
Contact DSBUApplicationsTeam@Qorvo.com for suggestions

QONVO

Product Overview

The RF1602 is a single-pole dual-throw (SPDT) switch designed for switching applications requiring very low insertion loss and high power handling capability coupled with minimal DC power consumption. The excellent linearity performance achieved by the RF1602 makes it ideal for use in SV-LTE, WCDMA, and CDMA applications. The RF1602 offers very high isolation between RF ports providing greater separation between transmit and receive paths. The RF1602 is packaged in a very compact 2 mm x 2 mm x 0.55 mm 12-Pin QFN package.

Functional Block Diagram

Broadband SPDT Switch

RF1602

Key Features

- Low Frequency to 3.8 GHz Operation
- Low Insertion Loss, Typ. 0.3 dB at 1 GHz

Package: QFN, 2 mm x 2 mm x 0.55 mm

QONVO RE1602

- Very High Isolation, Typ. 42 dB at 1 GHz
- High Linearity, IIP2 Typ. 129 dBm
- Direct Connection to VBATT
- Compatible with Low Voltage Logic
- (V_{HIGH} Minimum = 1.3 V)
- No External DC Blocking Capacitors Required
- on RF Paths Unless DC is applied Externally
- 2 kV HBM Rating on All Ports

Applications

- SV-LTE, WCDMA, GSM
- Post PA Switching
- General Purpose Switching Application

Ordering Information

Part Number	Description
RF1602SB	5-Piece Sample Bag
RF1602SR	100-Piece Sample Reel
RF1602TR7	2500-Piece 7" Reel
RF1602PCK-410	Fully Assembled Evaluation Board and 5-Piece Sample Bag

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 QOCVO

Broadband SPDT Switch

 $\boldsymbol{\mathcal{C}}$

Absolute Maximum Ratings

	.90			
Parameter	Rating	Unit		
Maximum VBATT	6.0	V		
Maximum EN	3.0	V		
Maximum CTRL	3.0	V		
Maximum Power Handling (6:1 VSWR, Temp. = 25 °C)	+36	dBm		
Operating Temperature	-40 to +85	°C		
Storage Temperature	-40 to +125	°C		

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Sp	Specification			Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
				2	(All Nominal Test Conditions Unless Otherwise Stated) V _{BATT} = 3.5 V, Temperature = 25 °C, All RF ports terminated in 50 Ω	
Insertion Loss						
		0.30	0.40	dB	400 MHz to 1 GHz	
		0.30	0.45	dB	1.0 GHz to 2.0 GHz	
RF1 to ANT, RF2 to ANT		0.35	0.50	dB	2.0 GHz to 2.5 GHz	
		0.40	0.55	dB	2.5 GHz to 3.5 GHz	
		0.40	0.60	dB	3.5 GHz to 3.8 GHz	
Isolation						
	37	42		dB	400 MHz to 1 GHz	
	31	34		dB	1.0 GHz to 2.0 GHz	
RF1 to RF2, RF2 to RF1	30	32		dB	2.0 GHz to 2.5 GHz	
	25	29		dB	2.5 GHz to 3.5 GHz	
	24	29		dB	3.5 GHz to 3.8 GHz	
RF Port Return Loss						
ANT, RF1, RF2	10	15		dB	400 MHz to 3.8 GHz	
900 MHz Harmonics						
Second Harmonic		-95	-75	dBc	P _{IN} = 35 dBm	
Third Harmonic		-90	-75	dBc	PIN = 35 dBIT	
1800 MHz Harmonics						
Second Harmonic		-95	-75	dBc		
Third Harmonic		-90	-75	dBc	$P_{IN} = 33 \text{ dBm}$	

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 Broadband SDDT Switch

Broadband SPDT Switch

	Sp	Specification				
Parameter	Min.	Тур.	Max.	Unit	Condition	
		199.			(All Nominal Test Conditions Unless Otherwise Stated) $V_{BATT} = 3.5 V$, Temperature = 25 °C, All RF ports terminated in 50 Ω	
IIP2						
RF1, RF2, ANT (Cell)	122	129		dBm	Tone 1: 836.5 MHz at +26 dBm Tone 2: 1718 MHz at -20 dBm Receive Freq: 881.5 MHz	
RF1, RF2, ANT (AWS)	122	129		dBm	Tone 1: 1732.5 MHz at +26 dBm Tone 2: 3865 MHz at -20 dBm Receive Freq: 2132.5 MHz	
RF1, RF2, ANT (PCS)	122	129		dBm	Tone 1: 1880 MHz at +26 dBm Tone 2: 3840 MHz at -20 dBm Receive Freq: 1960 MHz	
RF1, RF2, ANT (IMT)	122	129		dBm	Tone 1: 1950 MHz at +26 dBm Tone 2: 4090 MHz at -20 dBm Receive Freq: 2140 MHz	
IIP3 SV – LTE						
RF1, RF2, ANT (Cell)	71	77		dBm	Tone 1: 786 MHz at +23 dBm Tone 2: 825 MHz at +14 dBm Receive Freq: 747 MHz	
RF1, RF2, ANT (Cell)	76	83		dBm	Tone 1: 782 MHz at +23 dBm Tone 2: 827 MHz at +14 dBm Receive Freq: 872 MHz	
IIP3				n		
RF1, RF2, ANT (Cell)	70	75		dBm	Tone 1: 836.5 MHz at +26 dBm Tone 2: 791.5 MHz at -20 dBm Receive Freq: 881.5 MHz	
RF1, RF2, ANT (IMT)	70	75		dBm	Tone 1: 1950 MHz at +26 dBm Tone 2: 1760 MHz at -20 dBm Receive Freq: 2140 MHz	
Max Operating Power						
			36	dBm	50 Ω, Temp. = 25 °C	
			35	dBm	VSWR = 6:1, Temp. = -40 ° C to +85 °C	
Supply and Control Signal Characteristics						
Supply Voltage, VBATT	2.6	3.5	4.6	V		
Supply Current, VBATT						
EN = HIGH		100	200	μA		
EN = LOW		14	20	μA		
Control Voltage (EN, CTRL)				ļ	VEN & Vctrl < VBATT	
Vнigh	1.3	1.8	2.75	V		
VLOW		0	0.45	V		
Control Current				ļ		
Інідн		2.5	5	μΑ		
ILOW		1	3	μA		

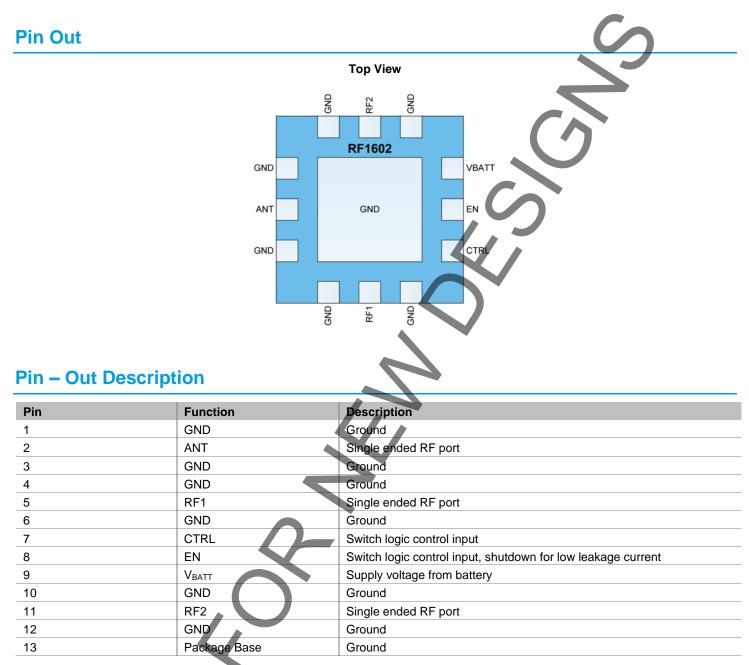
Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 Broadband SPDT Switch

-	Sp	Specification			
Parameter	Min.	Тур.	Max.	Unit	Condition
					(All Nominal Test Conditions Unless Otherwise Stated) $V_{BATT} = 3.5 V$, Temperature = 25 °C, All RF ports terminated in 50 Ω
Switching Time					
Switching Speed ON		2	5	μs	All combinations; 50% control to 90% RF ON
Switching Speed RF OFF		2	5	μs	All combinations; 50% control to 10% RF OFF
Start Up Time from Shutdown			5	μs	Maximum set up time for the switch to reach fully compliant operation
Turn-on Time		5	20	μs	Time from V_{BATT} 50% of operational voltage to RF signal at 90%

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 QOULO

Broadband SPDT Switch

Power – Up, Power – Down sequence and operation controls Sequence for Power UP and Power DOWN from the phone battery or supply that is connected to RF1602 VBATT pin Power – up Sequence: 1. Turn on V_{BATT} (supply) 2. Then EN 3. Then CTRL 4. Then (20 µs or greater) 5. Apply RF signal Power – Down Sequence: 1. Turn off RF signal 2. Then CTRL 3. Then EN 4. Turn off V_{BATT} (supply) Sequence for going in and out of a shutdown mode, keeping the VBATT or supply on, but disabling/enabling the RF1602 by the EN pin. **Power – Up Sequence:** 1. Turn-on EN (enable) 2. Then CTRL

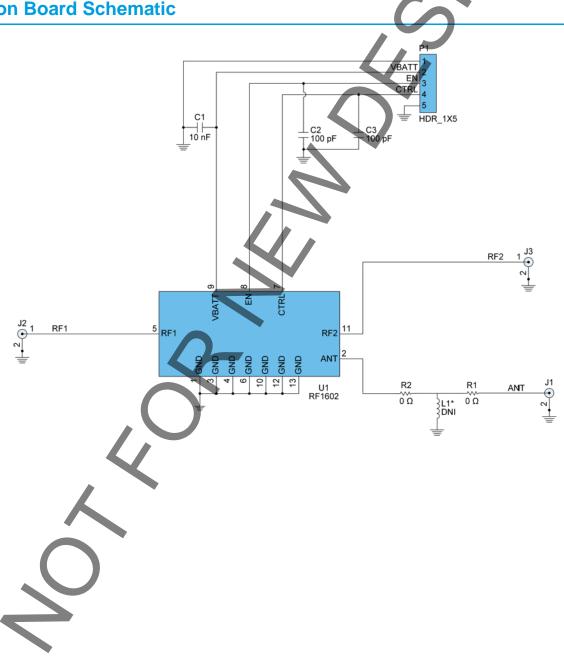

- 3. Then (5 µs or greater)
- 4. Turn-on RF signal
- **Power Down Sequence:**
- 1. Turn-off RF signal
- 2. Then CTRL
- 3. Then EN (disable)

When changing switch positions between RF1 and RF2, no RF signal should be applied to any RF port while the CTRL is changing states

Switching Ports:

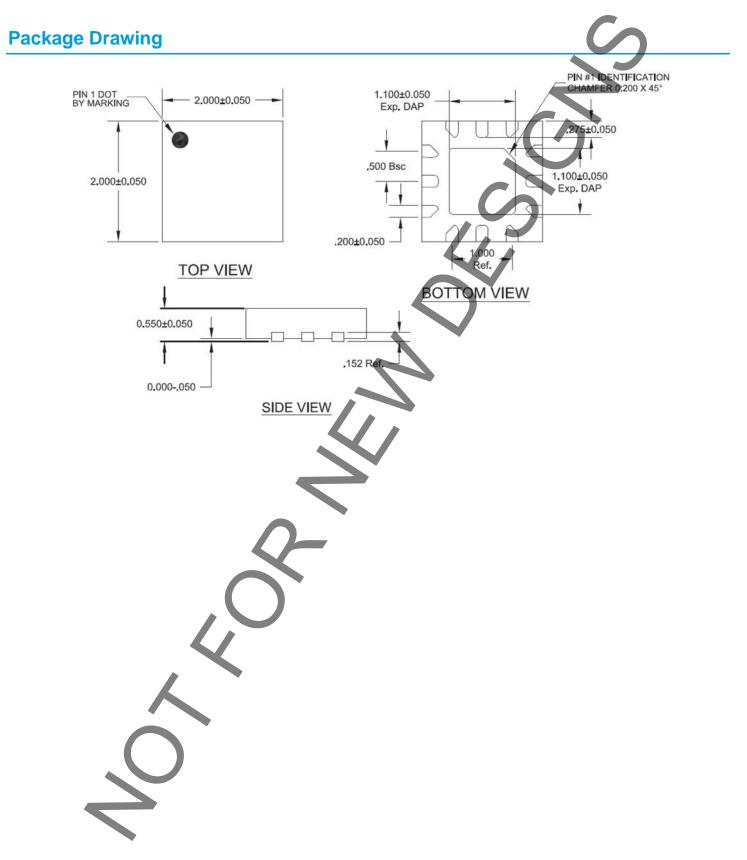
- 1. Turn-off RF signal
- 2. Then change CTRL state
- 3. Then (5 µs or greater)
- 4. Turn-on RF signal

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 Broadband SPDT Switch



Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 QOCVO **Broadband SPDT Switch**

Control Logic						
State	VBATT	CTRL	EN	RF Path		
1	2.7 V to 4.6 V	Vhigh	Vhigh	ANT – RF2		
2	2.7 V to 4.6 V	VLOW	Vhigh	ANT – RF1		
Shutdown	2.7 V to 4.6 V	Don't Care	VLOW	Shutdown		


The switch is operable in 3 states. The switch is designed for two modes: active and shutdown. Assuming V_{BATT} is always between 2.7 V and 4.6 V the switch is controlled by the EN voltage. When EN is HIGH the switch is active and when EN is LOW the switch is in standby mode.

Evaluation Board Schematic

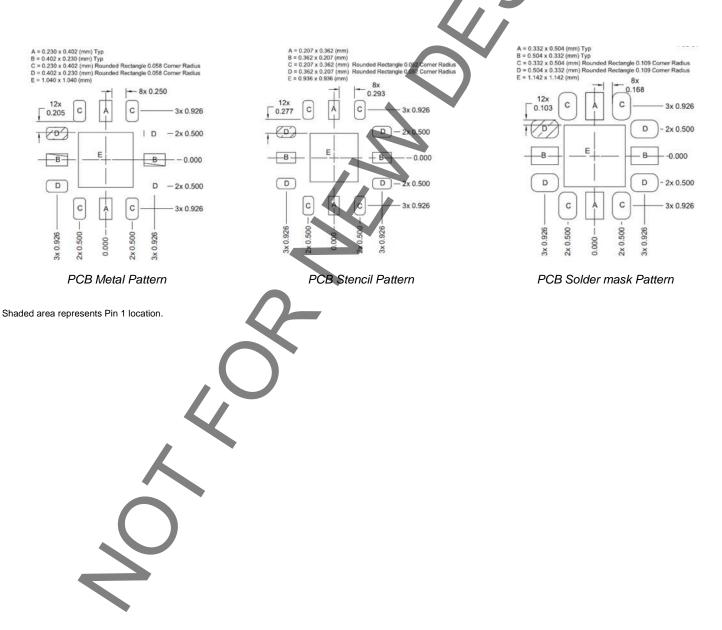
Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 QOCVO

Broadband SPDT Switch

Contact DSBUApplicationsTeam@Qorvo.com for suggestions OUNO

Broadband SPDT Switch

PCB Design Requirements


PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3 µ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land pattern for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land and Solder Mask Pattern

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 Broadband SPDT Switch

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: -Matte Sn

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free

Contact DSBUApplicationsTeam@Qorvo.com for suggestions RF1602 QONOD

Broadband SPDT Switch

REVISION HISTORY

Revision	Description
Rev M	Update Supply Voltages.
DS140203	Update Ven from 2.7 to 2.75 V, Add comment " $V_{EN} < V_{BATT}$ " to Control Voltage table.
DS20140812	Updated ordering information. Added minimums for SV-LTE IIP3 specs. Revised first SV-LTE IIP3 case typical value.
DS20170530	Updated from RFMD to Qorvo template
Q (20200219)	Added Not Recommended For New Designs marks

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.gorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2017 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.