

集成 MOSFET 单节锂电池保护 IC

CM1124 系列内置有高精度电压检测电路和延迟电路,通过检测电池的电压、电流,实现对电池的过充电、过放电、过 电流等保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

功能特点

1)	高精度电压检测功能

•	过充电保护电压	4.200~4.600 V	精度 ±25mV
•	过充电解除电压	4.000~4.400 V	精度 ±50mV
•	过放电保护电压	2.700~3.000 V	精度 ±100mV
•	过放电解除电压	2.900~3.200 V	精度 ±100mV
•	放电过流检测	0.200~0.500 A	精度 ±150mA
•	短路电流检测	0.400~1.000 A	精度 ±250mA
•	充电过流检测	0.200~0.500 A	精度 ±150mA

2) 内部检测延迟时间

•	过充电保护延时	1.0s	精度 ±50%
•	过放电保护延时	128ms	精度 ±50%
•	放电过流保护延时	10ms	精度 ±50%
•	充电过流保护延时	10ms	精度 ±50%

- 3) 充电器检测及负载检测功能
- 4) 向 0V 电池充电功能
- 5) 休眠功能

6)	放电过流状态的解除条件	断开负载
7)	放电过流状态的解除电压	V_{RIOV}

8) 低电流消耗

• 工作时	1 μA (典型值) (Ta = +25°C)
• 休眠时	50 nA (最大值) (Ta = +25°C)
9) 内部功率 N-MOSFET 导通阻抗	65mΩ

9) 内部功率 N-MOSFET 导通阻抗

10) 无铅、无卤素

应用领域

- 智能穿戴设备
- TWS

■ 封装

• DFN1*1-4L

■ 系统功能框图

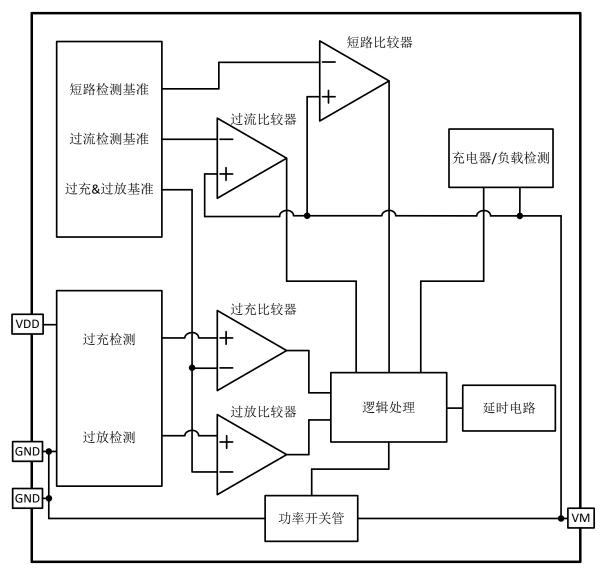


图 1

■ 引脚排列图

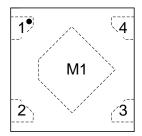


图 2 顶视图

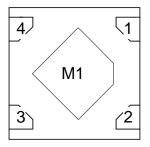


图 3 底视图

引脚号	符号	描述
1	VDD	电源端
2, 3	GND	电源接地端,与供电电源(电池)的负极相连
4	VM	充放电电流检测端子,与充电器负极或负载连接
M1	NC	无连接,悬空

表 1

■ 印字说明

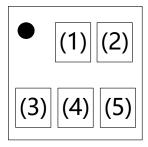
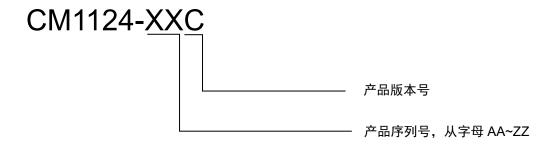



图 4

- (1)(2): 产品序列号
- (3)(4)(5): 生产批次

■ 命名规则

■ 产品列表

1. 检测电压表

产品名称	Rss(on)	过充电 保护电压 V _{oc}	过充电 解除电压 V _{OCR}	过放电 保护电压 V _{OD}	过放电 解除电压 V _{ODR}	放电过流 检测电流 I _{DI}	短路电流 检测电流 I _{SHORT}	充电流 检测电流 Icı
CM1124-EAC	65mΩ	4.275 V	4.075 V	2.720 V	3.000 V	0.400 A	0.800 A	0.400 A
CM1124-EBC	65mΩ	4.425 V	4.225 V	2.800 V	3.000 V	0.400 A	0.800 A	0.400 A
CM1124-ECC	65mΩ	4.475 V	4.275 V	2.850 V	3.050 V	0.400 A	0.800 A	0.400 A

表 2

备注:需要上述规格以外的产品时,请与本公司业务部门联系。

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	绝对最大额定值	单位
VDD 和 GND 之间输入电压	VDD	-0.3 ~ 8	V
VM 输入端子电压	V _{VM}	-6 ~ 10	V
工作温度范围	T _{OPR}	−40 ~ + 85	°C
储存温度范围	T _{STG}	−40 ~ + 125	°C
ESD HBM 模式	-	4000	V

表 3

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C)

项目	符号	测试条件	最小值	典型值	最大值	单位	
[功耗]							
正常工作电流	IOPE	VDD=3.6V, V _{VM} =0V	0.42	1	2	μA	
休眠电流	I _{PDN}	VDD=2V, V _{VM} floating	-	-	50	nA	
[检测电压]							
过充电保护电压	Voc	VDD=3.5 → 4.8V	Voc -0.025	Voc	Voc +0.025	V	
过充电解除电压	Vocr	VDD=4.8 → 3.5V	Vocr -0.050	Vocr	Vocr +0.050	V	
过放电保护电压	Vod	VDD=3.5 → 2.0V	V _{OD} -0.100	Vod	V _{OD} +0.100	V	
过放电解除电压	Vodr	VDD=2.0 → 3.5V	V _{ODR} -0.100	Vodr	V _{ODR} +0.100	V	
放电过流解除电压	V _{RIOV}	-	VDD-1.2	VDD-0.8	VDD-0.5	V	
[检测电流]							
放电过流检测	l _{DI}	VDD=3.6V	I _{DI} -0.150	I _{DI}	I _{DI} +0.150	Α	
短路电流检测	Ishort	VDD=3.6V	-	Ishort	I _{SHORT} +0.250	Α	
充电过流检测	lcı	VDD=3.6V	Icı-0.150	lcı	I _{CI} +0.150	Α	
[延迟时间]							
过充电保护延时	Toc	VDD=3.5 → 4.8V	500	1000	1500	ms	
过放电保护延时	T _{OD}	VDD=3.5 → 2.0V	64	128	192	ms	
放电过流保护延时	T_DI	VDD=3.6V	5	10	15	ms	
充电过流保护延时	Tcı	VDD=3.6V	5	10	15	ms	
短路保护延时	T _{SHORT}	VDD=3.6V	100	250	400	μs	
[内部电阻]							
VDD 端子-VM 端子间电阻	R_{VMD}	VDD=2V, V _{VM} =0V	750	1500	3000	kΩ	
VM 端子-GND 端子间电阻	Rvms	VDD=3.6V, V _{VM} =1.0V	10	20	30	kΩ	
内部功率 N-MOSFET 阻抗	Rss(ON)	VDD=3.6V, I _{VM} =0.1A	-	65	-	mΩ	
[向 0V 电池充电的功能]	[向 0V 电池充电的功能]						
充电器起始电压(允许向 0V 电池充电功能)	Vосн	允许向 0V 电池充电功能	0.0	1.5	2.0	V	

表 4

■ 功能说明

1. 正常工作状态

IC持续检测连接在VDD与GND端子之间电池电压,以及流过VM到GND端子之间的电流,来控制充电和放电。当电池电压在过放电保护电压(Vop)以上并在过充电保护电压(Voc)以下,且流过VM端子到GND的电流在充电过流保护阈值(Ici)和放电过流保护阈值(Idi)之间时,IC内部MOSFET导通,这个状态称为"正常工作状态"。此状态下,可以正常充电和放

注意:初次连接电芯时,会有不能放电的可能性,此时需要连接充电器进行激活,充电器激活电压为4.5V~5V,激活时间不能低于10ms,激活后可恢复到正常工作状态。

2. 过充电状态

在正常条件下的充电过程中,当电池电压高于过充检测电压(Voc),并持续时间达到过充电压检测延迟时间(Toc)或更长,IC 内部的 MOSFET 会关闭,并停止充电,这种情况称为过充电压保护。

过充电状态在如下两种情况下可以解除:

- 1) VM < VLD, 电池电压降低到过充电解除电压(VOCR)以下时, 过充电状态就会释放。
- 2)VM>VLD,当电池电压降低到过充电保护电压(Voc)以下时,过充电状态解除,恢复到正常工作状态,此功能称为负载检测功能。

此处的(VLD)=IDI*RSS(ON),就是IC内部设置的负载检测电压

3. 过放电状态

电池电压降低到 Vop 以下并持续了一段时间 Top, IC 内部的 MOSFET 会关闭,并停止放电,这就称为过放电状态。 当 IC 内部的 MOSFET 关闭后,VM 会被内部上拉电阻 R_{VMD}上拉到 VCC,IC 功耗降低至 I_{PDN},这个状态称之为休眠状态。 不连接充电器,VM≥0.7V(典型值),即使 VCC 高于 VODR 也将会维持过放状态。

进入过放电状态后,要解除过放电状态,恢复正常状态,有以下几种情况:

- 1) 连接充电器,若 VM < 0V(典型值),当电池电压高于过放电保护电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 0V(典型值)<VM<0.7V(典型值),当电池电压高于过放电解除电压(VodR)时,过放电状态解除,恢复到正常工作状态。

4. 放电过流状态

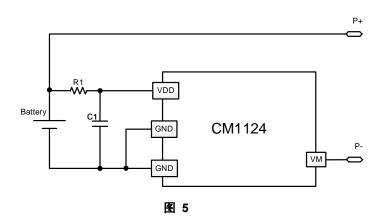
正常工作状态下的电池,IC通过VM端子电压持续检测放电电流。如果放电电流超过放电电流限流值(Ibi),并且这种状态持续的时间超过放电过流保护延迟时间(T_{DI}),IC内部的MOSFET会关闭,并停止放电,这个状态称为"放电过流状态"。如果放电电流超过短路保护电流值,并且这种状态持续的时间超过负载短路保护延迟时间(T_{SHORT}),IC内部的MOSFET会关闭,并停止放电,这个状态称为"负载短路状态"。

放电过流状态的解除条件"断开负载"及放电过流状态的解除电压"VRIOV"

在放电过流状态下,芯片内部的VM端子与GND端子间可通过R_{VMS}电阻来连接。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子恢复至GND端子电压。当VM端子电压降低到VRIOV以下时,即可解除放电过流状态。

5. 充电过流保护

正常工作状态下的电池,在充电过程中,如果流过 GND 到 VM 的电流值超过充电过流保护值(Ici),并且这种状态持续的时间超过充电过流保护延迟时间(Tci),则 IC 内部的 MOSFET 会关闭,并停止充电,这个状态称为充电过流状态。进入充电过流检测状态后,如果断开充电器使流过 GND 到 VM 端子电流低于充电过流保护值(Ici)时,充电过流状态被解除,恢复到正常工作状态。


6. 向 0V 电池充电功能

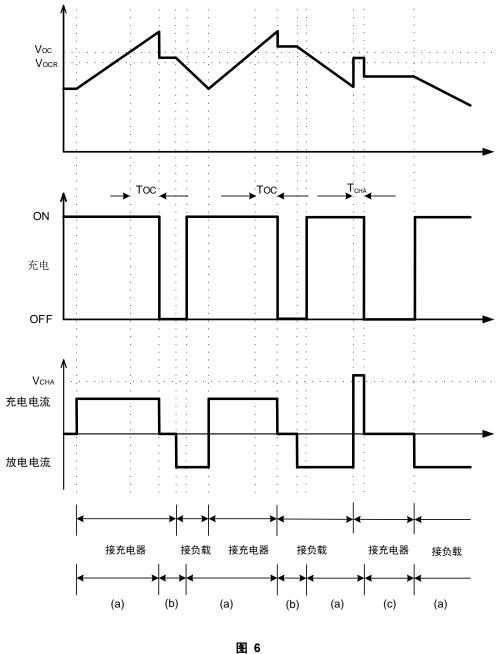
此功能用于对已经自放电到 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(VovcH)时,IC 内部充电控制 MOSFET 会导通,开始充电。当电池电压高于过放电保护电压(VoD)时,IC 进入正常工作状态。

注意:请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。

■ 典型应用原理图

器件标识	典型值	参数范围	单位	
R1	1000	510~ 1500	Ω	
C1	0.1	0.047 ~ 0.22	μF	

表 5


注意:

- 1. 上述参数有可能不经预告而作更改。
- 2. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

时序图

过充电保护、充电过流保护

- (a) 正常工作状态
- (b) 过充电状态
- (c) 充电过流状态

2. 过放电保护、放电过流保护

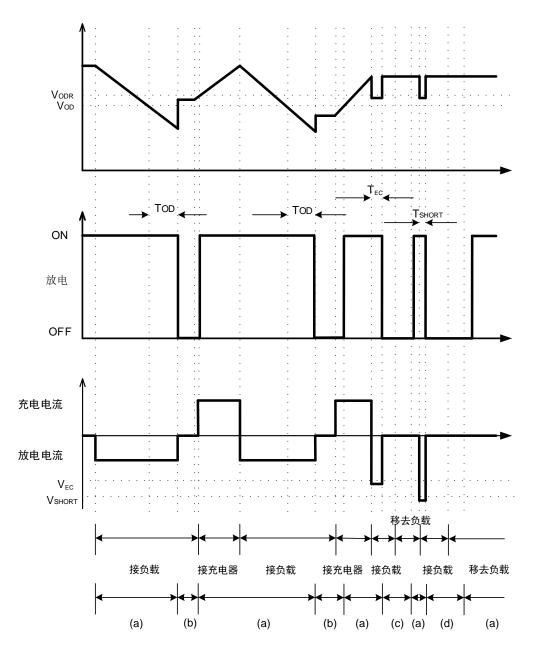
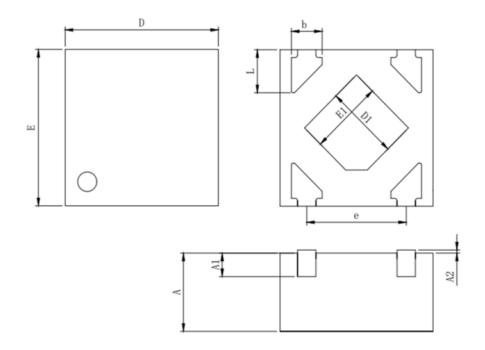



图 7

- (a) 正常工作状态
- (b) 过放电状态
- (c) 放电过流状态
- (d) 负载短路状态

■ 封装信息

NOTE: ALL DIMENSIONS IN MM					
Symbol	MIN	NOM	MAX		
D	0.95	1.00	1.05		
E	0.95	1.00	1.05		
D1	0.43	0.48	0.53		
E1	0.43	0.48	0.53		
L	0.23	0.28	0.33		
b	0.15	0.20	0.25		
е		0.65BSC			
Α	0.45	0.50	0.60		
A1	0.127REF				
A2	0.00	-	0.05		