

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(**客戶**): 志盛翔

DATE :

(日期):2018-04-27

CATEGORY (品名) DESCRIPTION (型号)	 ALUMINUM ELECTROLYTIC CAPACITORS GF 25V100μF(φ5x11)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPI	JER	CUSTOMER				
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)			
杜焕	付婷婷					

SPECIFICATION GF SERIES						ALTERN	VATION H	ISTORY		
Rev.	Date		age	Conten	te					
Kev.	Date	Mark		age	Conten	15	ruipose	Dialiei	Approver	
			I					· · · · · · · · · · · · · · · · · · ·	1	
	Version		01					Page	1	

Table 1 Product Dimensions and Characteristics Unit: mr Safety vent for $\geq \Phi 6.3$ Image: transformed background ba	1m
Safety vent for $\geq \Phi 6.3$ $\downarrow \qquad \qquad$	1m
$\frac{\alpha}{\beta} = \frac{15 \text{ min}}{4 \text{ min}} = 15 \text{ m$	
SAMXON WV Can Temp Leakage Current at at 20°C Load (1)	nension (mm)
No. Part No. (Vdc) (μF) (μF) Cap. tolerance range $(^{\circ}C)$ $(120Hz, 20^{\circ}C)$ $(\mu A, 2min)$ $(105^{\circ}C 100kHz)$ $(100kHz)$	F фd Sleeve
1 EGF107M1ED11RR**P 25 100 -20%~+20% -40~105 0.14 25 210 0.58 2000 5X11	2.0 0.5 PET

Version 01	Page 2
------------	--------

1142. Part Number System43. Construction54. Construction54. Characteristics $5\sim10$ 5.1 Rated voltage & Surge voltage $5\sim10$ 4.1 Rated voltage & Surge voltage $5\sim10$ 4.2 Capacitance (Tolerance) $5\sim10$ 4.3 Leakage current $4.4 \tan \delta$ 4.4 $\tan \delta$ $4.5 \ Terminal strength$ 4.5 Terminal strength $4.6 \ Temperature characteristic4.7 Load life test4.8 \ Shelf life test4.8 Shelf life test4.9 \ Surge test4.10 Vibration4.11 \ Solderability test4.12 Resistance to solder heat4.13 \ Change of temperature4.14 Damp heat test4.16 \ Maximum permissible (ripple current)$	C O N T E N T S	
2. Part Number System 4 3. Construction 5 4. Characteristics 5~10 4.1 Rated voltage & Surge voltage 5 4.2 Capacitance (Tolerance) 5 4.3 Leakage current 4 4.4 tan δ 5 4.5 Terminal strength 6 4.6 Temperature characteristic 4 4.7 Load life test 4 4.8 Shelf life test 4 4.9 Surge test 4 4.10 Vibration 4 4.11 Solder ability test 4 4.12 Resistance to solder heat 4 4.13 Change of temperature 4 4.14 Damp heat test 4 4.15 Vent test 4 4.16 Maximum permissible (ripple current) 5 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 11		Sheet
 S. Construction 5 Characteristics 5~10 Rated voltage & Surge voltage (Derivative Colorance) Leakage current Leakage current Leakage current tan δ Terminal strength Temperature characteristic Todal life test Shelf life test Shelf life test Substance to solder heat Characteristic Composition of temperature Co	1. Application	4
 Characteristics 5~10 Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current Leakage current Leakage current Terminal strength Terminal strength Temperature characteristic Toad life test Shelf life test Shelf life test Substance to solder heat Substances')" 	2. Part Number System	4
5~10 1.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 $\tan \delta$ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	3. Construction	5
 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4. Characteristics	5~10
 4.3 Leakage current 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4.1 Rated voltage & Surge voltage	
 4.4 tan δ 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4.2 Capacitance (Tolerance)	
 4.5 Terminal strength 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4.3 Leakage current	
 4.6 Temperature characteristic 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 	4.4 $\tan \delta$	
 4.7 Load life test 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4.5 Terminal strength	
 4.8 Shelf life test 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 	4.6 Temperature characteristic	
 4.9 Surge test 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	4.7 Load life test	
 4.10 Vibration 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	4.8 Shelf life test	
 4.11 Solderability test 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	4.9 Surge test	
 4.12 Resistance to solder heat 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 		
 4.13 Change of temperature 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	4.11 Solderability test	
 4.14 Damp heat test 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 		
 4.15 Vent test 4.16 Maximum permissible (ripple current) 5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 		
4.16 Maximum permissible (ripple current)5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"		
5. List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"		
	5. List of "Environment-related Substances to be Controlled ('Controlled	11
		12~15
	11	

|--|

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

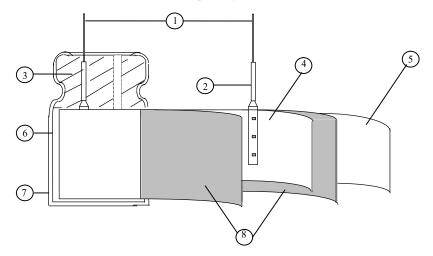
1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 P EGS 1 1 H D11 TC S 0 5 м Α TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Feature Code Code Case Size SAMXON Product Lir ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D r(é) Co 3 B 5 1 4 C 5 D 3 E RR For internal use only Radial bulk 0.1 104 ±5 J 2.5 0E 3. (The product lines 0G C D E F 4 we have H.A.B.C.D. Ammo Taping 0.22 224 <u>3</u> <u>8</u> <u>7</u> <u>10</u> <u>6</u> <u>125</u> <u>13</u> <u>13</u> <u>14</u> <u>14</u> <u>14</u> 6.3 OJ к ±10 E,M or 0,1,2,3,4,5,9). 0K 8 0.33 334 2.0mm Pitch тт 10 1A ±15 L JV4AK7L8MN 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EG ES м 1D ±20 20 105 14.5 3.5mm Pitch тν 1 Sleeve Material Code 25 EGK EGE EGD 1E 16 16.5 18 18.5 20 22 5.0mm Pitch PET Р 11 TC 30 2.2 225 Ν ±30 32 13 ERS ERF ERL ERR Lead Cut & Form 35 3.3 335 1V -40 22 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z w 40 1G СВ-Туре СВ 4.7 475 42 1M -20 A FR 50 1H ERE ERD ERH EBD СЕ-Туре CE 10 106 57 1L -20 +10 С 63 1J HE-Type HE 22 226 71 **1**S ER/ 6 75 1**T** ERB ERC EFA ENP -20 +40 × KD-Type KD 336 33 80 1K 85 1R -20 90 100 FD-Type FD S 47 476 90 19 ENH ERW ERY ELP EAP EQP EDP 100 2A 45 05 54 05 54 77 77 12 14 18 13 12 13 12 25 23 3A 35 350 80 11K 1M 1P -10 4.5 EH-Type EH в 107 100 120 20 5.4 125 2B PCB Termial -10 +20 220 227 v 150 2Z 160 2C 10 sw 330 337 -10 +30 11.5 Q 180 2P 200 2D sx Snap-in 12 2.5 13 EKP EEP 477 470 12 -10 215 22 т 13 13.5 20 25 29.5 EFP ESP 220 2N sz 2200 228 -5 +10 230 23 Е EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB 250 2E Lug SG 22000 229 275 2Т -5 +15 F 3 05 300 21 33000 339 310 2R -5 +20 35 G 06 315 2F 47000 479 330 2U 0 +20 R т5 2V 350 10T 100000 Screw 360 2X 0 +30 0 т6 VNS 375 2Q 150000 15T 40 50 55 1Q 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 400 2G 220000 22T +5 2M z 420 D6 VZS 450 2W 330000 33T +5 D 500 2H 1000000 550 25 10M +10+50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01


4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Page	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

Tabl										
	ITEM	PERFORMANCE								
	Rated voltage (WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
	Surge voltage (SV)								1	
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	<condition> Measuring Frequency : 120Hz\pm12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20\pm2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>							
4.3	Leakage current	Connecting t minutes, and <criteria></criteria>	<condition></condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in series for minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1						eries for 2	
4.4	tan δ	See 4.2, Nor < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>							
	Terminal	Condition Tensile Str Fixed the original seconds. Bending Str Fixed the original seconds. 90° within the seconds.	ength of capacitor cength of pacitor,	, applied f Termina applied f nds, and	force to als. Force to b then ber Tens	ent the te at it for 9 ile force	erminal (1 0° to its	l~4 mm f original j Bending	from the position v	rubber) for
4.5	strength					$\frac{(\text{kgf})}{5(0.51)}$			gf) 0.25)	
4.5										
	ou ongui	Over 0.			1	5 (0.51) 0 (1.0)	reakage	5 (0	0.25) 0.51) ness at the	e termir

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<conditio< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></conditio<>								
		STI	EP Testi	<u> </u>	erature(℃)		Time			
		1		20 ± 2		-	Time to reach thermal equilibrium			
		2		-40(-25)		Time to reach thermal equilibrium		um		
		3		20 ± 2	2	Time to reach thermal equilibrium			um	
		4		$105\pm$:2	Time	Time to reach thermal equilibrium			um
		5		20 ± 2	2	Time	to reach	thermal	equilibri	um
		<criteria></criteria>								
			hall be with			.4The le	eakage ci	arrent me	easured s	shall not
	Temperature		8 times of	1						
	characteristi		5, $\tan \delta \sinh \theta$		hin the lim	t of Iter	n 4.4The	leakage	current	shall not
4.6	cs		the specific		· (_)	11 4		1		11 :
		table.	℃ (-25℃), i					1	1	1
		Working V		6.3	10	16	25	35	50	63
		Z-25°C/2		4	3	2	2	2	2	2
		Z-40°C/2	Z+20°C	8	6	4	3	3	3	3
		Working V	oltage (V)	100	ו					
		Z-25°C/Z		2	-					
		Z-40°C/Z		3	-					
		For capacit		-	」 F. Add 0.5	per ano	ther 1000)μF for	Z-25/Z+	-20℃.
		1				1			-	-)
					Add 1.0	per ano	ther 1000	μF for	Z-40°C/2	Z+20℃.
		Capacitance	e, tan δ , an	d impedai		-	ther 1000 ed at 120		Z-40℃/2	Z+20℃.
		<conditio< td=""><td>n></td><td>-</td><td>nce shall be</td><td>measur</td><td>ed at 120</td><td>)Hz.</td><td></td><td></td></conditio<>	n>	-	nce shall be	measur	ed at 120)Hz.		
		<conditio According</conditio 	n> to IEC6038	84-4No.4.	nce shall be	s, The ca	ed at 120)Hz. s stored a	at a temp	perature of
		Conditio According 105°C ±2	n> to IEC6033 with DC b	84-4No.4. ias voltage	nce shall be 13 method e plus the ra	s, The ca	ed at 120 pacitor is le curren)Hz. s stored a t for Tab	at a temp ble 1. (T	erature of he sum of
		<pre><conditio 105°c="" according="" and="" dc="" pre="" ri<="" ±2=""></conditio></pre>	n> to IEC6038 with DC b pple peak	84-4No.4. ias voltage voltage sl	nce shall be 13 method e plus the ra hall not ex	s, The ca ted ripp	ed at 120 pacitor is le curren e rated w	OHz. s stored a t for Tab yorking	at a temp ble 1. (T voltage)	erature of he sum of Then the
		Conditional According 105°C ±2 DC and riproduct shore	n> to IEC6038 with DC be pple peak ould be test	84-4No.4. ias voltage voltage sl red after 10	nce shall be 13 method e plus the ra hall not ex 6 hours rec	s, The ca ted ripp	ed at 120 pacitor is le curren e rated w	OHz. s stored a t for Tab yorking	at a temp ble 1. (T voltage)	erature of he sum of Then the
	Load	Conditio According 105°C ±2 DC and ri product show result show	n> to IEC6033 with DC by pple peak ould be test ld meet the	84-4No.4. ias voltage voltage sl red after 10	nce shall be 13 method e plus the ra hall not ex 6 hours rec	s, The ca ted ripp	ed at 120 pacitor is le curren e rated w	OHz. s stored a t for Tab yorking	at a temp ble 1. (T voltage)	erature of he sum of Then the
4.7	life	Conditio According 105°C ±2 DC and ri product show result show <criteria< p=""></criteria<>	n> to IEC6033 with DC b pple peak ould be test ld meet the >	84-4No.4. ias voltage voltage sl ed after 10 e following	nce shall be 13 method: e plus the ra hall not ex 6 hours rec g table:	s, The ca ted ripp ceed the	ed at 120 pacitor is le curren e rated w time at at	OHz. s stored a t for Tab yorking	at a temp ble 1. (T voltage)	erature of he sum of Then the
4.7		Conditional According 105°C ±2 DC and riproduct shous result shous a contract of the characterized of the chara	n> to IEC6033 with DC b pple peak ould be test ld meet the cteristic sha	84-4No.4. ias voltage voltage sl ed after 10 following all meet th	nce shall be 13 method e plus the ra hall not ex 6 hours rec g table: e following	s, The ca ted ripp ceed the overing g require	ed at 120 pacitor is le curren e rated w time at at ments.	OHz. s stored a t for Tab yorking y mospher	at a temp ble 1. (T voltage)	erature of he sum of Then the
4.7	life	Conditional According 105°C ±2 DC and riproduct shous result shous contract and the characteristic contracteristic conttacteristic conttacteristic conttacteristic conttact	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage currer	84-4No.4. ias voltage voltage sl ed after 10 following all meet th nt	nce shall be 13 method e plus the ra hall not ex 6 hours rec g table: te following Value in 4	s, The ca s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> be satisf	OHz. s stored a t for Tak vorking mospher	at a temp ble 1. (T voltage)	erature of he sum of Then the
4.7	life	Conditional According 105°C ±2 DC and riproduct show result show criteria. The characteria The characteria Cap	n> to IEC6038 with DC b pple peak ould be test ld meet the cteristic sha kage currer acitance Cl	84-4No.4. ias voltage voltage sl ed after 10 following all meet th nt	nce shall be 13 method: e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ±	s, The ca s, The ca ted ripp ceed the overing g require 1.3 shall 25% of	ed at 120 pacitor is le curren e rated w time at at ments. be satisf initial va	OHz. s stored a t for Tak vorking v mospher ied	at a temp ble 1. (T voltage) ric condi	erature of he sum of Then the tions. The
4.7	life	Conditional According 105°C ±2 DC and riproduct shous result shous Criteria: The characteria Capteria Capteria Capteria	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ	84-4No.4. ias voltage voltage sl ed after 10 following all meet th nt	13 method e plus the ra hall not ex 6 hours rec g table: te following Value in 4 Within ± Not more	s, The ca s, The ca ted ripp ceed the overing <u>g require</u> <u>1.3 shall</u> <u>25% of</u> than 150	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u>	OHz. s stored a t for Tak vorking mospher ied alue. e specifie	at a temp ble 1. (T voltage) ic condi	erature of he sum of Then the tions. The
4.7	life	Conditional According 105°C ±2 DC and riproduct shous result shous Criteria: The characteria Capteria Capteria Capteria	n> to IEC6038 with DC b pple peak ould be test ld meet the cteristic sha kage currer acitance Cl	84-4No.4. ias voltage voltage sl ed after 10 following all meet th nt	nce shall be 13 method: e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ±	s, The ca s, The ca ted ripp ceed the overing <u>g require</u> <u>1.3 shall</u> <u>25% of</u> than 150	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u>	OHz. s stored a t for Tak vorking mospher ied alue. e specifie	at a temp ble 1. (T voltage) ic condi	erature of he sum of Then the tions. The
4.7	life	Condition According 105°C ±2 DC and ri product shout criterial The charact Cap tan App	n> to IEC6033 with DC bipple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ pearance	84-4No.4. ias voltage voltage sl ed after 10 following all meet th hange	nce shall be 13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> initial va D% of the leakage o	OHz. s stored a t for Tak yorking y mospher ied alue. e specific of electro	at a temp ole 1. (T voltage) ric condi ed value.	erature of he sum of Then the tions. The
4.7	life	Condition According 105°C ±2 DC and ri product shout criterial The charact Lea Cap tan App Condition The capacitor	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ bearance	84-4No.4. ias voltage voltage sl ed after 10 following all meet th hange	nce shall be 13 method e plus the ra hall not ex 6 hours rec g table: te following Value in 4 Within ± Not more There sha	s, The ca s, The ca ted ripp ceed the overing <u>g require</u> <u>1.3 shall</u> <u>25% of</u> <u>than 150</u> <u>Il be no</u> <u>ge applie</u>	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> <u>leakage o</u> ed at a te	Hz. s stored a t for Tak vorking mospher ied alue. e specific of electro	at a temp ole 1. (T voltage) ric condi ed value. olyte.	$\pm 2^{\circ}C$ for
4.7	life	$<$ ConditioAccording $105^{\circ}C \pm 2$ DC and riproduct show $<$ CriteriaThe charaeLeaCaptanApp $<$ ConditioThe capacito2000+48/0	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ pearance	84-4No.4. ias voltage voltage sl ed after 10 following all meet th hange	nce shall be 13 method: e plus the ra hall not ex 6 hours rec g table: te following Value in 4 Within ± Not more There sha ith no volta is period th	s, The ca s, The ca ited ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applic e capaci	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> <u>leakage o</u> ed at a te tors shal	oHz. s stored a t for Tak vorking mospher ied alue. e specifie of electro mperatur l be remo	at a temp ole 1. (T voltage) ric condi ed value. olyte. re of 105 oved fro	terature of the sum of Then the tions. The $\pm 2^{\circ}C$ for m the test
4.7	life test	$<$ ConditionAccording $105^{\circ}C \pm 2$ DC and riproduct show $<$ CriteriaThe characeLeaCaptanApp $<$ ConditionThe capacite $2000+48/0$ chamber a	n> to IEC6033 with DC b pple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ bearance on> ons are then hours. Fol nd be allow	84-4No.4. ias voltage voltage sl ed after 10 following all meet th hange	nce shall be 13 method: e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r	s, The ca s, The ca ited ripp ceed the overing grequire 1.3 shall 25% of than 150 Il be no ge applic e capaci	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> 0% of the leakage of ed at a ter tors shal pperature	Hz. s stored a t for Tab vorking v mospher ied alue. e specifie of electro mperatur l be remain f for 4~8	at a temp ole 1. (T voltage) ric condi ed value. olyte. re of 105 oved fro	erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the tess Next they
	life test Shelf	$<$ ConditioAccording $105^{\circ}C \pm 2$ DC and riproduct show $<$ CriteriaThe characeLeaCaptanApp $<$ ConditioThe capacito2000+48/0chamber ashall be co	n> to IEC6033 with DC bipple peak ould be test ld meet the cteristic sha kage currer acitance Cl δ pearance on> ons are ther hours. Fol nd be allow	84-4No.4. ias voltage sl voltage sl ed after 10 following all meet th hange n stored wi lowing th ved to sta o a series	13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r limiting re	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applie e capaci oom ten sistor(1k	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> leakage of ed at a te tors shal pperature $\pm 100 \Omega$	Hz. s stored a t for Tak yorking v mospher ied alue. e specific of electro mperatur l be remained for 4~8) with I	at a temp ole 1. (T voltage) tic condi tic condi ed value. olyte. re of 105 oved fro bours.	$\pm 2^{\circ}C$ for m the test Next they d voltage
4.7	life test	$<$ ConditionAccording $105^{\circ}C \pm 2$ DC and riproduct show $<$ CriteriaThe characeLeaCaptanApp $<$ ConditionThe capacite $2000+48/0$ chamber a	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage curren acitance Cl δ bearance on> ons are then hours. Fol nd be allow onnected to 30min. Af	84-4No.4. ias voltage sl voltage sl ed after 10 following all meet th hange n stored wi lowing th ved to sta o a series	13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r limiting re	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applie e capaci oom ten sistor(1k	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> leakage of ed at a te tors shal pperature $\pm 100 \Omega$	Hz. s stored a t for Tak yorking v mospher ied alue. e specific of electro mperatur l be remained for 4~8) with I	at a temp ole 1. (T voltage) tic condi tic condi ed value. olyte. re of 105 oved fro bours.	$\pm 2^{\circ}C$ for m the test Next they d voltage
	life test Shelf life	<condition< th="">According$105^{\circ}C \pm 2$DC and riproduct show<criterial< td="">The characeLeaCaptanApp<condition< td="">The capacite2000+48/0chamber atshall be coapplied for</condition<></criterial<></condition<>	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage curren acitance Cl δ bearance on> ons are then hours. Fol nd be allow onnected to 30min. Af	84-4No.4. ias voltage sl voltage sl ed after 10 following all meet th hange n stored wi lowing th ved to sta o a series	13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r limiting re	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applie e capaci oom ten sistor(1k	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> leakage of ed at a te tors shal pperature $\pm 100 \Omega$	Hz. s stored a t for Tak yorking v mospher ied alue. e specific of electro mperatur l be remained for 4~8) with I	at a temp ole 1. (T voltage) tic condi tic condi ed value. olyte. re of 105 oved fro bours.	$\pm 2^{\circ}C$ for m the test Next they d voltage
	life test Shelf life	<condition< th="">According$105^{\circ}C \pm 2$DC and riproduct show<criterial< td="">The characeLeaCaptanApp<condition< td="">The capacite2000+48/0chamber atshall be coapplied for</condition<></criterial<></condition<>	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage curren acitance Cl δ bearance on> ons are then hours. Fol nd be allow onnected to 30min. Af	84-4No.4. ias voltage sl voltage sl ed after 10 following all meet th hange n stored wi lowing th ved to sta o a series	13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r limiting re	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applie e capaci oom ten sistor(1k	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> leakage of ed at a te tors shal pperature $\pm 100 \Omega$	Hz. s stored a t for Tak yorking v mospher ied alue. e specific of electro mperatur l be remained for 4~8) with I	at a temp ole 1. (T voltage) tic condi tic condi ed value. olyte. re of 105 oved fro bours.	$\pm 2^{\circ}C$ for m the test Next they d voltage
	life test Shelf life	<condition< th="">According$105^{\circ}C \pm 2$DC and riproduct show<criterial< td="">The characeLeaCaptanApp<condition< td="">The capacite2000+48/0chamber atshall be coapplied for</condition<></criterial<></condition<>	n> to IEC6033 with DC bi pple peak ould be test ld meet the cteristic sha kage curren acitance Cl δ bearance on> ons are then hours. Fol nd be allow onnected to 30min. Af	84-4No.4. ias voltage sl voltage sl ed after 10 following all meet th hange n stored wi lowing th ved to sta o a series	13 method e plus the ra hall not ex 6 hours rec g table: e following Value in 4 Within ± Not more There sha ith no volta is period th bilized at r limiting re	s, The ca ted ripp ceed the overing <u>g require</u> 1.3 shall 25% of than 150 Il be no ge applie e capaci oom ten sistor(1k	ed at 120 pacitor is le curren e rated w time at at <u>ments.</u> <u>be satisf</u> <u>initial va</u> <u>0% of the</u> leakage of ed at a te tors shal pperature $\pm 100 \Omega$	Hz. s stored a t for Tak yorking v mospher ied alue. e specific of electro mperatur l be remained for 4~8) with I	at a temp ole 1. (T voltage) tic condi tic condi ed value. olyte. re of 105 oved fro bours.	$\pm 2^{\circ}C$ for m the test Next they d voltage

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet	the following requirements.
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	tan δ	Not more than 150% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		**	stored more than 1 year, the leakage current may
		-	
			e through about 1 k Ω resistor, if necessary.
		The capacitor shall be submit followed discharge of 5 min The test temperature shall b C _R :Nominal Capacitance (e 15~35°C.
4.0	Surge	<criteria></criteria>	
4.9	test	Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		This test simulates over volta over voltage as often applied <condition></condition>	ge at abnormal situation only. It is not applicable to such
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter g in place with a bracket. 4mm or less 4mm or less 6 Criteria> After the test, the following in Appearance	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30° To be soldered

Version 01 Page 8	Version
-------------------	---------

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

				1		
		<condition></condition>	tad under the f-11!	aanditional		
		The capacitor shall be tes	ted under the following : 245±3°C	conditions:		
		Soldering temperature Dipping depth		: 245±5°C : 2mm		
4 1 1	Solderability	Dipping speed	: 25±2.5mm	n/s		
4.11	test	Dipping speed Dipping time	: 3±0.5s			
		< <u>Criteria</u> >				
		Coating quality	A minimur	n of 95% of the surface being		
		Coating quanty	immersed			
		<condition></condition>				
		Terminals of the capacitor	r shall be immersed int	o solder bath at 260 ± 5 °C for $10\pm$		
		1 seconds or $400 \pm 10^{\circ}$ C for	$r3^{+1}_{-0}$ seconds to 1.5~2.0	Omm from the body of capacitor .		
				temperature and normal humidity		
	Resistance to	for 1~2 hours before mea		1 5		
4.12	solder heat	<c<u>riteria></c<u>				
	test	Leakage current	Not more than t	he specified value.		
		Capacitance Change	Within $\pm 10\%$	of initial value.		
		tan δ	Not more than t	he specified value.		
		Appearance	There shall be r	no leakage of electrolyte.		
		<condition> Temperature Cycle: Accord</condition>	rding to IEC60384-4No	.4.7methods, capacitor shall be		
		placed in an oven, the cor				
		-	emperature	Time		
		(1)+20℃		≤ 3 Minutes		
	Change of	(2)Rated low temperative	ature (-40°C) (-25°C)	30 ± 2 Minutes		
4.13	temperature	(3)Rated high temper		30 ± 2 Minutes		
	test	(1) to $(3)=1$ cycle, to	· · · · · ·	<u>+</u>		
		<criteria></criteria>	J			
		The characteristic shall m	eet the following requir	ement		
		Leakage current	Not more than the s	specified value.		
		tan δ	Not more than the	*		
		Appearance	There shall be no le	eakage of electrolyte.		
		<condition></condition>				
		Humidity Test:	INo 1 12 methods area	siter shall be exposed for 500 ± 9		
		-	-	citor shall be exposed for 500 ± 8 °C, the characteristic change shall		
		meet the following requir		o, the characteristic change shall		
		<criteria></criteria>				
4.1.4	Damp heat	Leakage current	Not more than the spe	cified value.		
4.14	test	Capacitance Change	Within $\pm 20\%$ of init	ial value.		
		tan δ	Not more than 120% of	of the specified value.		
		Appearance	There shall be no leak	age of electrolyte.		
L	1					

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

4.15	Vent test	<condition>The following test only apply towith vent.D.C. testThe capacitor is connected withcurrent selected from below tal<table 3="">Diameter (mm)DC Current22.4 or less1Over 22.41</table></condition>	h its polar ble is appli rent (A)	ity reversed	-	
		<criteria></criteria> The vent shall operate with no pieces of the capacitor and/or ca		conditions	such as flar	nes or dispersic
		<condition> The maximum permissible rip at 120Hz and can be applied Table-1 The combined value of D.C w rated voltage and shall not re Frequency Multipliers:</condition>	at maximu voltage and	im operating I the peak A	g temperatu	re
	Maximum permissible	Cap. (µ F) ~180	0.40	0.75	0.90	1.00
4.16	(ripple	220~560	0.50	0.85	0.94	1.00
	current)	680~1800	0.60	0.87	0.95	1.00
		2200~3900 4700	0.75	0.90	0.95 0.98	1.00

Version 01	Page	10
------------	------	----

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
5	Polybrominated biphenyls (PBB)			
Brominated organic	Polybrominated diphenylethers(PBDE) (including			
	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	ounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo com	pounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanδ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01	Page	12

SAMXON

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7) Circuit Board patterns Under the Capacitor
Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
 Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the
capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION!
Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.
 (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
2.Capacitor Handling Techniques
2.1 Considerations Before Using(1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
(3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
(4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
(5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
2.2 Capacitor Insertion
 Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
2.3 Manual Soldering
 (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
 (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
2.4 Flow Soldering
 (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. (3) Do not allow other parts or components to touch the capacitor during soldering.
2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01		Page	14
---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01		Page	15
------------	--	------	----