
30V P-Channel Trench MOSFET

FEATURES

- Super Low Gate Charge
- 100% EAS Guaranteed
- RoHS compliant
- Green Device Available
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

APPLICATIONS

- DC/DC converter
- High side switch for full bridge convert

RoHS

Device Marking and Package Information				
Device	Package	Marking		
CTD03P7P5	TO-252	CTD03P7P5		

Absolute Maximum Ratings at $T_j = 25^{\circ}C$ unless otherwise noted				
Parameter		Symbol	Value	Unit
Drain-Source Voltage (V _{GS} = 0V)		V _{DSS}	-30	V
Continuous Drain Current $T_C = 25^{\circ}C$	(note1)		-80	A
Continuous Drain Current T _C = 100°C	(note1)	I _D	-53	A
Pulsed Drain Current	(note2)	I _{DM}	-200	A
Gate Source Voltage		V _{GSS}	±20	V
Single Pulse Avalanche Energy	(note3)	E _{AS}	80	mJ
Power Dissipation $T_c = 25^{\circ}C$	(note4)	P _D	90	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55~+175	°C

Thermal Characteristics				
Parameter		Symbol	Value	Unit
Thermal Resistance, Junction-Case	(note1)	$R_{ extsf{ heta}JC}$	1.6	°C/W
Thermal Resistance, JunctionAmbient	(note1)	$R_{\theta JA}$	50	°C/W

CTD03P7P5

Devenueter	Cumpheal		Value			
Parameter	Symbol	mbol Test Conditions		Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	-30			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 25^{\circ}C$			-1	uA
	DSS	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 55^{\circ}C$			-5	uA
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20V$			±100	nA
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1.2		-2.5	V
Drain-Source On-Resistance (note2)	Base	$V_{GS} = -10V, I_D = -20A$		6	7.5	mΩ
	R _{DS(on)}	V _{GS} = -4.5V, I _D = -15A		9.5	12	mΩ
Dynamic			-			
Input Capacitance	C _{iss}	V _{GS} = 0V,		3450		pF
Output Capacitance	C _{oss}	$V_{\rm DS} = -25V,$		255		
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		140		
Total Gate Charge (4.5V)	Q _g			60		nC
Gate-Source Charge	Q_gs	V _{DS} = -15V, I _D = -18A, V _{GS} = -10V		9		
Gate-Drain Charge	Q_{gd}			15		
Turn-on Delay Time	t _{d(on)}			17		
Turn-on Rise Time	t _r	V _{DS} = -15V, I _D = -20A		40		ns
Turn-off Delay Time	t _{d(off)}	$V_{GS} = -10V, R_{G} = 3.3\Omega$		55		
Turn-off Fall Time	t _f			13		
Body Diode Characteristics						
Continuous Body Diode Current	۱ _s	T _C = 25 °C			-80	٨
Pulsed Diode Forward Current	I _{SM}	1 _C = 23 °C			-200	A
Body Diode Voltage	V_{SD}	$T_J = 25^{\circ}C, I_{SD} = -1A, V_{GS} = 0V$			-1.2	V
Reverse Recovery Time	t _{rr}	I _F = -20A		22		ns
Reverse Recovery Charge	Q _{rr}	di _F /dt = 100A/µs		72		nC

Notes

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

- 2. The data tested by pulsed , pulse width \$\geq 300us , duty cycle \$\geq 2% |
- 3. The EAS data shows Max. rating . The test condition is VDD =25V, VGS =10V, L=0.1mH
- 4. The power dissipation is limited by 175°C junction temperature

5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

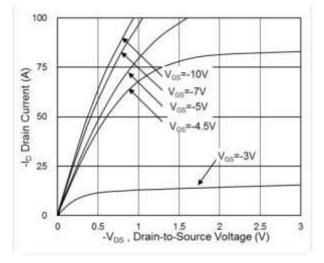


Fig.1 Typical Output Characteristics

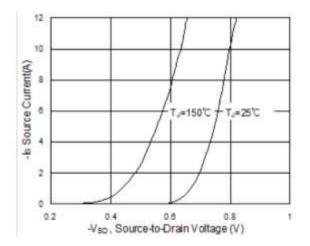
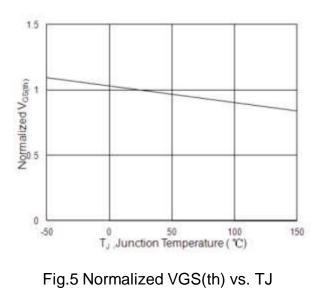



Fig.3 Forward Characteristics of Reverse Diode Fig.4 Gate-Charge Characteristics

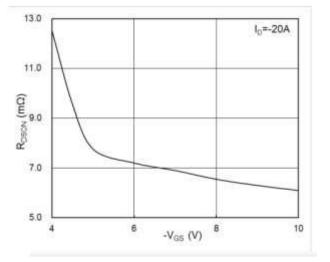
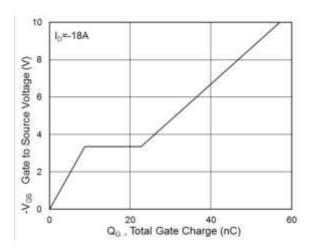



Fig.2 On-Resistance vs. G-S Voltage

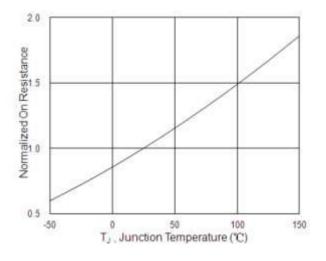


Fig.6 Normalized RDSON vs. TJ

Typical Characteristics $T_J = 25^{\circ}C$, unless otherwise noted

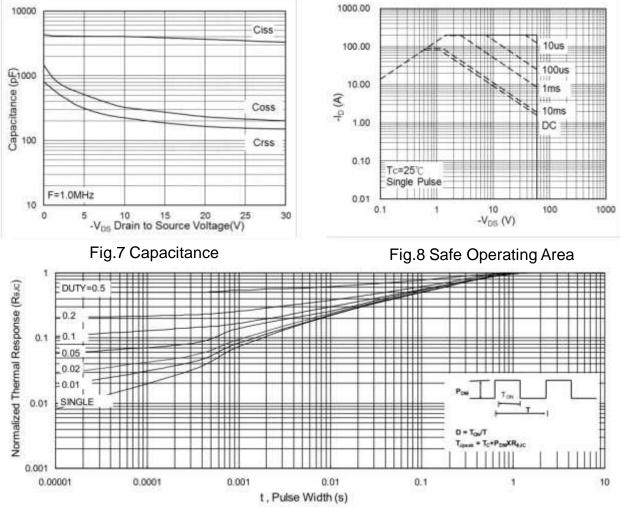


Fig.9 Normalized Maximum Transient Thermal Impedance

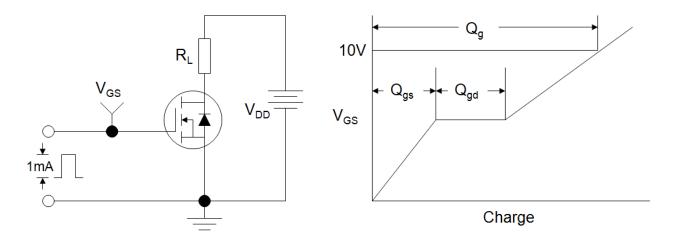


Figure B: Resistive Switching Test Circuit and Waveform

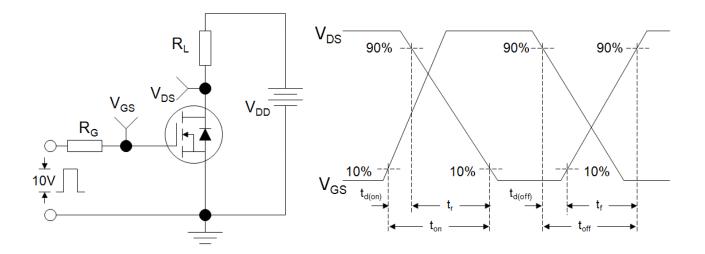
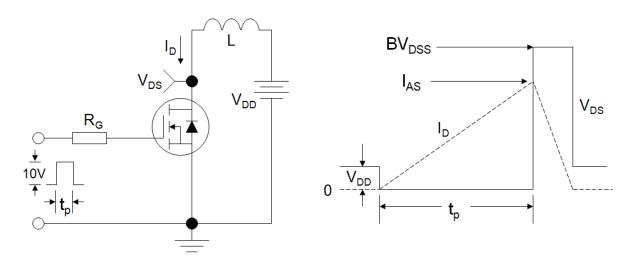
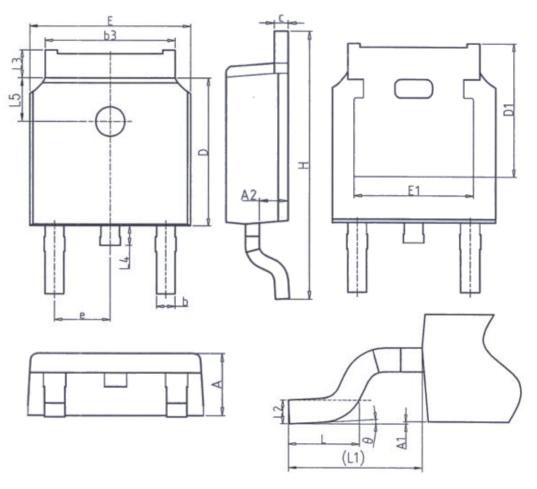




Figure C: Unclamped Inductive Switching Test Circuit and Waveform

TO-252

Unit: mm				
Symbol	Min.	Max.		
Α	2.20	2.40		
A1	0.00	0.20		
A2	0.97	1.17		
b	0.68	0.90		
b3	5.20	5.50		
с	0.43	0.63		
D	5.98	6. 22		
D1	5. 30REF			
E	6.40	6.80		
E1	4.63	-		

Unit: mm			
Symbol	Min.	Max.	
е	2. 286BSC		
Н	9.40	10.50	
L	1.38	1.75	
L1	2. 90REF		
L2	0. 51BSC		
L3	0.88	1.28	
L4	_	1.00	
L5	1.65	1.95	
θ	0°	8°	

Disclaimer

All product specifications and data are subject to change without notice.

For documents and material available from this datasheet, Suzhou Convert does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by any conduct of Suzhou Convert.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless. Customers using or selling Suzhou Convert products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Suzhou Convert for any damages arising or resulting from such use or sale.

Suzhou Convert disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Suzhou Convert's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

Suzhou Convert SemiConductor CO., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all Suzhou Convert products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Suzhou Convert believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.