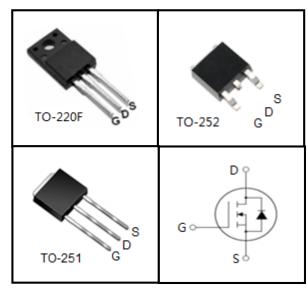
800V N-Channel MOSFET


FEATURES

- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

Device Marking and Package Information				
Device	Package Marking			
RS4N80F	TO-220F	RS4N80F		
RS4N80M	TO-251	RS4N80M		
RS4N80D	TO-252	RS4N80D		

Absolute Maximum Ratings T _C = 25°C, unless otherwise noted						
Poromotor	Symbol	Value			l lmit	
Parameter		TO-220F	TO-252	TO-251	Unit	
Drain-Source Voltage (V _{GS} = 0V)	V _{DSS}	800		V		
Continuous Drain Current	I _D	3		А		
Pulsed Drain Current (note1)	I _{DM}	12		А		
Gate-Source Voltage	V _{GSS}	±30		V		
Single Pulse Avalanche Energy (note2)	E _{AS}	160		mJ		
Avalanche Current (note1)	I _{AR}	3		А		
Repetitive Avalanche Energy (note1)	E _{AR}	20		mJ		
Power Dissipation (T _C = 25°C)	P _D	25 70		W		
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55~+150		°C		

Thermal Resistance					
Parameter	Symbol	Value			1114
		TO-220F	TO-252	TO-251	- Unit
Thermal Resistance, Junction-to-Case	R _{thJC}	5	1.78		K/W
Thermal Resistance, Junction-to-Ambient	R _{thJA}	62.5	60		IN/VV

Specifications $T_J = 25^{\circ}C$, ur Parameter	Symbol		Value			
		Test Conditions	Min.	Тур.	Max.	Unit
Static				7.		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250\mu A$	800			V
	I _{DSS}	$V_{DS} = 800V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			1	
Zero Gate Voltage Drain Current		V _{DS} = 640V, V _{GS} = 0V, T _J = 125°C			100	- μΑ
Gate-Source Leakage	I _{GSS}	$V_{GS} = \pm 30V$			±100	nA
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		4.0	V
Drain-Source On-Resistance (Note3)	R _{DS(on)}	V _{GS} = 10V, I _D = 1.5A		3	3.6	Ω
Dynamic						
Input Capacitance	C _{iss}	V 0V		793		pF
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 25V,$		63		
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		9		
Total Gate Charge	Q_g			19		nC
Gate-Source Charge	Q_{gs}	$V_{DD} = 640V, I_{D} = 3A, V_{GS} = 10V$		3		
Gate-Drain Charge	Q_{gd}	93		9		
Turn-on Delay Time	t _{d(on)}			12		
Turn-on Rise Time	t _r	$V_{DD} = 400V, I_{D} = 3A,$		20		ns
Turn-off Delay Time	t _{d(off)}	$R_G = 25 \Omega$		30		
Turn-off Fall Time	t _f			45		
Drain-Source Body Diode Character	istics					
Continuous Body Diode Current	I _S				3	۸
Pulsed Diode Forward Current	I _{SM}	T _C = 25 °C			12	А
Body Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 3A$, $V_{GS} = 0V$			1.4	V
Reverse Recovery Time	t _{rr}	$V_{GS} = 0V, I_{S} = 3A,$		300		ns
Reverse Recovery Charge	Q _{rr}	di _F /dt =100A /μs		2.6		μC

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 3A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}C$
- 3. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 1%

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 1. Output Characteristics ($T_J = 25^{\circ}C$)

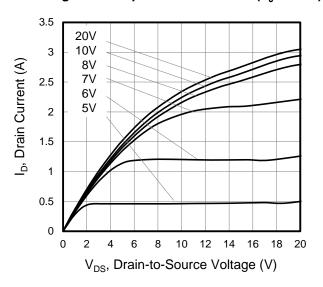


Figure 3. Drain Current vs. Temperature

Figure 5. Transfer Characteristics

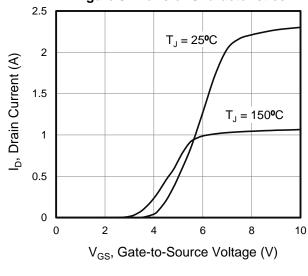


Figure 2. Body Diode Forward Voltage

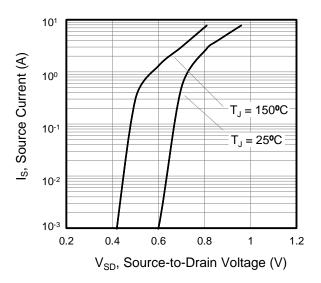


Figure 4. BV_{DSS} Variation vs. Temperature

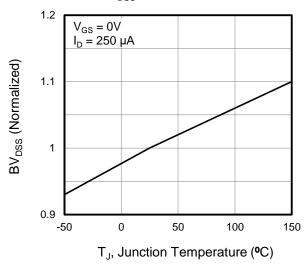
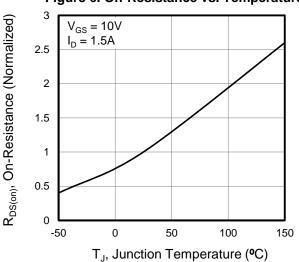



Figure 6. On-Resistance vs. Temperature

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

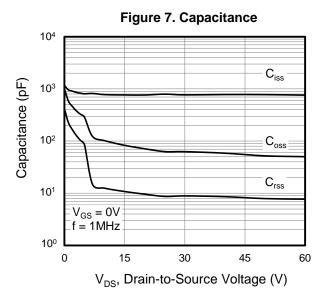
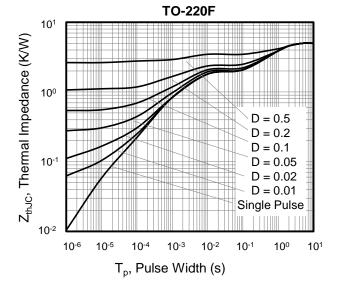



Figure 9. Transient Thermal Impedance

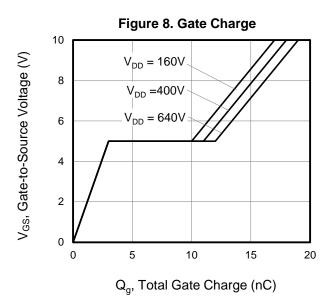


Figure 10. Transient Thermal Impedance

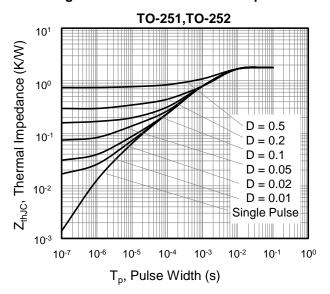


Figure A: Gate Charge Test Circuit and Waveform

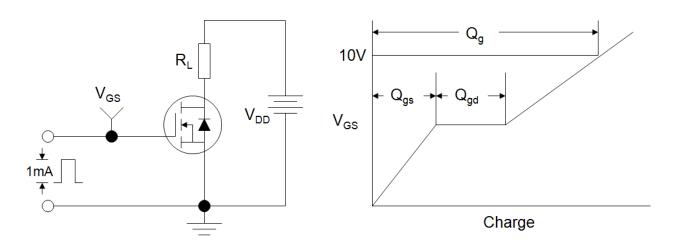


Figure B: Resistive Switching Test Circuit and Waveform

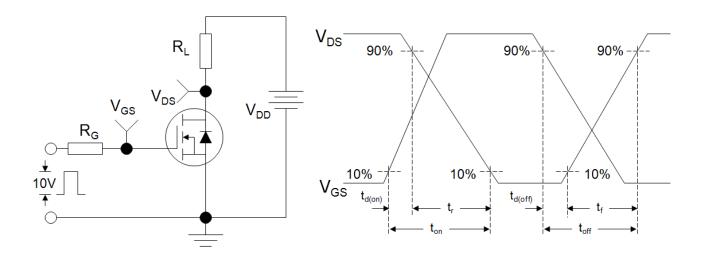
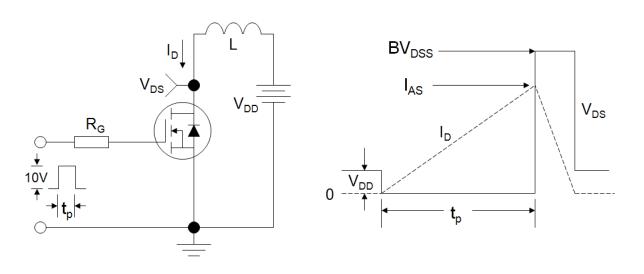
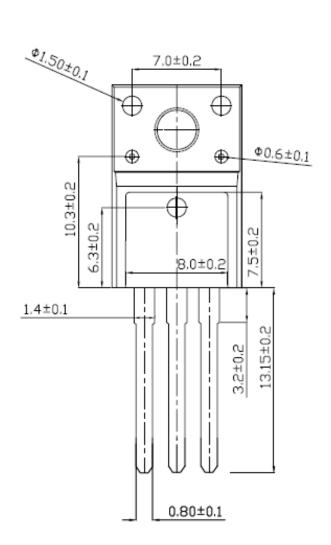
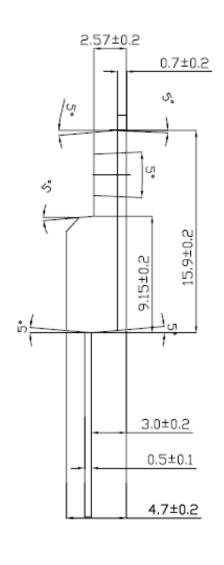
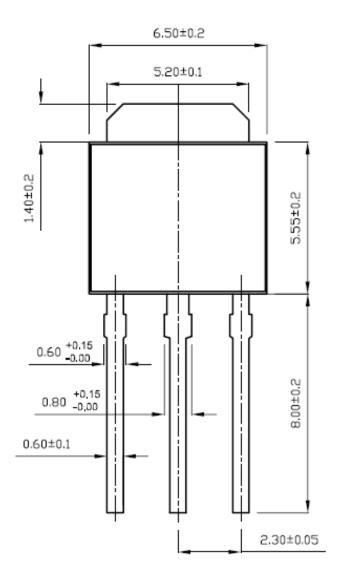
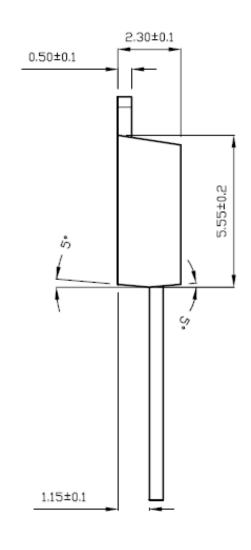
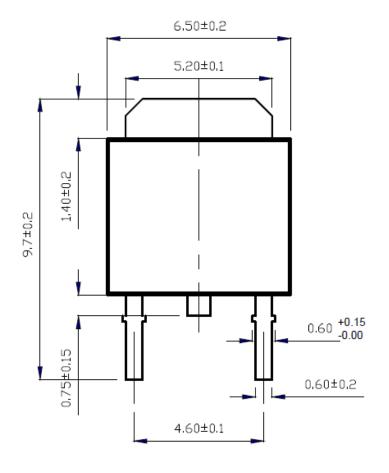
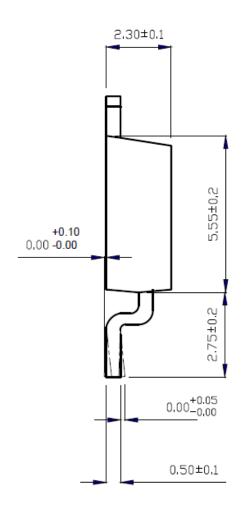





Figure C: Unclamped Inductive Switching Test Circuit and Waveform




TO-220F




TO-251

TO-252

Disclaimers:

GuangDong Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete. All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement.

GuangDong Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

GuangDong Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

GuangDong Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others.Reproduction of information in Reasunos's data sheeets or data books is permissible only if reproduction is without modification oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice.GuangDong Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by GuangDong Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice.GuangDong Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

GuangDong Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of GuangDong Reasunos Semiconductor Technology CO.,LTD.

As used herein:

- 1.Life support devices or systems are devices or systems which:
- a.are intended for surgical implant into the human body,
- b.support or sustain life,
- c.whose failuer to when properly used in accordance with instructions for used provided in the laeling, can be reasonably expected to result in significant injury to the user.
- 2.A critical component is any component of a life support device or system whose failure to system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.