PRODUCT SPECIFICAT/ON	(R-1-2273)	September 4, 2009
Customer:	RENERAL	Date Revised: January 12, 2010
Title Subject:	XMA Connector (For Wire-to-Wire/ Hanging Type)	Issued by: Osaka Engineering Center

This product specification contains the results of performance tests for the XMA connector (For wire-to-wire/ Hanging type).
-Index-

1. PART NAME \& PART NUMBER
2. CONSTRUCTION, DIMENSIONS, MATERIAL \& SURFACE FINISH
3. CHARACTERISTICS
4. SPECIMEN
5. TEST CONDITIONS
6. REQUIREMENTS, TEST METHODS \& TEST RESULTS
6.1 Appearance
6.2 Mechanical Performance Test
6.2.1 Insertion Force (I.F.) \& Withdrawal Force (W.F.)
6.2.2 Crimp Tensile Strength
6.2.3 Contact Retention Force
6.2.4 Locking Strength
6.3 Electrical Performance Test
6.3.1 Contact Resistance
6.3.2 Current Continuity
6.3.3 Insulation Resistance
6.3.4 Dielectric Withstanding Voltage
6.4 Environmental Test
6.4.1 Durability
6.4.2 Humidity
6.4.3 Heat Aging
6.4.4 Thermal Shock
6.4.5 Hydrogen Sulfide Gas
6.4.6 Salt Spray
6.4.7 Vibration
6.4.8 Ammonia Gas
7. NOTICE

Prepared by: M.Veda	Checked by: K.Ichimi	Reviewed by: K.Wanaka	Approved by: K.Shimizu

1. PART NAME \& PART NUMBER

Part Name			Part Number
Pin contact			SXM-001T-P0.6
Socket contact			SXA-001T-P0.6L
Receptacle housing	2 to 3-circuit	Polarizing key pattern 1	XMAR-*VF-1-S
		Polarizing key pattern 2	XMAR-* VF-2-R
		Polarizing key pattern 3	XMAR-*VF-3-E
	4 to 5-circuit	Without polarizing key	XMAR-* VF-S
	6-circuit	Without polarizing key	XMAR-06VF-S
Plug housing	2 to 3-circuit	Polarizing key pattern 1	XMAP-*V-1-S
		Polarizing key pattern 2	XMAP-* V-2-R
		Polarizing key pattern 3	XMAP-* V-3-E
	4 to 5-circuit	Without polarizing key	XMAP-*V-S
	6-circuit	Without polarizing key	XMAP-06V-S
Retainer	2 to 5-circuit		XMAS-*V-S
	6-circuit		XMS-06V

Note $_{1}$: \quad Number of circuits in one-digit figure is indicated in *.

2. CONSTRUCTION, DIMENSIONS, MATERIAL \& SURFACE FINISH

Construction and dimensions shall be in accordance with the referenced drawings. Material and surface finish shall be as specified below.

Part Name			Material	Surface Finish, etc.	
Pin contact			Phosphor bronze	Tin-plated	
Socket contact			Phosphor bronze	Tin-plated	
	$\begin{gathered} 2 \text { to } \\ \text { 3-circuit } \end{gathered}$	Polarizing key pattern 1	PBT (Glass-filled)	Color: Natural	Flammability UL94V-0
		Polarizing key pattern 2	PBT (Glass-filled)	Color: Red	
		Polarizing key pattern 3	PBT (Glass-filled)	Color: Blue	
	$\begin{gathered} 4 \text { to } \\ \text { 6-circuit } \end{gathered}$	Without polarizing key	PBT (Glass-filled)	Color: Natural	
음.	$\begin{gathered} 2 \text { to } \\ 3 \text {-circuit } \end{gathered}$	Polarizing key pattern 1	PBT (Glass-filled)	Color: Natural	Flammability UL94V-0
		Polarizing key pattern 2	PBT (Glass-filled)	Color: Red	
		Polarizing key pattern 3	PBT (Glass-filled)	Color: Blue	
	$\begin{gathered} 4 \text { to } \\ 6 \text {-circuit } \end{gathered}$	Without polarizing key	PBT (Glass-filled)	Color: Natural	
Retainer			PA 66 (Glass-filled)	Color: Natural	$\begin{aligned} & \text { Flammability: } \\ & \text { UL94V-0 } \end{aligned}$

3. CHARACTERISTICS

Item		Rated Value		
Current rating		$3 \mathrm{~A}(\mathrm{AC}, \mathrm{DC})$	$\left(\right.$ Note $\left._{2}\right)$	
Voltage rating		$250 \mathrm{~V}(\mathrm{AC}, \mathrm{DC})$		
Temperature range		-25 to $+85^{\circ} \mathrm{C}$	$\left(\right.$ Note $\left._{3}\right)$	
Applicable wire	Conductor size	AWG \#26 to \#22	$\left(\right.$ Note $\left._{4}\right)$	
	Insulation O.D.	$\phi 1.3$ to $\phi 1.9 \mathrm{~mm}$		

Note $_{2}$: When AWG\#22 applied.
Note $_{3}$: Including temperature rise in applying an electrical current.
Note $_{4}$: Wire conductor shall be tin-plated annealed copper wire (stranded wire).

4. SPECIMEN

Part Name		Material
Pin contact		SXM-001T-P0.6
Socket contact		SXA-001T-P0.6L
Receptacle housing	2 to 3-circuit	XMAR-*VF-()-[]
	4 to 6-circuit	XMAR-*VF-S
Plug housing	2 to 3-circuit	XMAP-*V-()-[]
	4 to 6-circuit	XMAP-*V-S

Note $_{5}$: Number of circuits in one-digit figure is indicated in *.
Note ${ }_{6}$: Numbers (1 to 3) showing key pattern is indicated in ().
Note F $_{7}$ A character of an alphabet in color is indicated in []. (S: natural, R: red, E: blue)

5. TEST CONDITIONS

1) When tested in accordance with the test conditions and method specified in each item, each requirement shall be met.
2) Unless otherwise specified, tests shall be conducted under the following ambient conditions specified in JIS C 60068-1 (IEC 60068-1) [Basic Environmental Testing Procedures General and Guidance].

$$
\begin{array}{ll}
\text { Temperature: } & 15 \text { to } 35^{\circ} \mathrm{C} \\
\text { Relative humidity: } & 25 \text { to } 75 \%
\end{array}
$$

3) For environmental tests, as a rule, the specimen that a receptacle and a plug are assembled for actual use and the wire of UL1007 style AWG\#22 shall be used.

6. REQUIREMENTS, TEST METHODS \& TEST RESULTS

6.1 Appearance

Requirement: There shall be no crack, deformation or discoloration which may affect the performance specified in this specification.

Test method: Visual inspection.
Test result: Good.
6.2 Mechanical Performance Test
6.2.1 Insertion Force (I.F.) \& Withdrawal Force (W.F.)

Requirement:
UNIT: N

No. of circuits	At Initial		At 30th
	I.F. (max.)	W.F. (min.)	W.F. (min.)
2	20	0.7	0.4
3	23	1.0	0.4
4	26	1.3	0.7
5	29	1.6	0.7
6	32	1.9	1.0

Test method: A receptacle housing with crimped contact and a plug housing with crimped contact shall be mated and unmated on the mating axis. Initial insertion and withdrawal forces and also withdrawal force at 30th shall be measured. A center lock and side lock of plug housing shall be removed before the measurement.
(Testing speed: 1 to $5 \mathrm{~mm} / \mathrm{sec}$.)

Title Subject:	XMA Connector (For Wire-to-Wire/ Hanging Type)

No. T-1-2273
(R-1-2273)
Revised: A

Test result:
UNIT: N

No. of circuits	Item	Ave.	Max.	Min.
2	Initial I.F.	2.6	2.7	2.4
	Initial W.F.	1.5	1.7	1.4
	W.F. at 30th	1.0	1.2	0.9
3	Initial I.F.	4.0	4.4	3.6
	Initial W.F.	2.4	2.7	2.3
	W.F. at 30th	1.5	1.8	1.4
4	Initial I.F.	5.1	5.4	4.5
	Initial W.F.	3.1	3.3	2.8
	W.F. at 30th	2.0	2.3	1.8
5	Initial I.F.	6.8	7.2	5.9
	Initial W.F.	3.9	4.2	3.5
	W.F. at 30th	2.4	2.6	2.1
6	Initial I.F.	8.5	9.0	7.9
	Initial W.F.	5.0	5.3	4.8
	W.F. at 30th	3.4	3.6	3.0

6.2.2 Crimp Tensile Strength

Requirement:

Wire to be used	Requirements N min.
AWG \#26	15
AWG \#24	20
AWG \#22	35

Test method: Pulling load shall be applied to a correctly crimped contact and a wire. The load to pull the wire out of the contact or break the wire shall be measured. (Testing speed: $25 \mathrm{~mm} / \mathrm{min}$.)

Test result:
UNIT: N

Item	Wire size	Ave.	Max.	Min.
Pin contact	$0.13 \mathrm{~mm}^{2}$ (AWG\#26)	34.1	37.2	31.4
	$0.20 \mathrm{~mm}^{2}($ AWG\#24 $)$	60.7	63.7	56.8
	$0.30 \mathrm{~mm}^{2}$ (AWG\#22)	88.9	90.2	80.4
Socket contact	$0.13 \mathrm{~mm}^{2}$ (AWG\#26)	39.0	45.1	33.4
	$0.20 \mathrm{~mm}^{2}$ (AWG\#24)	59.9	63.3	55.0
	$0.30 \mathrm{~mm}^{2}($ AWG\#22 $)$	89.0	91.3	82.4

Revised: A

6.2.3 Contact Retention Force

Requirement: 15 N min.
Test method: A correctly crimped contact shall be mounted in a receptacle housing (plug housing) and pulled along the mating axis. The load to pull the contact out of the receptacle housing (plug housing) shall be measured.
(Testing speed: 1 to $5 \mathrm{~mm} / \mathrm{sec}$.)

Test result:
UNIT: N

Item	Ave.	Max.	Min.
Receptacle housing	29.9	32.6	27.4
Plug housing	27.0	30.2	22.5
$\mathrm{n}=10$			

6.2.4 Locking Strength

Requirement: 2-circuit product; 20 Nmin .
3 to 6 -circuit product; 30 N min.
Test method: A plug housing and a receptacle housing shall be mated. Then, a load shall be applied between them. The load to come them off each other shall be measured. (Testing speed: 1 to $5 \mathrm{~mm} / \mathrm{sec}$.)

Test result:
UNIT: N

Item	Ave.	Max.	Min.
2-circuit product	94.2	100	85.3
3 to 6-circuit product	105	113	92.3
$\mathrm{n}=10$			

6.3 Electrical Performance Test

6.3.1 Contact Resistance

Requirement: Initial; $\quad 10 \mathrm{~m} \Omega$ max.
After tests; $20 \mathrm{~m} \Omega$ max.
Test method: Contact resistance between points A and B of a specimen assembled for actual use as shown in the figure on the right side shall be measured under the following conditions.

Test current: 10 mA (DC)
Open voltage: $\quad 20 \mathrm{mV}$ max.

Wire to be used: AWG \#22
Test result: See each environmental test item.

6.3.2 Current Continuity

Requirement: There shall be no current discontinuity longer than 1 microsecond during a vibration test.

Test method: Each circuit of a specimen assembled for actual use shall be connected in series and test current of $10 \mathrm{~mA}(\mathrm{DC})$ shall be applied. Current discontinuity longer than 1 microsecond during a test shall be detected by continuity meter.

Test result: See vibration test item.

6.3.3 Insulation Resistance

Requirement: Initial: $500 \mathrm{M} \Omega$ min.
After test: $\quad 300 \mathrm{M} \Omega \mathrm{min}$. (Humidity \& thermal shock tests)
Test method: 500 V DC shall be applied between the outer surface of a housing and a contact and also between adjacent contacts of a mated specimen to measure insulation resistance.

Test result:
UNIT: $\mathrm{M} \Omega$

Items	Measured values	
	Housing-Contact	Contact-Contact
Initial	500 min.	500 min.
After humidity test	300 min.	300 min.
After thermal shock test	300 min.	300 min.
$\quad \mathrm{n}=10$		

-

1

6.3.4 Dielectric Withstanding Voltage

Requirement: There shall be no breakdown or flashover.
Test method: Testing voltage specified below shall be applied between the outer surface of a housing and a contact and also between adjacent contacts of a mated specimen for one minute.

Initial:	$1,500 \mathrm{VAC}$
After test:	$1,000 \mathrm{~V}$ AC (Humidity \& thermal shock tests)

Test result:

Items	Housing-Contact	Contact-Contact	
Initial	Good	Good	
After humidity test	Good	Good	
After thermal shock test	Good	Good	
$\mathrm{n}=10$			

6.4 Environmental Test

6.4.1 Durability

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test.
Test method: A receptacle housing with crimped contact and a plug housing with crimped contact shall be mated and unmated. After repeated 30 cycles, contact resistance shall be measured.

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.45	6.6	6.2	6.75	7.0	6.5

6.4.2 Humidity

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test. Insulation resistance shall be $300 \mathrm{M} \Omega \mathrm{min}$. after the test.
There shall be no breakdown or flashover on the dielectric withstanding voltage test.
Test method: A specimen shall be placed in a humidity chamber of the following conditions. After the test, contact resistance, insulation resistance and dielectric withstanding voltage shall be measured.

Temperature:	$40 \pm 2^{\circ} \mathrm{C}$
Relative humidity:	90 to 95%
Period:	240 hours

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.34	6.7	6.0	6.39	6.6	6.1

6.4.3 Heat Aging

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test.
Test method: A specimen shall be placed in a heat oven of the following conditions. After the test, contact resistance shall be measured.

$$
\begin{array}{ll}
\text { Temperature: } & 85 \pm 2{ }^{\circ} \mathrm{C} \\
\text { Period: } & 250 \text { hours }
\end{array}
$$

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.41	6.6	6.3	6.44	6.6	6.3

6.4.4 Thermal Shock

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test. Insulation resistance shall be $300 \mathrm{M} \Omega$ min. after the test.
There shall be no breakdown or flashover on the dielectric withstanding voltage test.
Test method: A specimen shall be subjected to a thermal shock test of the following conditions. After the test, contact resistance, insulation resistance and dielectric withstanding voltage shall be measured.

1 cycle consists of:
$-55 \pm 3^{\circ} \mathrm{C}$ for 30 minutes
$+85 \pm 2^{\circ} \mathrm{C}$ for 30 minutes
Total cycles: 25 cycles
Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.39	6.6	6.3	6.47	6.7	6.4

6.4.5 Hydrogen Sulfide Gas

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test.
Test method: A specimen shall be subjected to hydrogen sulfide gas of the following conditions. After the test, contact resistance shall be measured.

Concentration:	$3 \pm 1 \mathrm{ppm}$
Temperature:	$40 \pm 2{ }^{\circ} \mathrm{C}$
Relative humidity:	$80 \pm 5 \%$
Period:	96 hours

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.42	6.5	6.3	6.57	6.7	6.3

6.4.6 Salt Spray

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max. after the test.
Test method: A specimen shall be subjected to a salt spray test of the following conditions. After the test, it shall be washed with running water and dried naturally before the measurement of contact resistance.

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.34	6.6	6.1	6.79	7.2	6.5

6.4.7 Vibration

Requirement: Contact resistance shall be $20 \mathrm{~m} \Omega$ max after the test.
There shall be no current discontinuity longer than 1 microsecond during the test.
Test method: A specimen shall be mounted on a printed circuit board (PCB) and subjected to a vibration test of the following conditions. During the test, current continuity shall be checked. After the test, contact resistance shall be measured.

$$
\begin{array}{ll}
\text { Frequency: } & 10-55-10 \mathrm{~Hz} / \text { minute } \\
\text { Amplitude: } & 1.52 \mathrm{~mm} \\
\text { Direction: } & \text { Each of } X, Y, Z \text {-axis directions } \\
& \text { *Each axis shall be at right angles to others. } \\
\text { Period: } \quad 2 \text { hours for each direction }
\end{array}
$$

Test result:
UNIT: $\mathrm{m} \Omega$

Test item	Initial			After the test		
Contact resistance	Ave.	Max.	Min.	Ave.	Max.	Min.
	6.77	6.9	6.6	6.99	7.1	6.8

Current continuity
There was no current discontinuity longer than 1 microsecond.

6.4.8 Ammonia Gas

Requirement: There shall be no stress corrosion cracking.
Test method: A specimen shall be subjected to an ammonia gas test of the following conditions. After the test, stress corrosion cracking shall be checked.

Ammonia solution:	3% in weight
Solution volume:	25 ml per liter of volume
Period:	7 hours

Test result:

There was no stress corrosion cracking.

7. NOTICE

(1) This connector has an inertia lock mechanism to prevent the insufficient mating, but this mechanism cannot eliminate completely an insufficient mating. After mating, check the secure locking without fail.
(2) This connector is secure lock type, so the connector must be treated with care after mated. Incorrect handling direction and excessive pulling load to wire harness may cause troubles which affect its performances such as breakage of connector itself (lock devise, etc.). To prevent these troubles and make full use of connector's performances, special care should be taken on the following points when handling wire harness.
(1) Do not apply an external load to the connector continuously except for tension and pulling load when handling wire harness as usual.
(2) For wires, make an appropriate looseness to mate and unmate the connector on the mating axis without strain.

THIS DRAWING CONTAINS INFORMATION THAT IS PROPRIETARY TO J.S.T. AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION.
A

		Lock
6	12.5	2

D
E

NOTE

l.Unless otherwise specified,
tolerances are $: 0<L \leqq 5.0 ; \pm 0.3$

