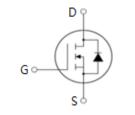
650V N-Channel MOSFET

Lead Free Package and Finish


FEATURES

- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

APPLICATIONS

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

Device Marking and Package Information				
Device	Package	Marking		
RS12N65F	TO-220F	RS12N65F		
RS12N65T	TO-220	RS12N65T		

Absolute Maximum Ratings T _C = 25°C, unless otherwise noted					
Barrandari	Symbol	Value			
Parameter		TO-220F	TO-220	Unit	
Drain-Source Voltage (V _{GS} = 0V)	V _{DSS}	65	50	V	
Continuous Drain Current	I _D	1	2	А	
Pulsed Drain Current (note1)	I _{DM}	48		А	
Gate-Source Voltage	V_{GSS}	±	30	V	
Single Pulse Avalanche Energy (note2)	E _{AS}	810		mJ	
Avalanche Current (note1)	I _{AR}	13.0		А	
Repetitive Avalanche Energy (note1)	E _{AR}	228		mJ	
Power Dissipation (T _C = 25°C)	P_{D}	70	96	W	
Operating Junction and Storage Temperature Range	T_J,T_stg	-55~+150		°C	

Thermal Resistance				
	Symbol	Va		
Parameter		TO-220F	TO-220	Unit
Thermal Resistance, Junction-to-Case	R _{thJC}	1.92	1.29	12/11/
Thermal Resistance, Junction-to-Ambient	R _{thJA}	62.5	60	K/W

5			Value				
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	650			V	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 650V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			1	μΑ	
		$V_{DS} = 520V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			100	μΑ	
Gate-Source Leakage	I _{GSS}	$V_{GS} = \pm 30V$			±100	nA	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		4.0	V	
Drain-Source On-Resistance (Note3)	R _{DS(on)}	$V_{GS} = 10V, I_D = 6.0A$		0.45	0.68	Ω	
Dynamic							
Input Capacitance	C _{iss}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1.0MHz$		1641		pF	
Output Capacitance	C _{oss}			162			
Reverse Transfer Capacitance	C _{rss}			20			
Total Gate Charge	Q_g	$V_{DD} = 520V, I_{D} = 12A,$ $V_{GS} = 10V$		51		nC	
Gate-Source Charge	Q_{gs}			7.1			
Gate-Drain Charge	Q_{gd}	65 -		24.5			
Turn-on Delay Time	t _{d(on)}			47		ns	
Turn-on Rise Time	t _r	$V_{DD} = 325V, I_{D} = 12A,$		32			
Turn-off Delay Time	t _{d(off)}	$R_G = 25 \Omega$		219			
Turn-off Fall Time	t _f			58			
Drain-Source Body Diode Character	istics						
Continuous Body Diode Current	I _S	T 05.00			12	A	
Pulsed Diode Forward Current	I _{SM}	T _C = 25 °C			48		
Body Diode Voltage	V _{SD}	$T_J = 25^{\circ}\text{C}, I_{SD} = 6\text{A}, V_{GS} = 0\text{V}$	-		1.4	V	
Reverse Recovery Time	t _{rr}	$V_{GS} = 0V, I_{S} = 12A,$	-	579		ns	
Reverse Recovery Charge	Q _{rr}	di _F /dt =100A /μs		2.9		μC	

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 10.0mH, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 ^{o}C
- 3. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 1%

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

Figure 1. Output Characteristics (T_J = 25°C)

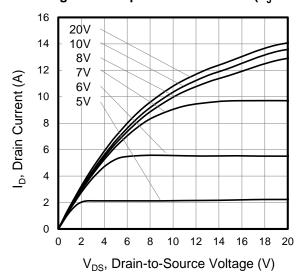
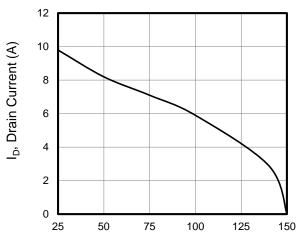



Figure 3. Drain Current vs. Temperature

T_C, Case Temperature (A)

Figure 5. Transfer Characteristics

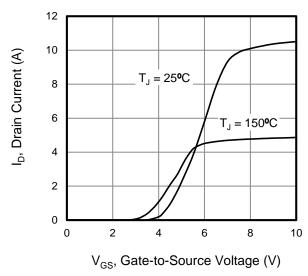


Figure 2. Body Diode Forward Voltage

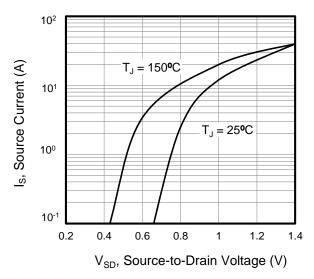
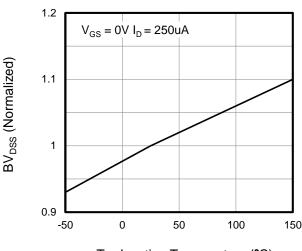
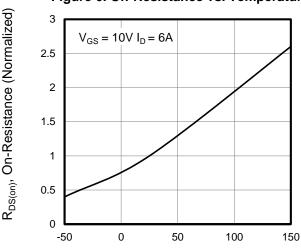




Figure 4. BV_{DSS} Variation vs. Temperature

T_J, Junction Temperature (°C)

Figure 6. On-Resistance vs. Temperature

 T_J , Junction Temperature (${}^{\rm o}{\rm C}$)

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

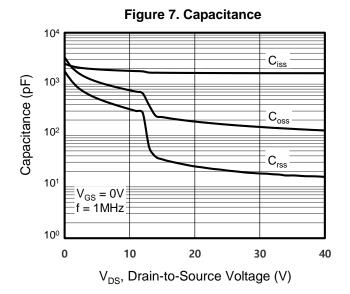


Figure 8. Gate Charge $V_{DD} = 130V$ $V_{DD} = 325V$ $V_{DD} = 520V$ $V_{DD} = 520V$

Figure 9. Transient Thermal Impedance TO-220F

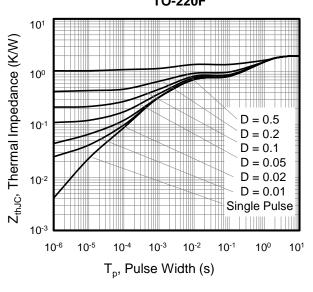


Figure 10. Transient Thermal Impedance TO-220

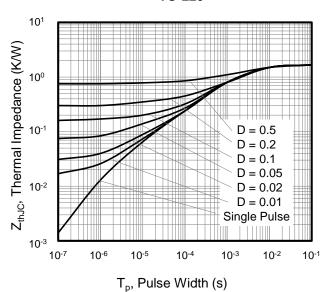


Figure A: Gate Charge Test Circuit and Waveform

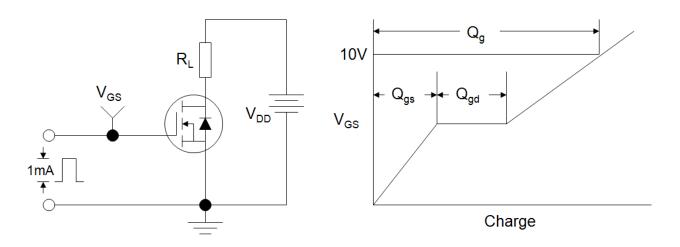


Figure B: Resistive Switching Test Circuit and Waveform

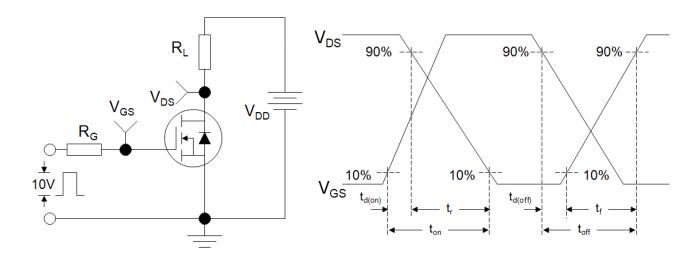
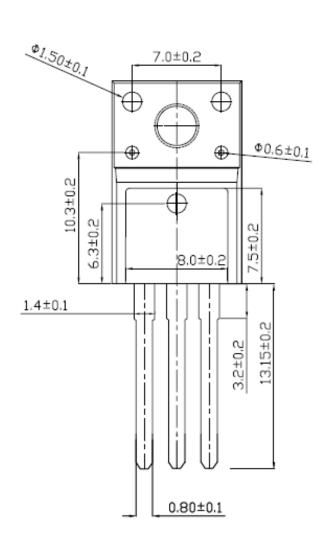
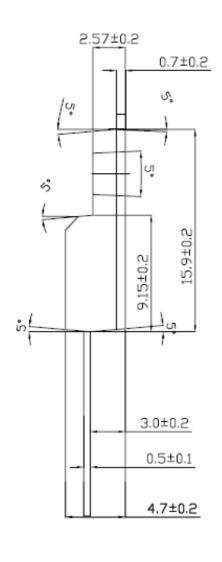
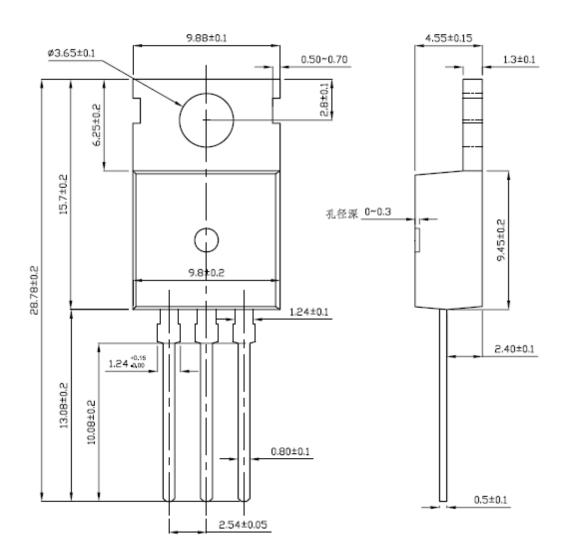




Figure C: Unclamped Inductive Switching Test Circuit and Waveform



TO-220F

TO-220

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Reasunos does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Reasunos .

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Reasunos products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify for any damages arising or resulting from such use or sale.

Reasunos disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify

Reasunos terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Reasunos SemiConductor CO., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Reasunos products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Reasunos believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.