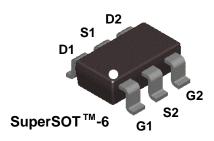
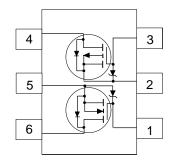


ON Semiconductor®

FDC6321C Dual N & P Channel , Digital FET

General Description


These dual N & P Channel logic level enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switching applications. Since bias resistors are not required this dual digital FET can replace several digital transistors with different bias resistors.


Features

- N-Ch 25 V, 0.68 A, $R_{DS(ON)} = 0.45 \Omega$ @ $V_{GS} = 4.5 V$
- P-Ch -25 V, -0.46 A, $R_{DS(ON)} = 1.1 \Omega$ @ $V_{GS} = -4.5 V$.
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.0V.
- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace multiple dual NPN & PNP digital transistors.

Mark:.321

Absolute Maximum Ratings $T_A = 25^{\circ}\text{C}$ unless other wise noted

Symbol	Parameter	N-Channel	P-Channel	Units	
V _{DSS} , V _{CC}	Drain-Source Voltage, Power Supply Voltage	25	-25	V	
V_{GSS}, V_{IN}	Gate-Source Voltage,	8	-8	V	
l _D , l _O	Drain/Output Current - Continuous	0.68	-0.46	А	
	- Pulsed	2	-1.5		
$P_{\scriptscriptstyle D}$	Maximum Power Dissipation (Note 1	a) (0.9		
	(Note	b)	0.7		
T_J , T_{STG}	Operating and Storage Tempature Ranger	-55	-55 to 150		
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm)		6		
THERMA	L CHARACTERISTICS	·		•	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note	a)	140	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note)	60	°C/W	

Symbol	Parameter	Conditions		Type	Min	Тур	Max	Units	
OFF CHAR	ACTERISTICS	•					•	,	
BV _{DSS}	Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		N-Ch	25			V		
		$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		P-Ch	-25				
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_D = 250 μA, Referenced to 25 °C I_D = -250 μA, Referenced to 25 °C		N-Ch		26		mV /°C	
200 0				P-Ch		-22			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V,		N-Ch			1	μA	
			T _J = 55°C				10		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, \ V_{GS} = 0 \text{ V},$		P-Ch			-1	μA	
			T _J = 55°C				-10		
I _{GSS}	Gate - Body Leakage Current	$V_{GS} = 8 \text{ V}, \ V_{DS} = 0 \text{ V}$		N-Ch			100	nA	
		$V_{GS} = -8 \text{ V}, \ V_{DS} = 0 \text{ V}$		P-Ch			-100	nA	
ON CHARAC	CTERISTICS (Note 2)								
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to	o 25°C	N-Ch		-2.6		mV / °C	
30(1)		I _D = -250 μA, Referenced t	to 25°C	P-Ch		2.1			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		N-Ch	0.65	0.8	1.5	V	
		$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		P-Ch	-0.65	-0.86	-1.5		
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_{D} = 0.5 \text{ A}$		N-Ch		0.33	0.45	Ω	
			T _J =125°C			0.51	0.72		
		$V_{GS} = 2.7 \text{ V}, I_{D} = 0.25 \text{A}$				0.44	0.6		
		$V_{GS} = -4.5 \text{ V}, I_{D} = -0.5 \text{ A}$		P-Ch		0.87	1.1		
			T _J =125°C			1.21	1.8		
		$V_{GS} = -2.7 \text{ V}, I_{D} = -0.25 \text{ A}$	1			1.22	1.5		
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$		N-Ch	1			Α	
		$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		P-Ch	-1				
g_{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A}$		N-Ch		1.45		S	
		$V_{DS} = -5 \text{ V}, I_{D} = -0.5 \text{ A}$		P-Ch		0.8			
DYNAMIC CI	HARACTERISTICS								
C _{iss}	Input Capacitance	N-Channel		N-Ch	-	50		pF	
		$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$		P-Ch		63			
C _{oss}	Output Capacitance	f = 1.0 MHz		N-Ch		28		рF	
		P-Channel		P-Ch		34			
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{V},$		N-Ch		9		рF	
		f = 1.0 MHz		P-Ch		10			

Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

SWITCHING CHARACTERISTICS (Note 2)

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units	
t _{D(on)}	Turn - On Delay Time	N-Channel	N-Ch		3	6	nS	
		$V_{DD} = 6 \text{ V}, I_{D} = 0.5 \text{ A},$	P-Ch		7	20		
t,	Turn - On Rise Time	$V_{Gs} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$	N-Ch		8	16	nS	
			P-Ch		9	18		
t _{D(off)}	Turn - Off Delay Time	P-Channel	N-Ch		17	30	nS	
		$V_{DD} = -6 \text{ V}, I_{D} = -0.5 \text{ A},$	P-Ch		55	110		
t,	Turn - Off Fall Time	V_{Gen} = -4.5 V, R_{GEN} = 50 Ω	N-Ch		13	25	nS	
			P-Ch		35	70		
Q_g	Total Gate Charge	N-Channel	N-Ch		1.64	2.3	nC	
		$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A},$	P-Ch		1.1	1.5		
Q_{gs}	Gate-Source Charge	V _{GS} = 4.5 V	N-Ch		0.38		nC	
		P- Channel	P-Ch		0.32			
Q_{gd}	Gate-Drain Charge	V _{DS} = -5 V,	N-Ch		0.45		nC	
		$I_D = -0.25 \text{ A}, V_{GS} = -4.5 \text{ V}$	P-Ch		0.25			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								

Is	Maximum Continuous Drain-Source Diode Forward Current				0.3	Α
			P-Ch		-0.5	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.5 \text{ A}$ (Note)	N-Ch	0.83	1.2	V
		T,	_J =125°C	0.69	0.85	
		$V_{GS} = 0 \text{ V}, I_{S} = -0.5 \text{ A}$ (Note)	P-Ch	-0.89	-1.2	
		T,	_J =125°C	-0.75	-0.85	

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

a. 140°C/W on a 0.125 in² pad of 2oz copper.

b. 180°C/W on a 0.005 in² of pad of 2oz copper.

Notes:

1. R_{p,n} is the sum of the junction-to-case and case-to-ambient thermal resistance where thecase thermal reference is defined as the solder mounting surface of the drain pins. R_{p,ic} is guaranteed by design while R_{p,ic} is determined by the user's board design.

Typical Electrical Characteristics: N-Channel

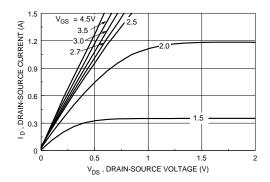


Figure 1. On-Region Characteristics.

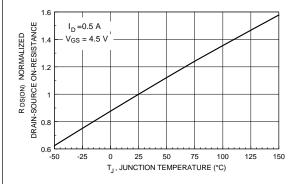


Figure 3. On-Resistance Variation with Temperature.

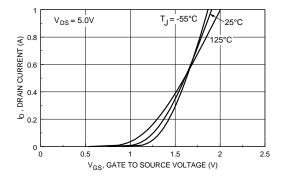


Figure 5. Transfer Characteristics.

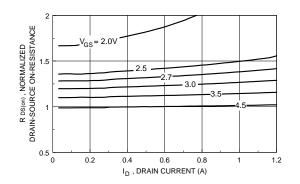


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

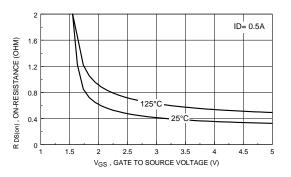


Figure 4. On Resistance Variation with Gate-To-Source Voltage.

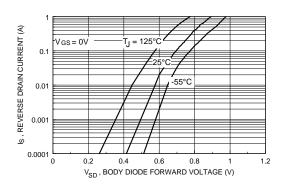


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics: N-Channel (continued)

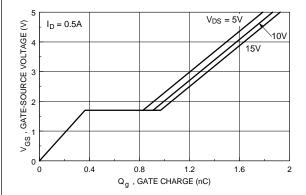


Figure 7. Gate Charge Characteristics.

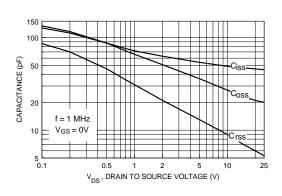


Figure 8. Capacitance Characteristics.

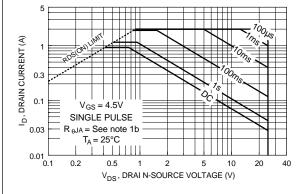


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Electrical Characteristics: P-Channel

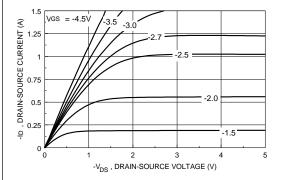


Figure 11. On-Region Characteristics.

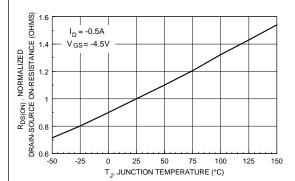


Figure 13. On-Resistance Variation with Temperature.

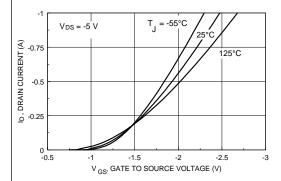


Figure 15. Transfer Characteristics.

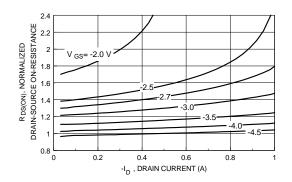


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

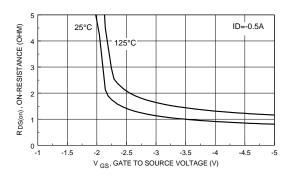


Figure 14. On Resistance Variation with Gate-To- Source Voltage.

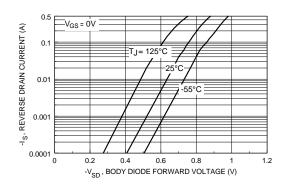
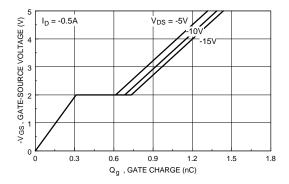
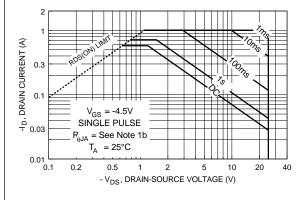



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.


Typical Electrical Characteristics: P-Channel (continued)

150 100 CAPACITANCE (pF) 50 10 = 1 MHz _V_{GS} = 0 V -V $_{\mathrm{DS}}$, DRAIN TO SOURCE VOLTAGE (V)

Figure 17. Gate Charge Characteristics.

Figure 18. Capacitance Characteristics.

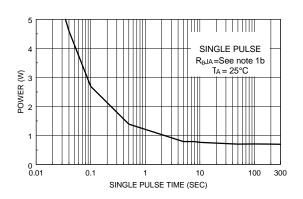


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

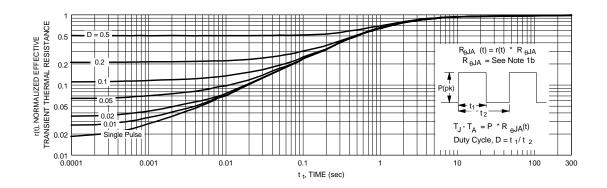


Figure 21. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative