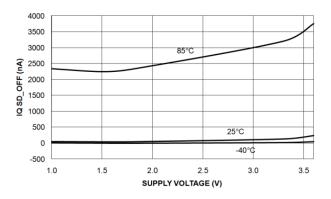


Figure 2. Shutdown Current vs. Supply Voltage

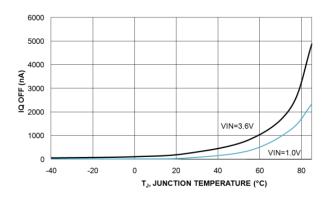


Figure 3. Off Supply Current vs. Temperature

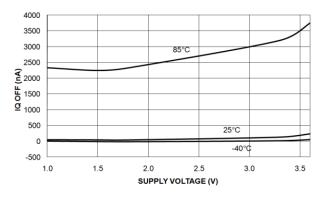


Figure 4. Off Supply Current vs. Supply Voltage

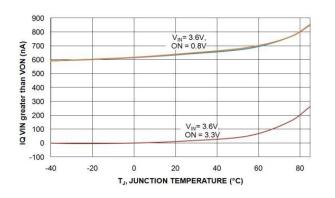
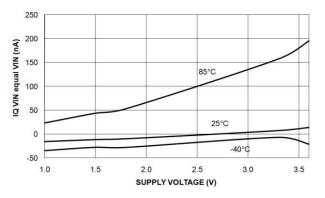
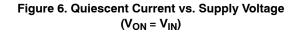




Figure 5. Quiescent Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS FOR FPF1504

Applicable to active high version only.

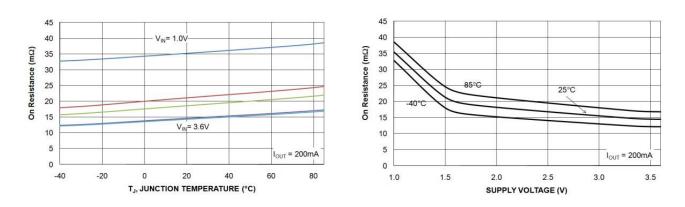
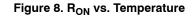



Figure 7. R_{ON} vs. Temperature

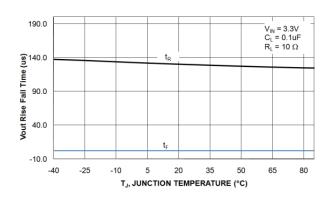


Figure 9. V_{OUT} Rise/Fall Times vs. Temperature (R_L = 10 Ω)

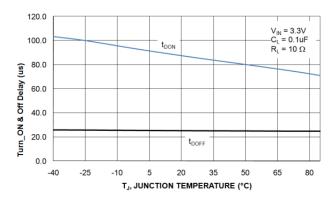
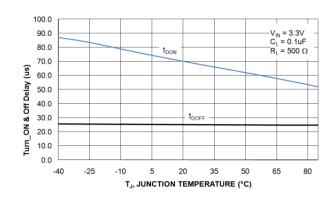
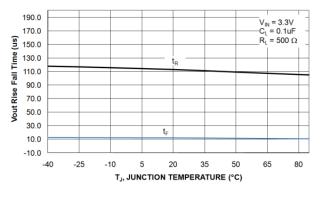
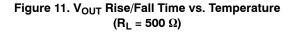
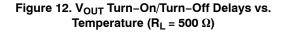






Figure 10. V_{OUT} Turn–On/Turn–Off Delays vs. Temperature (R_L = 10 Ω)

TYPICAL PERFORMANCE CHARACTERISTICS FOR FPF1504

Applicable to active high version only.

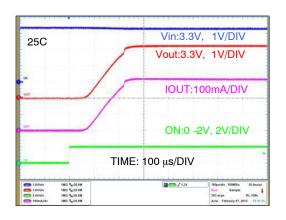


Figure 13. Turn–On Response (V_{IN} = 3.3 V, C_{OUT} = 0.1 μ F, R_L = 10 Ω)

Figure 15. Turn–On Response (V_{IN} = 3.3 V, C_{OUT} = 0.1 μ F, R_L = 500 Ω)

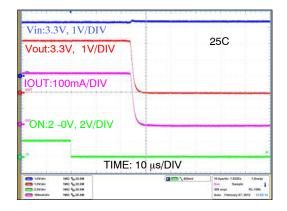


Figure 14. Turn–Off Response (V_{IN} = 3.3 V, C_{OUT} = 0.1 μ F, R_L = 10 Ω)

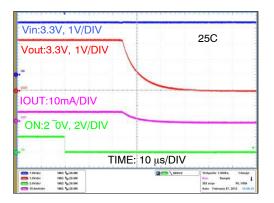


Figure 16. Turn–Off Response (V_{IN} = 3.3 V, C_{OUT} = 0.1 μ F, R_L = 500 Ω)

APPLICATION INFORMATION

Input Capacitor

IntelliMAX switches don't require an input capacitor. To reduce device inrush current, a 0.1 μ F ceramic capacitor, C_{IN}, is recommended close to the VIN pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

IntelliMAX switches work without an output capacitor. If the applications parasitic board inductance forces V_{OUT} below GND when switching off, a 0.1 μ F capacitor, C_{OUT} , should be placed between V_{OUT} and GND.

Fall Time

Device output fall time can be calculated based on RC constant of external components as follows:

$$E_{\rm F} = R_{\rm L} \times C_{\rm L} \times 2.2$$
 (eq. 1

where t_F is 90% to 10% fall time, R_L is output, load and C_L is output capacitor.

The same equation works for a device with a pull–down output resistor, then R_L is replaced by a parallel connected pull–down and external output resistor combination, as follows:

$$t_{F} = \frac{R_{L} \times R_{PD} \times C_{L}}{R_{L} + R_{PD}} \times 2.2 \qquad (eq. 2)$$

where t_F is 90% to 10% fall time, R_L is output load, R_{PD} is output pull-down resistor (65 Ω typical), and C_L is the output capacitor.

RECOMMENDED LAND PATTERN AND LAYOUT

For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and the capacitors as close to the device as possible. Below is a recommended layout for this device to achieve optimum performance.

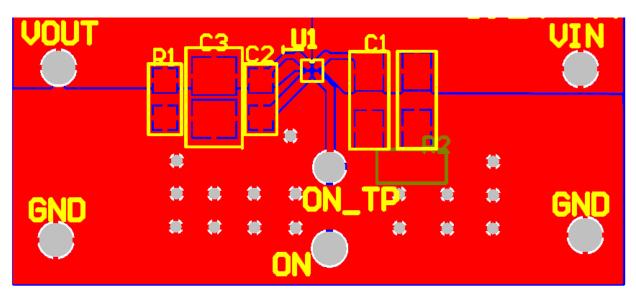
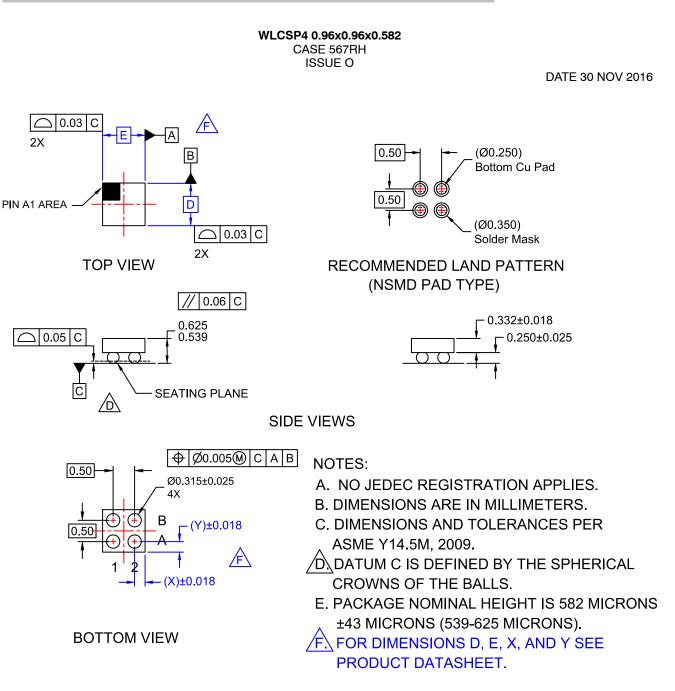


Figure 17. Recommended Land Pattern and Layout


The following information applies to the WLCSP package dimensions on the next page:

PRODUCT-SPECIFIC DIMENSIONS

Product	D	E	Х	Y	
FPF1504UCX					
FPF1504BUCX	960 μm ±30 μm	960 μm ±30 μm	0.230 mm	0.230 mm	
FPF1504LUCX				0.230 11111	
FPF1504LBUCX					

IntelliMAX is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON16575G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WLCSP4 0.96x0.96x0.582	P.582 PAGE 1 OF				
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative