

20V Low Saturation Voltage Stepper Motor Driver

FEATURES

- V_{CC} max=24V, I_O max=1A
- 4V to 20V Operating supply voltage range
- The control system power supply is unnecessary.
- DMOS output transistor adoption
- Upper and lower total R_{ON}<1Ω typical
- The compact package (SSOP10) is adopted.
- Pin compatible with LV8549MC
- Current consumption 0 when standby mode

APPLICATIONS

- Refrigerator
- Flatbed Scanner, Document Scanner
- POS Printer, Label Printer
- PoE Point of sales Terminal
- Clothes Dryer
- Vacuum cleaner
- Time Recorder

GENERAL DESCRIPTION

The TMI8549 is a 2-channel output low saturation voltage motor driver IC. It is optimal for motor drive in 12V system products. it can drive a stepper motor.

TYPICAL APPILCATION

Figure 1. Example of application circuit when one stepper motor driving

ABSOLUTE MAXIMUM RATINGS (Note1)

Items	Symbol	Value	Unit
Maximum power supply voltage	V _{CC} max	-0.3~24	V
Output impression voltage	Vout1, Vout2, Vout3, Vout4	-0.3~24	V
Input impression voltage	VIN1, VIN2, VENA	-0.3~6	V
GND pin outflow current per channel	I _{GND}	1.0	А
Allowable Power dissipation	P _D max	1.0	W
Junction Temperature (Note2)	TJ	-40~150	°C
Storage Temperature	T _{STG}	-40~165	C°

PACKAGE/ORDER INFORMATION

SSOP10

Top Mark: T8549/YYXXX (T8549: Device Code, YYXXX: Inside Code)

Part Number	Package	Top mark	Quantity/ Reel
TMI8549	SSOP10	T8549	2500

TMI8549 devices are Pb-free and RoHS compliant.

www.toll-semi.com

PIN FUNCTIONS

Pin	Name	Function				
1	Vaa	Power-supply voltage pin. The capacitor is connected for stabilization for GND				
-	V CC	pin.				
		Motor drive control input pin. When ENA input is "L" level, the device is in				
		stand-by mode. The circuits current can be adjusted to 0A. When ENA input				
2	ΕNΔ	is pulled "H" level from "L" level, the device shifts from the stand-by state to a				
2		prescribed output operation mode. For the digital input, range of the "L" level				
		is 0V to 0.4V, range of the "H" level is from 1.5V to 5.5V. PWM can be input.				
		Pull-down resistance $100k\Omega$ is built into in the pin.				
3	INI1	Motor drive control input pin. Driving control input pin of OUT1 (10pin) and				
5		OUT2 (9pin). PWM can be input. With built-in pull-down 100k Ω resistance.				
4 1010		Motor drive control input pin. Driving control input pin of OUT3 (8pin) and				
4	IINZ	OUT4 (7pin). PWM can be input. With built-in pull-down 100k Ω resistance.				
5	NC	No Connection				
6	GND	Ground pin.				
7		OUT4 Driving output pin. The motor coil is connected between this pin and				
I	0014	OUT3 (8pin).				
Q		OUT3 Driving output pin. The motor coil is connected between this pin and				
0	0013	OUT4 (7pin).				
0		OUT2 Driving output pin. The motor coil is connected between this pin and				
3	0012	OUT1 (10pin).				
10		OUT1 Driving output pin. The motor coil is connected between this pin and				
10	0011	OUT2 (9pin).				

ESD RATING

Items	Description	Value	Unit
Vesd	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Condition	Value	Unit
V _{cc}	Power supply voltage	V _{cc}	4~20	V
V _{INH}	Input "H" level voltage		1.5~5.5	V
V _{INL}	Input "L" level voltage	VIN1, VIN2, VENA	0~0.4	V

ELECTRICAL CHARACTERISTICS

(Vcc=12V, TA = 25°C, unless otherwise noted.)

Parameter	Symbol	Min	Тур	Мах	Unit	
		Standby mode			1	ıιΔ
Power Supply Voltage	ICCU	ENA="LOW"			1	μΛ
	Icc1	ENA="HIGH"		1.1	1.52	mA
Input current	lın	V _{IN} =5V	40	50	64	μA
Thermal shutdown	т	Design cortification		160		°C
operating temperature	I tsd	Design ceruncation		100		U
Width of temperature	∧ T _{ter} t	Design certification		40		°C
hysteria		Design certification		40		
Low voltage protection	VthVcc		3 75	3 79	3.83	V
function operation voltage	V IN VCC		5.75	5.75	0.00	v
Release voltage	Vthret		3.51	3.54	3.58	V
Output ON resistance	Press	1	0.7	0.02	0.06	0
(Upper and lower total)	RDSON	100T-1.0A	0.7	0.03	0.90	12
Output leak current	I _{O_leak}	V ₀ =20V	0		10	μA
Diode forward voltage	VD	ID=1.0A			1.1	V
IN1/IN2/IN3/IN4 high level	INL		1 5		5.5	V
voltage threshold	IINXH		1.5			
IN1/IN2/IN3/IN4 low level	IN .	C			0.4	V
voltage threshold	IINXL				0.4	v
Thermal Shutdown				160		°C
Threshold (Note 3)				100		C
Thermal Shutdown				30		ംറ
Hysteresis (Note 3)				50		

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D x \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D (MAX) = (T_J(MAX) - T_A)/\theta_{JA}$.

Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design.

www.toll-semi.com

BLOCK DIAGRAM

FUNCTION DESCRIPTION

1. DCM output control logic

	Input				Output			
ENA	IN2	IN3	OUT1	OUT2	OUT3	OUT4	Siale	
L	-	-	OFF	OFF	OFF	OFF	Stand-by	
	L	L	Н	L	Н	L	Step 1	
ц	н	L	L	Н	Н	L	Step 2	
п	н	Н	L	Н	L	Н	Step 3	
	L	Н	Н	L	L	Н	Step 4	

2. The switch time from the stand-by state to the state of operation

When ENA pin is "L", this IC has completely stopped operating. After the time of reset of about 7μ s of an internal setting, it shifts to a prescribed output status corresponding to the state of the input when the signal enters the ENA pin.

3. Example of current waveform at full-step mode.

4. Thermal shutdown function

The thermal shutdown circuit is incorporated and the output of the device is turned off when junction temperature T_j exceeds 160°C. As the temperature falls by hysteresis, the output of the device is turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceeds the junction temperature of T_{j_max} =150°C.

 $T_{SD} = 160^{\circ}C \text{ (typ)}$ $\triangle T_{SD} = 30^{\circ}C \text{ (typ)}$

PACKAGE INFORMATION

SSOP10

Unit: mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		
	Min	Nom	Max	Symbol	Min	Nom	Max
А	-	-	1.75	Ш	5.80 6.00 6.20		
A1	0.10	-	0.225	E1	3.80	3.90	4.00
A2	1.30	1.40	1.50	e	1.00 BSC		
A3	0.60	0.65	0.70	h	0.25 - 0.50		
b	0.39	-	0.47	L	0.50	-	0.80
С	0.20	-	0.24	L1	1.05 REF		
D	4.80	4.90	5.00	θ	0° - 8°		

Note:

1) All dimensions are in millimeters.