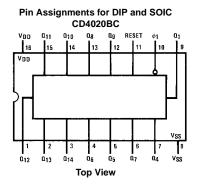
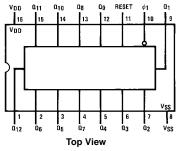


CD4020BC • CD4040BC • CD4060BC 14-Stage Ripple Carry Binary Counters • 12-Stage Ripple Carry Binary Counters • 14-Stage Ripple Carry Binary Counters

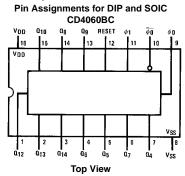

General Description

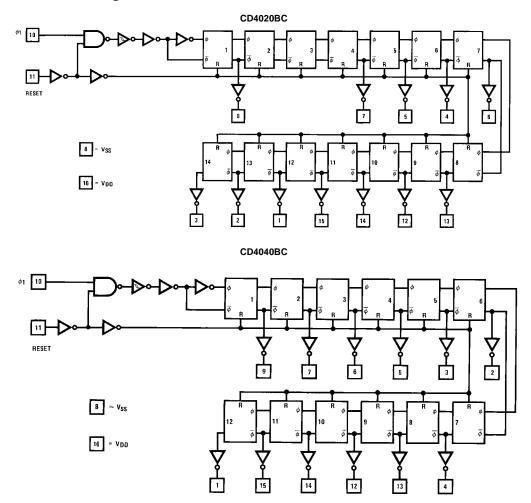
The CD4020BC, CD4060BC are 14-stage ripple carry binary counters, and the CD4040BC is a 12-stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical "1" at the reset input independent of clock.


Features

- Wide supply voltage range: 1.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Medium speed operation: 8 MHz typ. at V_{DD} = 10V
- Schmitt trigger clock input

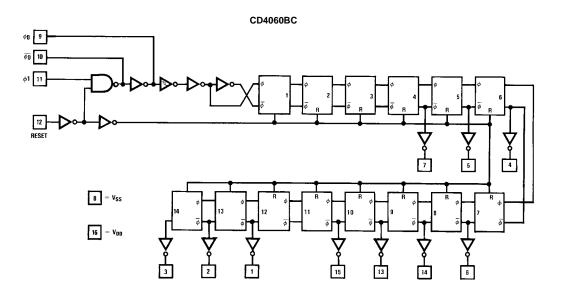
Connection Diagrams


Pin Assignments for DIP, SOIC and SOP CD4040BC

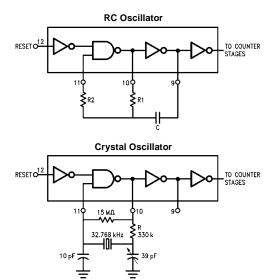


CD4020/CD4040/CD4060

Connection Diagrams (Continued)



Schematic Diagrams



CD4020/CD4040/CD4060

CD4060B Typical Oscillator Connections

Absolute Maximum Ratings(Note 1)

(Note 2)	
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V _{DD} +0.5V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Package Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

Supply Voltage (V _{DD})	+3V to +15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Note 1: "Absolute Maximum Ratings" are those va safety of the device cannot be guaranteed. They is	are not meant to imply

that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	−40°C		+25°C			+85°C		Units
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	- onits
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		150	μA
		$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		40			40		300	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		80			80		600	μA
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
VIL	LOW Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4	3.0		3.0	V
		V_{DD} = 15V, V_{O} = 1.5V or 13.5V		4.0		6	4.0		4.0	V
VIH	HIGH Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	(Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10 ⁻⁵	0.30		1.0	μA

Note 3: Data does not apply to oscillator points ϕ_0 and $\phi_{\overline{0}}$ of CD4060BC. I_{OH} and I_{OL} are tested one output at a time.

CD4020/CD4040/CD4060

AC Electrical Characteristics (Note 4)

CD4020BC, CD4040BC T_A = 25°C, C_L = 50 pF, R_L = 200k, $t_r = t_f = 20$ ns, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL1} , t _{PLH1}	Propagation Delay Time to Q1	$V_{DD} = 5V$		250	550	ns
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		75	150	ns
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	ns
		$V_{DD} = 15V$		45	90	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		125	335	ns
		$V_{DD} = 10V$		50	125	ns
		$V_{DD} = 15V$		40	100	ns
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	ns
		$V_{DD} = 15V$			No Limit	ns
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1.5	4		MHz
		$V_{DD} = 10V$	4	10		MHz
		$V_{DD} = 15V$	5	12		MHz
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	ns
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	ns
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

AC Electrical Characteristics (Note 5)

CD4060BC $T_A=25^\circ\text{C},\,\text{C}_L=50$ pF, $\text{R}_L=200\text{k},\,t_r=t_f=20$ ns, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL4} , t _{PLH4}	Propagation Delay Time to Q ₄	$V_{DD} = 5V$		550	1300	ns
		$V_{DD} = 10V$		250	525	ns
		$V_{DD} = 15V$		200	400	ns
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	ns
		$V_{DD} = 15V$		45	90	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		170	500	ns
		$V_{DD} = 10V$		65	170	ns
		$V_{DD} = 15V$		50	125	ns
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	ns
		$V_{DD} = 15V$			No Limit	ns
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1	3		MHz
		$V_{DD} = 10V$	3	8		MHz
		$V_{DD} = 15V$	4	10		MHz
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	ns
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	ns
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.