## Wideband

## Low Noise Bypass Amplifier TSS-53LNB+

### $50\Omega$ 0.5 to 5 GHz

## **The Big Deal**

- Very wideband, 500 MHz 5 GHz
- Ultra-flat gain, ±0.7 dB from 700 to 2100 MHz
- Low NF over entire frequency band, 1.4 dB
- Internal bypass switching extends useable dynamic range



CASE STYLE: DQ1225

## **Product Overview**

TSS-53LNB+ (RoHS compliant) is an advanced ultra-flat gain Low Noise wideband amplifier fabricated using E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier during high signal conditions. In addition, the TSS-53LNB+has good input and output return loss over a broad frequency range without the need for external matching components. It is enclosed in a 12-lead 3x3mm MCLP package for good thermal performance.

## **Key Features**

| Feature                                                                  | Advantages                                                                                                                                                                 |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ultra-wideband: 500 MHz – 5 GHz                                          | Ideal for a wide range of receiver applications including military, commercial wireless, and instrumentation.                                                              |  |
| Very flat gain                                                           | Ideal for broadband or multi-band applications. Just one, cost-efficient model required for multiple frequency usage.                                                      |  |
| Minimal external matching components required. 15 dB return loss typ.    | Minimizes the need for external matching networks, simplifying circuit designs, and enabling the amplifier to operate over multiple bands in a single application circuit. |  |
| High IP3: 48 dBm typ. (bypass mode)                                      | Provides enhanced linearity over broad frequency range under high signal conditions.                                                                                       |  |
| Internal bypass switch feature                                           | Unique design handles low to high signal levels with minimal noise distortion.                                                                                             |  |
| Built-in DC blocking cap at RF-Out port & separate pads for RF-Out & Vdd | Simplifies biasing eliminates need for Bias-Tee at output.                                                                                                                 |  |
| Compact size: 3 x 3 x 0.9 mm                                             | Saves space in dense system layouts. Low inductance, repeatable transitions, and excellent thermal contact.                                                                |  |

# Low Noise Bypass Amplifier

0.5-5 GHz

#### **Product Features**

Wideband: 0.5-5 GHzBuilt-in Bypass switching

Low Noise figure: 1.4 dB typ. at 2.0 GHz

• High Gain: 21.7 dB typ. at 2 GHz

• Ultra Flat Gain: 0.7 dB from 0.7 to 2.1 GHz

P1dB: +21 dBm typ. at 2.0 GHz
Minimal matching components
Specified over full band operation

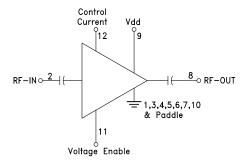
## Typical Applications

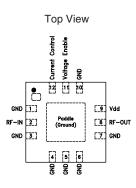
• Wireless Base Station Systems

• Test and Measurement Systems

• Multi-Band Receivers




+RoHS Compliant


The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

### **General Description**

TSS-53LNB+ (RoHS compliant) is an advanced ultra-flat gain Low Noise wideband amplifier fabricated using E-PHEMT technology offering extremely high dynamic range over a broad frequency range. It has integrated switches enabling users to bypass the amplifier during high signal conditions. In addition, the TSS-53LNB+has good input and output return loss over a broad frequency range without the need for external matching components. It is enclosed in a 12-lead 3x3mm MCLP package for good thermal performance.

### simplified schematic and bonding pad description





| Function                                                           | Pad Number                                                    | Description (See Figure 2)                                                                                                            |
|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| RF-IN                                                              | 2                                                             | RF-Input pad. Connect to Ground Via L1. Add a DC blocking cap in series of appropriate value if required.                             |
| RF-OUT                                                             | RF-OUT 8 RF-Output pad. No external DC blocking cap required. |                                                                                                                                       |
| Current Control                                                    | 12                                                            | Control Current pad, voltage level on this pad sets the ldd. Connect to pad 11 via 3.92 $\mbox{k}\Omega$ resistor.                    |
| Voltage Enable 11 Voltage Enable Pad. Voltage level on this pad de |                                                               | Voltage Enable Pad. Voltage level on this pad determines Amplifier is ON or bypassed.                                                 |
| Vdd 9 Supply Voltage Pad. Connect to Vdd via L2.                   |                                                               | Supply Voltage Pad. Connect to Vdd via L2.                                                                                            |
| Ground                                                             | 1,3,4,5,6,7,10<br>Paddle                                      | Connect to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance. |



## Electrical Specifications<sup>(1)</sup> at 25°C, Zo=50Ω and vdd=5V, unless otherwise noted

| Davamatav                                                     | Condition (CII-) | Amplifier-ON |       |      | Amplifier-Bypass   | l lee!to |  |
|---------------------------------------------------------------|------------------|--------------|-------|------|--------------------|----------|--|
| Parameter                                                     | Condition (GHz)  | Min.         | Тур.  | Max. | Тур.               | Units    |  |
| Frequency Range                                               |                  | 0.5          |       | 5.0  |                    | GHz      |  |
| , , , , , , , ,                                               | 0.5              |              | 1.3   |      | 0.7                |          |  |
|                                                               | 1.0              |              | 1.2   |      | 0.9                |          |  |
|                                                               | 2.0              |              | 1.4   |      | 0.9                |          |  |
| Noise Figure                                                  | 3.0              |              | 1.4   |      | 1.0                | dB       |  |
|                                                               | 4.0              |              | 1.6   |      | 1.4                |          |  |
|                                                               | 5.0              |              | 1.7   |      | 1.1                |          |  |
|                                                               | 0.5              | _            | 22.8  | _    | -0.7               |          |  |
|                                                               | 1.0              | _            | 22.7  | _    | -0.7               |          |  |
| Gain                                                          | 2.0              | 19.5         | 21.7  | 23.9 | -0.9               | dB       |  |
| Gain                                                          | 3.0              | _            | 20.5  | _    | -1.0               | uБ       |  |
|                                                               | 4.0              | _            | 19.5  | _    | -0.9               |          |  |
|                                                               | 5.0              |              | 18.7  | _    | -1.0               |          |  |
| Gain Flatness                                                 | 0.7 - 2.1        |              | ±0.7  |      | ±0.14              | dB       |  |
|                                                               | 0.5              | _            | 16.0  |      | 25.8               |          |  |
|                                                               | 1.0              | _            | 15.1  |      | 18.5               |          |  |
| Innut Datum Laga                                              | 2.0              | 10.5         | 14.5  |      | 12.3               | dB       |  |
| Input Return Loss                                             | 3.0              | _            | 13.1  |      | 11.1               | ав       |  |
|                                                               | 4.0              | _            | 14.5  |      | 14.5               |          |  |
|                                                               | 5.0              | _            | 16.9  |      | 16.9               |          |  |
|                                                               | 0.5              |              | 11.8  |      | 22.8               |          |  |
|                                                               | 1.0              |              | 12.5  |      | 17.1               |          |  |
|                                                               | 2.0              |              | 17.0  |      | 12.6               |          |  |
| Output Return Loss                                            | 3.0              |              | 14.1  |      | 11.7               | dB       |  |
|                                                               | 4.0              |              | 10.7  |      | 14.0               |          |  |
|                                                               | 5.0              |              | 10.0  |      | 11.9               |          |  |
|                                                               | 0.5              |              | 21.1  |      | 32.0               |          |  |
|                                                               | 1.0              |              | 21.0  |      | _                  |          |  |
| Output Power @1dB compression AMP-ON (2)                      | 2.0              |              | 20.6  |      | 33.0               |          |  |
| Input Power @ 1dB compression AMP-Bypass (2)                  | 3.0              |              | 20.1  |      | _                  | dBm      |  |
|                                                               | 4.0              |              | 20.2  |      | _                  |          |  |
|                                                               | 5.0              |              | 19.2  |      | 27.0               |          |  |
|                                                               | 0.5              |              | 35.1  |      | 48.0               |          |  |
|                                                               | 1.0              |              | 34.5  |      | 48.4               |          |  |
|                                                               | 2.0              |              | 33.9  |      | 45.2               |          |  |
| Output IP3                                                    | 3.0              |              | 32.7  |      | 42.9               |          |  |
|                                                               | 4.0              |              | 33.4  |      | 42.0               |          |  |
|                                                               | 5.0              |              | 30.9  |      | 40.8               |          |  |
| Device Operating Voltage (Vdd)                                | 3.0              | 4.8          | 5.0   | 5.2  | 4.8-5.2 (5.0 typ.) | V        |  |
| Device Operating Voltage (Vdd)  Device Operating Current (Id) |                  | 4.0          | 82    | 105  | 2                  | mA       |  |
| Enable Voltage (Ve)                                           |                  |              | 5.0   | 100  | 0                  | V        |  |
| Enable Control Current (le)                                   |                  |              | 2.0   |      | 0                  | mA       |  |
| DC Current (Id) Variation Vs. Temperature (3)                 |                  |              | -19   |      |                    | μΑ/°C    |  |
| . , ,                                                         |                  |              |       |      | _                  |          |  |
| DC Current (Id) Variation Vs. Voltage                         |                  |              | 0.008 |      |                    | mA/mV    |  |
| Thermal Resistance, junction-to-ground lead                   | 1                |              | 60    |      | _                  | °C/W     |  |

<sup>(1)</sup> Measured on Mini-Circuits Characterization test board TB-780+. See Characterization Test Circuit (Fig. 1)

## Absolute Maximum Ratings(5)

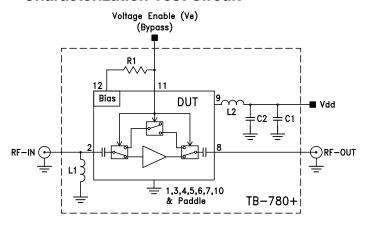
| Parameter                           |                  | Ratings                                  |  |  |
|-------------------------------------|------------------|------------------------------------------|--|--|
| Operating Temperature (ground lead) |                  | -40°C to 85°C                            |  |  |
| Storage Temperature                 |                  | -65°C to 150°C                           |  |  |
| Total Power Dissipation             |                  | 0.7 W                                    |  |  |
| Input Power                         | Amplifier-ON     | 8 dBm (continuous), 19 dBm (5 min max.)  |  |  |
|                                     | Amplifier Bypass | 16 dBm (continuous), 29 dBm (5 min max.) |  |  |
| DC Voltage Vdd                      |                  | 7.0 V                                    |  |  |
| DC Voltage Enable                   |                  | 7.0 V                                    |  |  |
| Max. Voltage on pad 8               |                  | 15 V                                     |  |  |

<sup>(5)</sup> Permanent damage may occur if any of these limits are exceeded.

Electrical maximum ratings are not intended for continuous normal operation.



## Enable Voltage (Ve) Fig. 1


|                  | Min. | Тур. | Max. | Units |
|------------------|------|------|------|-------|
| Amplifier-ON     | 4.5  | 5.0  | 5.5  | V     |
| Amplifier-Bypass | 0    | _    | 0.5  | V     |

<sup>(2)</sup> Current increases at P1dB (3) (Current at 85°C - Current at -45°C)/130)

#### **Switching Specifications (Rise/Fall Time)**

| Parameter                  |                                  |   | Тур. | Max. | Units |
|----------------------------|----------------------------------|---|------|------|-------|
| Amplifier ON to Dynasa     | OFF TIME (50% Control to 10% RF) | _ | 50   | _    |       |
| Amplifier ON to Bypass     | FALL TIME (90 to 10% RF)         | _ | 12   | _    | ns    |
| Association Division to ON | ON TIME (50% Control to 90% RF)  | _ | 740  | _    |       |
| Amplifier Bypass to ON     | RISE TIME (10% to 90% RF)        | _ | 240  | _    | ns    |
| Control Voltage Leakage    |                                  | _ | 65   | _    | mV    |

#### **Characterization Test Circuit**



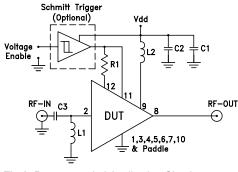

| Component | Size | Value | Units |
|-----------|------|-------|-------|
| L1        | 0402 | 47    | nH    |
| L2        | 0402 | 56    | nH    |
| C1        | 0402 | 0.1   | μF    |
| C2        | 0402 | 10    | pF    |
| R1        | 0402 | 3.92  | KΩ    |

Fig 1. Block diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-780+)
Gain, Return loss, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

#### Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- Switching Time: Pin=-25 dBm at 500 MHz. Venable=4.5, 5.0, 5.5V at 10 kHz. Vd=4.75, 5.0 and 5.5V.

## **Recommended Application Circuit**



| Component          | Size                      | value                                                                              | Units                                                                                                |
|--------------------|---------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| L1                 | 0402                      | 47                                                                                 | nH                                                                                                   |
| L2                 | 0402                      | 56                                                                                 | nΗ                                                                                                   |
| R1                 | 0402                      | 3.92                                                                               | kΩ                                                                                                   |
| C1                 | 0402                      | 0.1                                                                                | μF                                                                                                   |
| C2                 | 0402                      | 10                                                                                 | pF                                                                                                   |
| C3                 | 0402                      | 1000                                                                               | pF                                                                                                   |
| Schmitt<br>Trigger |                           | _                                                                                  |                                                                                                      |
|                    | L1 L2 R1 C1 C2 C3 Schmitt | L1 0402<br>L2 0402<br>R1 0402<br>C1 0402<br>C2 0402<br>C3 0402<br>Schmitt SN74LVC2 | L1 0402 47  L2 0402 56  R1 0402 3.92  C1 0402 0.1  C2 0402 10  C3 0402 1000  Schmitt SN74LVC2G17DCKR |

**Product Marking** 

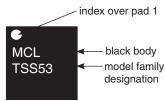
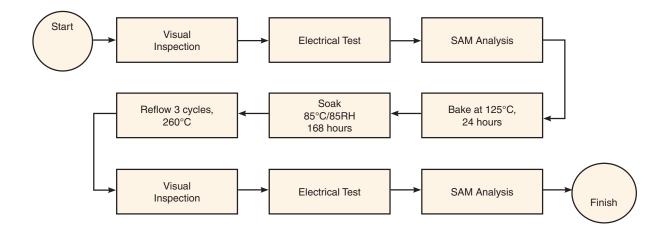



Fig 2. Recommended Application Circuit.

| Additional Detailed Technical Information additional information is available on our dash board. To access this information click here |                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
|                                                                                                                                        | Data Table                                                         |  |  |
| Performance Data                                                                                                                       | Swept Graphs                                                       |  |  |
|                                                                                                                                        | S-Parameter (S4P Files) Data Set (.zip file)                       |  |  |
| Case Style                                                                                                                             | DQ1225 Plastic package, exposed paddle, terminal finish: matte-tin |  |  |
| Tape & Reel                                                                                                                            | F66                                                                |  |  |
| Standard quantities available on reel                                                                                                  | 7" reels with 20, 50, 100, 200, 500 or 1K devices.                 |  |  |
| Suggested Layout for PCB Design                                                                                                        | PL-421                                                             |  |  |
| Evaluation Board                                                                                                                       | TB-779+                                                            |  |  |
| Environmental Ratings                                                                                                                  | ENV12                                                              |  |  |


#### **ESD Rating**

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (pass 50V) in accordance with ANSI/ESD STM5.2-1999

#### **MSL Rating**

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D



#### **Additional Notes**

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

