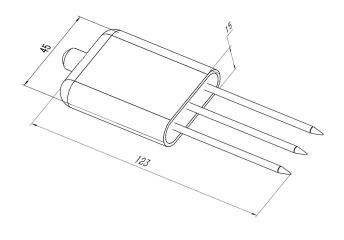
土壤氮磷钾三合一肥力传感器(485型)

1.1 产品概述

土壤氮磷钾传感器适用于检测土壤中氮磷钾的含量,通过检测土壤中氮磷钾的含量来判断土壤的肥沃程度,进而方便了客户系统的评估土壤情况。


1.2 功能特点

广泛适用于稻田、大棚种植、水稻、蔬菜种植、果园苗圃、花卉以及土壤研究等。

1.3 主要参数

型号	민号 C2692065 UBIBOTNPK				
直流供电 (默认)	DC 5-30V				
最大功耗		0.15W (@12V DC, 25°C)			
工作温度		0°C~55°C			
	量程	1-1999 mg/kg(mg/L)			
氮磷钾参数	分辨率	1 mg/kg(mg/L)			
	精度	±2%FS			
响应时间		<1S			
防护等级		IP68			
探针材料		不锈钢			
密封材料		黑色阻燃环氧树脂			
默认线缆长度	2米,线缆长度可按要求定制				
外形尺寸	45*15*123mm				
输出信号		RS485(Modbus 协议)			

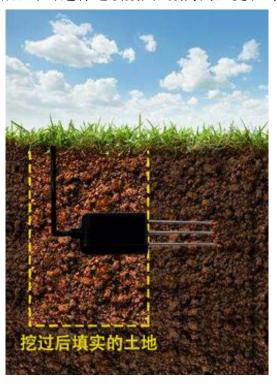
壳体尺寸

设备尺寸图(单位: mm)

1.4 接口说明

电源接口为宽电压电源输入 5-30V 均可。485 信号线接线时注意 A\B 两条 线不能接反,总线上多台设备间地址不能冲突。

线色	说明	备注
棕色	电源正	5~30V DC
黑色	电源地	GND
黄色	485-A	485-A
蓝色	485-B	485-B


1.5 速测方法

选定合适的测量地点,避开石块,确保钢针不会碰到坚硬的物体,按照所需测量深度抛开表层土,保持下面土壤原有的松紧程度,紧握传感器垂直插入土壤,插入时不可左右晃动,一个测点的小范围内建议多次测量求平均值。

1.6 埋地测量法

垂直挖直径>20cm 的坑,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。

1.7 注意事项

- 1、测量时钢针必须全部插入土壤里。
- 2、避免强烈阳光直接照射到传感器上而导致温度过高。野外使用注意防雷击。
- 3、勿暴力折弯钢针,勿用力拉拽传感器引出线,勿摔打或猛烈撞击传感器。

- 4、传感器防护等级 IP68, 可以将传感器整个泡在水中。
- 5、由于在空气中存在射频电磁辐射,不宜长时间在空气中处于通电状态。

1.8 适配设备

轻松连 GS1 系列

搭配轻松连®环境监测仪GS1 即时查看测量数据

2.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC(冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

2.2 数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数

据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1 字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

2.3 寄存器地址

寄存器地	PLC或组态地	内容	操作	定义说明
址	址	14 11	\$1611	, = , = , , ,
001E H	40031 (十进制)	氮含量	只读	氮含量实时值

001F H	40032 (十进制)	磷含量	只读	磷含量实时值
0020 H	40033 (十进制)	钾含量	只读	钾含量实时值
03E8 H	41001 (十进制)	氮含量系数 高十六位	读写	真实值
03E9 H	41002 (十进制)	氮含量系数 低十六位	读写	(IEEE754标准 浮点型)
03EA H	41003 (十进制)	氮含量校准值	读写	整数
03F2 H	41011 (十进制)	磷含量系数 高十六位	读写	真实值
03F3 H	41012 (十进制)	磷含量系数 低十六位	读写	(IEEE754标准 浮点型)
03F4 H	41013 (十进制)	磷含量校准值	读写	整数
03FC H	41021 (十进制)	钾含量系数 高十六位	读写	真实值
03FD H	41022 (十进制)	钾含量系数 低十六位	读写	(IEEE754标准 浮点型)
03FE H	41023 (十进制)	钾含量校准值	读写	整数
07D0 H	42001 (十进制)	设备地址	读写	1~254(出厂默认1)
07D1 H	42002 (十进制)	设备波特率	读写	0代表2400 1代表4800 2代表9600

2.4 通讯协议示例以及解释

举例: 读取设备地址 0x01 的氮含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x1E	0x00 0x01	0xE4	0x0C

应答帧

地址码	功能码	返回有效字节 数	氮含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x20	0xB9	0x9C

氮含量计算:

氮含量: 0020 H (16 进制) = 32 =>氮= 32mg/kg

举例: 读取设备地址 0x01 的磷含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x1F	0x00 0x01	0xB5	0xCC

应答帧

地址码	功能码	返回有效字节 数	磷含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x25	0x79	0x9F

磷含量计算:

磷含量: 0025 H (16 进制) = 37 =>磷=37mg/kg

举例: 读取设备地址 0x01 的钾含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x20	0x00 0x01	0x85	0xC0

应答帧

地址码	功能码	返回有效字节 数	钾含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x30	0xB8	0x50

钾含量计算:

钾含量: 0030 H (16 进制) = 48 =>钾=48mg/kg