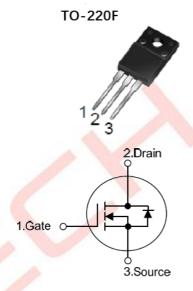
ATM2N65TF

N-Channel Enhancement Mode Power MOSFET


Drain-Source Voltage: 650V Continuous Drain Current: 2A

DESCRIPTION

The ATM2N65TF is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- ightharpoonup R_{DS(ON)} < 5.0 Ω @ V_{GS} = 10V
- ◆ Ultra Low gate charge (typical 45nC)
- ◆ Low reverse transfer capacitance (C_{RSS} = typical 9 pF)
- Fast switching capability
- Avalanche energy specified
- Improved dv/dt capability, high ruggedness

ABSOLUTE MAXIMUM RATINGS (Tc = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	650	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Avalanche Current (Note 2)		I _{AR}	2.0	Α	
Drain Current	Continuous	I _D	2.0	Α	
	Pulsed (Note 2)	I_{DM}	8.0	Α	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	140	mJ	
	Repetitive (Note 2)	E_{AR}	4.5	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns	
Power Dissipation	TO-220F	P□	21	W	
Junction Temperature		TJ	+150	°C	
Operating Temperature		T_OPR	-55 ~ + 150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

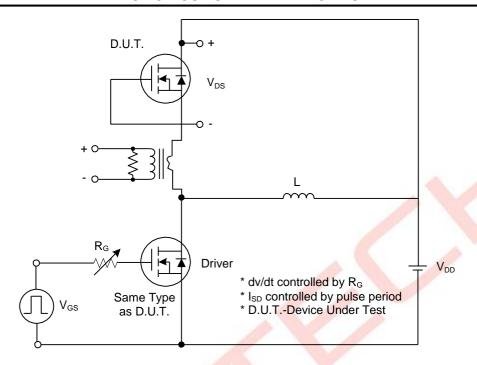
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by T_J.
- 3. L=64mH, I_{AS} =2.0A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 2.4A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

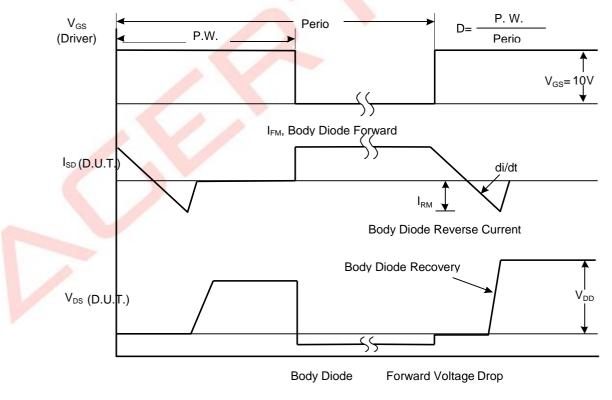
Dated:12/2017 Rev: 2.0

ATM2N65TF

ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

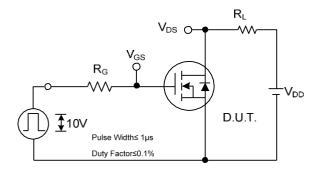

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	650			V				
Drain-Source Leakage Current	I _{DSS}	V _{DS} = 650V, V _{GS} = 0V			10	μΑ				
Forwar	d ,	$V_{GS} = 30V$, $V_{DS} = 0V$			100	nA				
Gate-Source Leakage Current Revers	e I _{GSS}	$V_{GS} = -30V, V_{DS} = 0V$			-100	nA				
Breakdown Voltage Temperature Coefficie	ent ∆BV _{DSS} /∆T _J	I _D =250μA, Referenced to 25°C		0.4	- 1	V/°C				
ON CHARACTERISTICS										
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V				
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 10V, I _D =1A		3.9	5.0	Ω				
DYNAMIC CHARACTERISTICS										
Input Capacitance	C _{ISS}	V _{DS} =25V, V _{GS} =0V, f =1MHz		320	370	pF				
Output Capacitance	Coss			40	50	рF				
Reverse Transfer Capacitance	C _{RSS}			9	12	pF				
SWITCHING CHARACTERISTICS			1							
Turn-On Delay Time	t _{D (ON)}			35	50	ns				
Turn-On Rise Time	t _R	V _{DD} =325V, I _D =2.4A,		40	60	ns				
Turn-Off Delay Time	$t_{D(OFF)}$	R _G =25Ω (Note 1, 2)		130	160	ns				
Turn-Off Fall Time	t _F			40	60	ns				
Total Gate Charge	Q _G	V _{DS} =520V, V _{GS} =10V, I _D =2.4A (Note 1, 2)		45	55	nC				
Gate-Source Charge	Q_{GS}			4		nC				
Gate-Drain Charge	Q_{GD}			8.4		nC				
DRAIN-SOURCE DIODE CHARACTERISTICS										
Drain-Source Diode Forward Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{SD} = 2.0 \text{ A}$			1.4	V				
Continuous Drain-Source Current	I _{SD}				2.0	Α				
Pulsed Drain-Source Current	I _{SM}				8.0	Α				
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, I_{SD} = 2.4\text{A},$		180		ns				
Reverse Recovery Charge	Q_{RR}	di/dt = 100 A/µs (Note1)		0.72		μC				

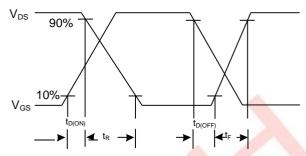
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%


2. Essentially independent of operating temperature

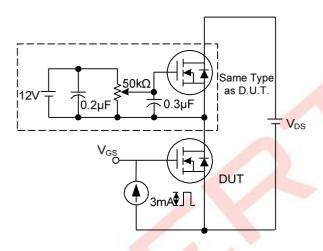
TEST CIRCUITS AND WAVEFORMS

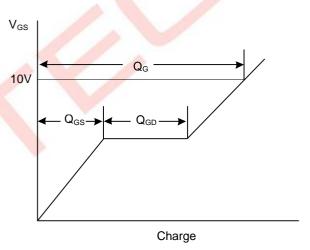
Peak Diode Recovery dv/dt Test Circuit



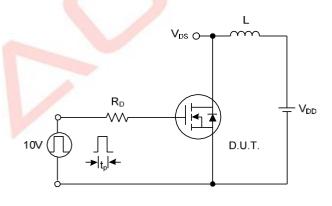

Peak Diode Recovery dv/dt Waveforms

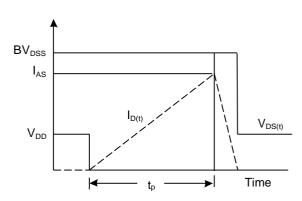
AGERTECH MICROELECTRONICS


TEST CIRCUITS AND WAVEFORMS (Cont.)



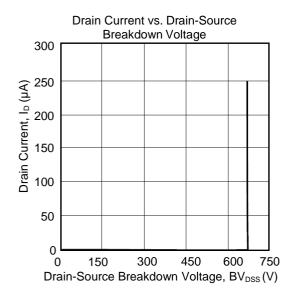
Switching Test Circuit

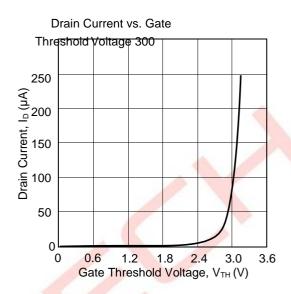

Switching Waveforms

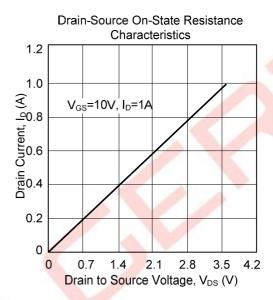


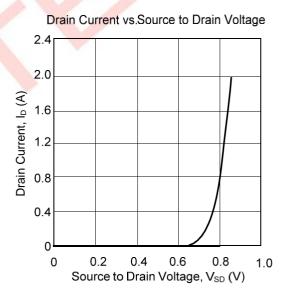
Gate Charge Test Circuit

Gate Charge Waveform

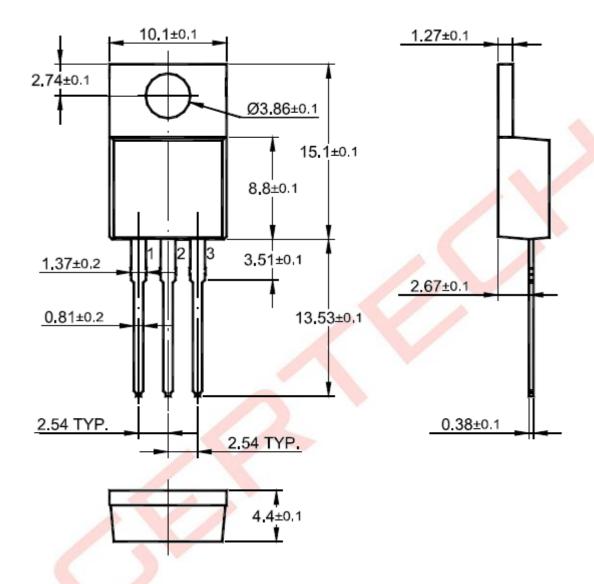

Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms




ATM2N65TF

TYPICAL CHARACTERISTICS CURVES



Package Outline

TO-220F

