

SHENZHEN HUAYUAN MICRO ELECTRONIC TECHNOLOGY CO., LTD.

Shenzhen Office:

TEL: 0755-29881155 FAX:0755-29881157

EMAIL:zxsf_sales@163.com

QQ:2109300457 www.szhywd.com

APPROVAL SHEET

Approval Specification	Customer's Approval Certificate
TO:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

Tel: +86-010-58937383 Fax: +86-010-58937263 E-mail: zxsf_sales@163.com

QQ: 2109300457

Website: http://www.bjzxsf.net

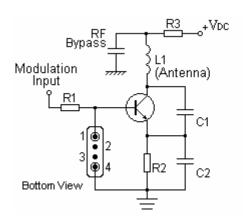
Add: No 201, Block A. Building 3. Yongjie Beilu

Yongfeng high-tech industrial base

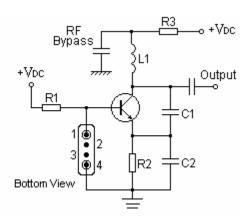
Haidian District Beijing city

Part No.	:	SFR433D
Pages	:	6
Date	:	2013/3/14
Revision	:	1.0

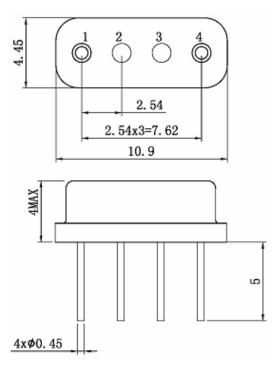
Prepared by:	
Checked by:	
Approved by:	


Features

- 1-port Resonator
- Metal Case for **SC04-06**
- RoHS compatible
- Package Code SC04-06
- Electrostatic Sensitive Device(ESD)



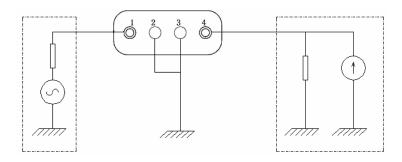
Application


Typical Low-Power Transmitter Application

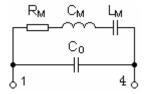
Typical Local Oscillator Application

Package Dimensions (SC04-06)

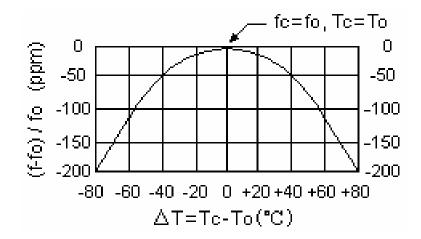
Pin Configuration


1	Input
4	Output
2,3	Ground

Marking



SF	Trademark	
R	SAW Resonator	
433D	Part number	


Test Circuit

Equivalent LC Model

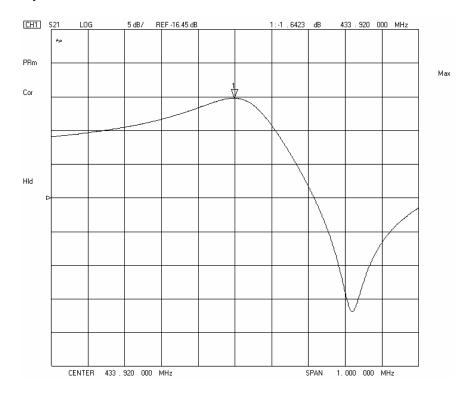
Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

Performance

Maximum Rating

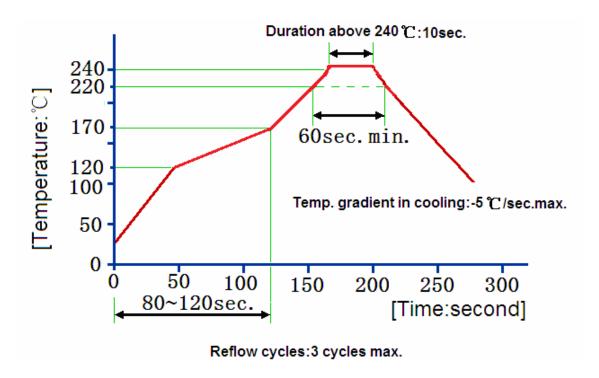
Item		Value	Unit
DC Voltage	V_{DC}	±30	V
Operation Temperature	Т	-40 ~ +85	$^{\circ}$
Storage Temperature	T _{stg}	-55 ~ +125	$^{\circ}$
RF Power Dissipation	Р	10	dBm


Electronic Characteristics

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω Terminating load impedance: 50Ω

Item			Minimum	Typical	Maximum	Unit
Center	Absolute Frequency	fc		433.92		MHz
Frequency	Tolerance from 433.92MHz	△f _c		±75		KHz
Insertion Loss(r	nin)	IL		1.7	2.0	dB
Unloaded Q		Q _U		12366		
Quality Factor	50Ω Loaded Q	Q _L		1642		
Temperature	Turnover Temperature	T ₀	25	40	55	${\mathbb C}$
Stability	Frequency Temperature Coefficient	FTC		0.032		ppm/℃
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			1.0			$M\Omega$
	Motional Resistance	R _M		17	25	Ω
RF Equivalent RLC Model	Motional Inductance	L _M		69.5		μΗ
	Motional Capacitance	См		1.94		fF
	Static Capacitance	C ₀	2.0	2.3	2.6	pF


Frequency Response

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition
1	Temperature Storage	(1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h (2) Temperature: -40℃±3℃, Duration: 250h, Recovery time: 2h±0.5h
2	Humidity Test	Conditions: 60℃±2℃,90~95% RH
3	Thermal Shock	Heat cycle conditions: TA=-40°C±3°C, TB=85°C±2°C, t1=t2=30min, Switch time: ≤3min , Cycle time: 100 times , Recovery time : 2h±0.5h.
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm Directions: X,Y and Z Duration: 2h
5	Drop Test	Cycle time: 10 times Height: 1.0m
6	Solder Ability Test	Temperature: 245°C±5°C Duration: 3.0s5.0s Depth: DIP2/3 , SMD1/5
7	Resistance to Soldering Heat	(1)Thickness of PCB:1mm , Solder condition: 260 ℃ ±5 ℃ , Duration: 10±1s (2)Temperature of Soldering Iron: 350 ℃ ±10 ℃ , Duration: 3~4s , Recovery time : 2 ± 0.5h

Recommended Reflow Soldering Diagram

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.

- 6 -

- 4. Only leads of component may **be soldered**. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.