Specification of MEMS Microphone

(GGS3177 & Halogen-free)

Customer Name : Customer Model : GoerTek Model : S15OB381-108

GoerTek Microelectroniecs			CUSTOMER APPROVAL
DESIGN	Lamon	2020.07.08	
<u>CHKD</u>	Samual	2020.07.08	
STANDARD	Lein	2020.07.08	
APVD	Rock	2020.07.08	

Tel : + 86 536 3051234 E- Mail : <u>goertek@goertek.com</u> Website: <u>http://www.goertek.com</u> Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C.

Version: 1.0

Restricted

1 Security Warning

The information contained in this document is the exclusive property of Goertek Microelectroniecs Inc. and should not be disclosed to any third party without the written consent of GoerTek Inc.

2 Publication History

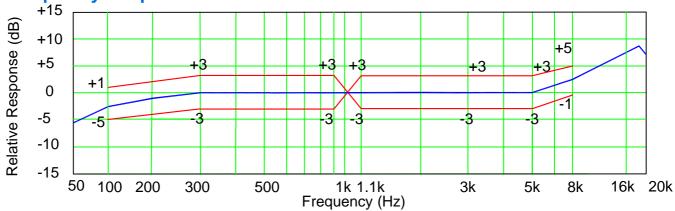
Version	Description	Date	Author	Approved
1.0	New Design	2020.07.08	Lamon	Rock

Contents

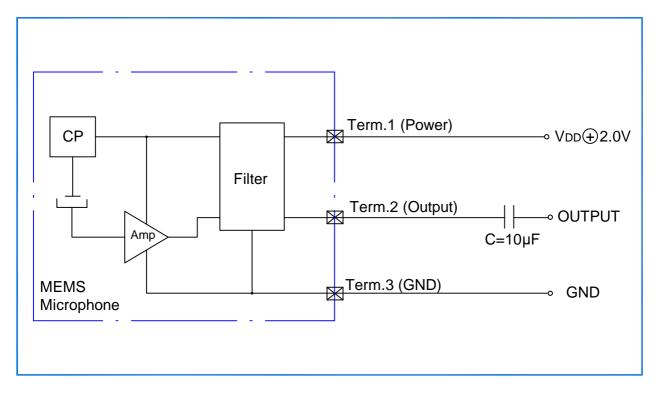
1		4
2	Test Condition	4
3	Acoustic and Electrical Characteristics — — — — — — — — — — — — — — — — — — —	4
4	Frequency Response Curve and Limits	4
5		5
6	Test Setup Drawing	5
7	Mechanical Characteristics	6
	7.1 Appearance Drawing	6
	7.2 Weight — — — — — — — — — — — — — — — — — — —	6
8	Reliability Test	7
	8.1 Vibration Test —	7
	8.2 Drop Test	7
	8.3 Temperature Test	7
	8.4 Humidity Test	7
	8.5 Mechanical Shock Test	7
	8.6 Thermal Shock Test	7
	8.7 Reflow Test	7
	8.8 Electrostatic Discharge Test	7
9	Package	8
	9.1 Tape Specification	8
	9.2 Reel Dimension	9
	9.3 The Content of Box – – – – – – – – – – – – – – – – – – –	9
	9.4 Packing Explain	10
10	Storage and Transportation	10
11	Land Pattern Recommendation	11
	11.1 The Pattern of MIC Pad	11
	11.2 Recommended Soldering Surface Land Pattern	11
12	Soldering Recommendation	12
	12.1 Soldering Machine Condition	12
	12.2 The Drawing and Dimension of Nozzle	12
	12.3 Reflow Profile	13
	12.4 Rework	14
13	Cautions	14
	13.1 Board Wash Restrictions	14
	13.2 Vacuum Restrictions	14
	13.3 Ultrasonic Restrictions — — — — — — — — — — — — — — — — — — —	14
	13.4 Air Blow Restrictions	14
14	Output Inspection Standard	14

1 Introduction:

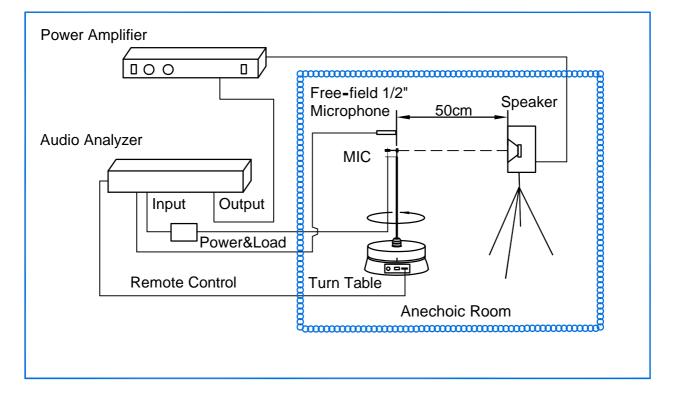
MEMS MIC which is able to endure reflow temperature up to 260 $^{\circ}$ C for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, MP3, PDAs etc.


2 Test Condition (Vs=2.0V, L=50cm)

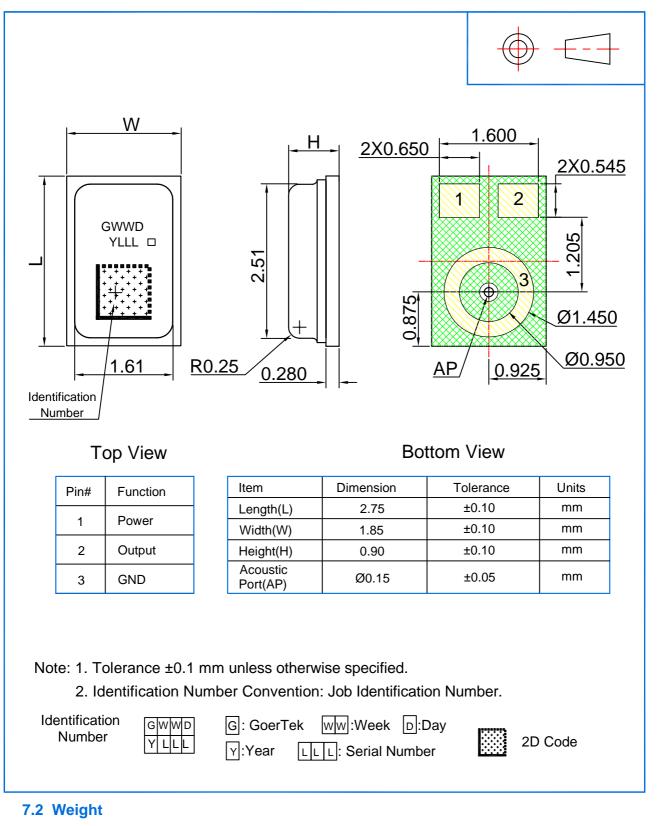
StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure	
Environment Conditions	+15℃~+35℃	25%R.H.~75%R.H.	86kPa \sim 106kPa	
Basic Test Conditions	+20℃ ±2℃	60%R.H.~70%R.H.	86kPa \sim 106kPa	


3 Acoustic and Electrical Characteristics

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Voltage Range	Vs		1.5		3.6	V
Current Consumption	I	Vs=2.0V			150	μA
Sensitivity	S	f=1kHz, Pin=1Pa	-39	-38	-37	dBV
S/N Ratio	SNR	f=1kHz, Pin=1Pa A-Weighted Curve		62		dB
Total Harmonic Distortion	THD	94dB SPL@1kHz			1	%
	עחו	110dB SPL@1kHz			2	%
Acoustic Overload Point	AOP	10%THD@1kHz		128		dB SPL
Power Supply Rejection	PSR	100mVpp square wave@217Hz, Vs=2.0V, A-Weighted		-96		dBV
Power Supply Rejection Ration	PSRR	200mVpp sinewave@1k Hz, Vs=2.0V		68		dB
Output Impedance	Zout	f=1kHz, Pin=1Pa			400	Ω
Decreasing Voltage Characteristic	∆s	f=1kHz, Pin=1Pa Vs=3.61.5V	No Change			
Directivity	D(0)		Omnidirectional			


4 Frequency Response Curve and Limits

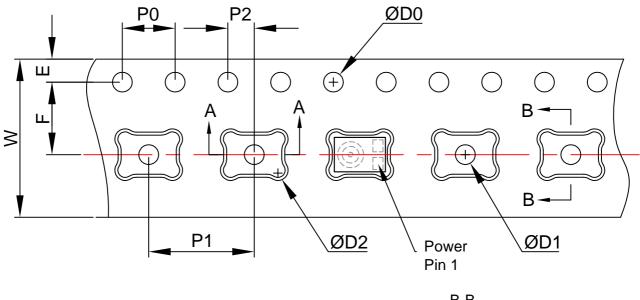
5 Measurement Circuit

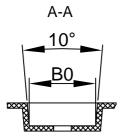


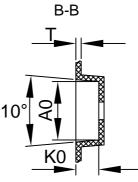
6 Test Setup Drawing

7 Mechanical Characteristics

7.1 Appearance Drawing (Unit: mm)


The weight of the MIC is Less than 0.02g.

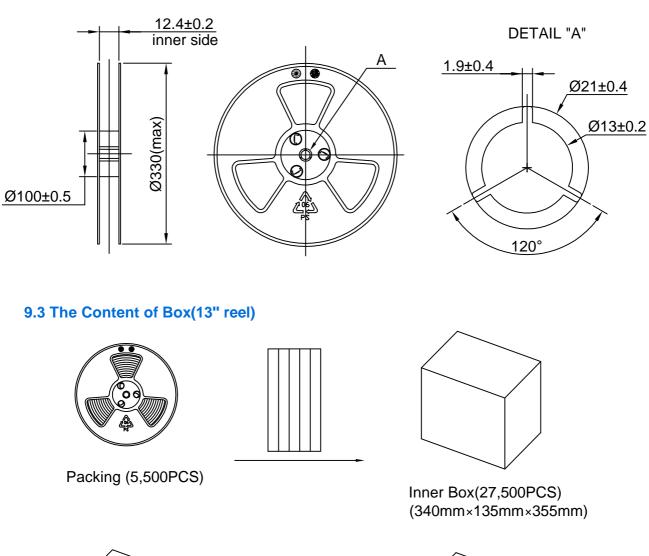

8 Reliability Test

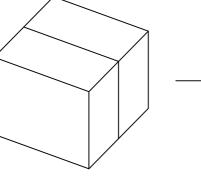

8.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2,000Hz in each direction(X,Y,Z), 48 minutes, using peak acceleration of 20g, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.2 Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 12 times from 1.5 meter height in state of JIG,JIG weight of 100g, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.3 Temperature Test	 a) After exposure at +125 °C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 °C ~+35 °C, R.H.25% ~75%) b) After exposure at -40 °C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 °C ~+35 °C, R.H.25% ~75%)
8.4 Humidity Test	After exposure at +85 ℃ and 85% relative humidity for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15℃~+35℃, R.H.25%~75%)
8.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15^{\circ}$ C $\pm 35^{\circ}$ C, R.H.25% $\geq 75\%$)
8.6 Thermal Shock Test	After exposure at -40 $^{\circ}$ C for 30 minutes, at +125 $^{\circ}$ C for 30 minutes (change time 20 seconds) 32 cycles, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C ~+35 $^{\circ}$ C, R.H.25% ~75%)
8.7 Reflow Test	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within ±2dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C +35 $^{\circ}$ C, R.H.25% ~75%)
8.8 Electrostatic Discharge Test	Under C=150pF, R=330ohm. Tested to ±8KV contact to the case and tested to ±2kV contact to I/O terminals.10 times. Grounding. Sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C ~+35 $^{\circ}$ C, R.H.25% ~75%)

9 Package

9.1 Tape Specification

The Dimensions as Follows:

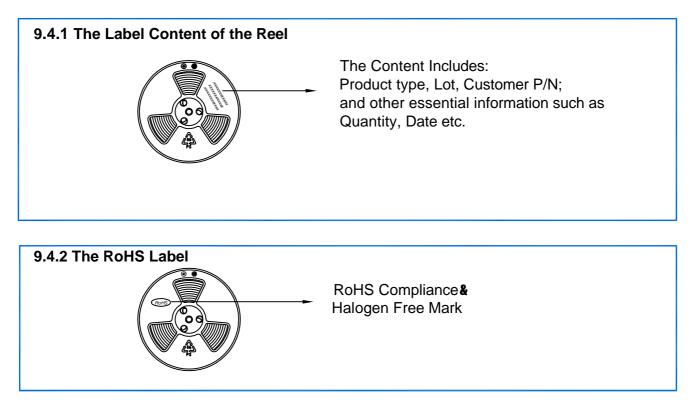

ITEM	W	E	F	ØD0	ØD1
DIM(mm)	12.0±0.30	1.75±0.10	5.5±0.05	1.50 ^{+0.10}	1.00 ^{+0.10}
ITEM	P0	10P0	P1	A0	В0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	3.00±0.05	2.05±0.05
ITEM	K0	P2	т	ØD2	
DIM(mm)	1.10±0.10	2.00±0.05	0.30±0.05	0.50±0.10	


9.2 Reel Dimension

7" reel for sample stage

13" reel will be provided for the mass production stage

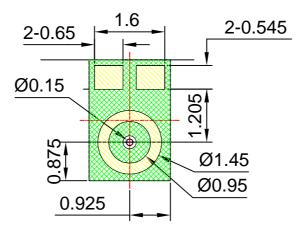
The following is 13" reel dimensions (unit:mm)



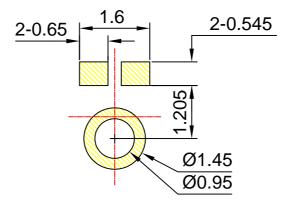
Two Inner Box(55,000PCS)

Outer Box(55,000PCS) (370mm×300mm×390mm)

9.4 Packing Explain



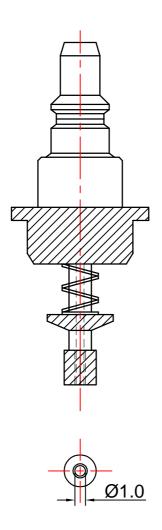
10 Storage and Transportation


- 10.1 Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- 10.2 The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 10.3 Storage Temperature Range : -40 $^{\circ}C \sim$ +70 $^{\circ}C$ (Microphone units with package)
- 10.4 Operating Temperature Range : -40 $^\circ\!\mathrm{C}$ +100 $^\circ\!\mathrm{C}$

11 Land Pattern Recommendation

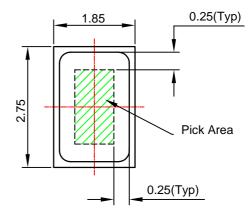
11.1 The Pattern of MIC Pad(Unit:mm)

11.2 Recommended Soldering Surface Land Pattern(Unit:mm)

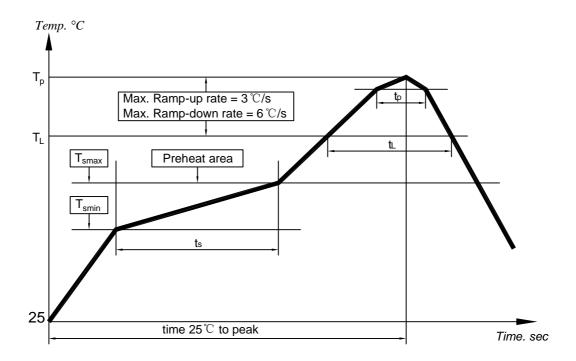


12 Soldering Recommendation

12.1 Soldering Machine Condition


Temperature Control	8 zones	
Heater Type	Hot Air	
Solder Type	Lead-free	

12.2 The Drawing and Dimension of Nozzle



Inside Diameter: Ø1.0mm;

Please don't vacuum over the acoustic port directly. Please don't blow the acoustic port directly.

12.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T_{smax} to T_p)	3℃/s max.
Preheat : Temperature Min(T _{smin}) Temperature Max(T _{smax}) Time(T _{smin} to T _{smax})(t _s)	150℃ 200℃ 60~180s
Time maintained above : Tempreature(T _L) Time(t _L)	217℃ 60~150s
Peak Temperature(T _p)	260 ℃
Time within 5 $^\circ\!{\rm C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6℃/s max
Time 25 $^\circ\!\!\!\!\!^\circ \mathbb{C}$ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

12.4 Rework

- (1) 250°C~270°C, maximum 30 sec, Peak temperature 330°C.
- (2) Wind speed: 15L/m.
- (3) It is very important not to put a heatgun over the acoustic port of the microphone.

13 Cautions

13.1 Board Wash Restrictions

It is very important not to board wash the PCBA after reflow process, otherwise this could damage the microphone.

13.2 Vacuum Restrictions

It is very important not to put a vacuum over the acoustic port of the microphone. otherwise this could damage the microphone.

13.3 Ultrasonic Restrictions

It is very important not to use ultrasonic process. otherwise this could damage the microphone.

13.4 Air Blow Restrictions

It is very important not that o use air gun near the port hloe of the microphone, otherwise this could damage the microphone.

14 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.