

SR73 ■矩形低电阻片式电阻器

外观颜色: 黑色(1H)、紫色(1E、1J、2A、2B、2E、W2H、W3A、W3A2)

■结构图

■特点

- 是电源电路、电动机电路等的电流检测电阻器。
- 是阻值允许偏差±0.5%、电阻温度系数±100×10⁻⁶/K的高可靠性、高性能产品。
- 对应回流焊、波峰焊。
- •端子无铅产品,符合欧盟RoHS。电极、电阻膜层、玻璃中所含的铅玻璃不适用欧盟RoHS指令。
- AEC-Q200相关数据已取得。(除1H)

■用途

• 汽车电子装置、电脑、HDD、手机、电源、电动机等。

■参考标准

IEC 60115-8 JIS C 5201-8 EIAJ RC-2134C

■外形尺寸

型号	尺寸(mm)						
(mm Size Code)	L	W	С	d	t	(1000pcs)	
1H (0603)	0.6±0.03	0.3±0.03	0.1±0.05	0.15±0.05	0.23±0.03	0.14	
1E(1005)	1.0+0.1	0.5+0.1	0.25±0.1	0.25±0.1	0.35±0.05	0.68	
1J (1608)	1.6±0.2	0.8+0.15	0.35±0.1	0.35±0.1	0.45±0.1	2.14	
2A(2012)	2.0±0.2	1.25±0.1	0.4±0.2	0.3+0.2	0.5±0.1	4.54	
2B (3216)	3.2±0.2	1.6±0.2		0.4+0.2		9.14	
2E (3225)	3.2 ± 0.2	2.6±0.2		U.4-0.1		15.5	
W2H (5025) *1	5.0±0.2	2.5±0.2	0.5±0.3		0.6±0.1	24.3	
W3A (6432) **1	6.3±0.2	0.4.1.0.0		0.65±0.15		07.1	
W3A2 (6432) **1	6.3±0.2	3.1±0.2				37.1	

※1 SR73 2H・3A・3A2可对应("d"尺寸不同。"d"尺寸=0.4+0.2 mm)

■品名构成

实例

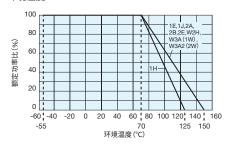
SR73	2B	T	TD	R10	J
品种	额定功率 1H:0.1W 1E:0.166W 1J:0.2W 0.25W 0.25W 2A:0.33W 0.5W*s 2B:0.33W 0.5W*s VB:10.75W WB:10.75W W3A:1.0W W3A2:2.0W*s	端子表面材质 T:Sn G:Au ^{®2} (L:Sn/Pb) ^{®3}	二次加工 TCM: 纸编带	公称电阻值 D,F: 4位 G,J: 3位 9 0.1Ω: R100 47mΩ: 47L	阻值允许偏差 D: ±0.5% F: ±1% G: ±2% J: ±5%

电阻值范围(Ω)	3位显示
24m~91m	24L~91L
0.1~0.91	R10~R91
1~9.1	1R0~9R1
10	100

电阻值范围(Ω)	4位显示
0.1~0.976	R100~R976
1~9.76	1R00~9R76
10	10R0

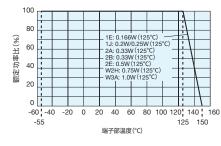
%2 镀金电极品,对应1J、2A、2B($0.1\Omega\sim10\Omega$)。由于规格不同,请向本公司咨询。

※3 1H及W2H、W3A、W3A2只对应端子表面材质T。

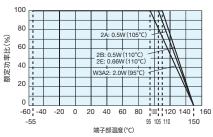

端子表面材质,以无铅品为准。

欲知关于此产品含有的环境负荷物质详情(除EU-RoHS以外),请与我们联系。

编带细节参照卷末附录C。


■功率降额曲线

环境温度


在环境温度70℃以上使用时,应按照上图功率降额曲线,减小额定功率。

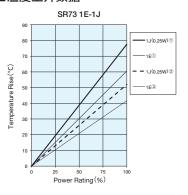
端子部温度

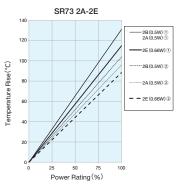
SR73 2A(0.5W), SR73 2B(0.5W), SR73 2E(0.66W), SR73 W3A2

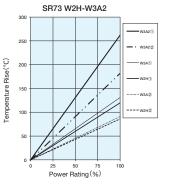
端子部温度

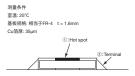
超过上述额定端子部温度使用时,请根据功率降额曲线减小额定功率后使用。 ※关于使用方法,请参照卷首的"端子部温度功率降额曲线的说明"。

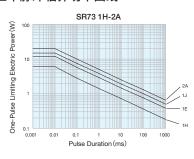
■额定值

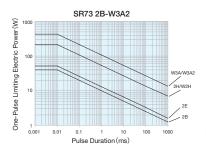

				电阻温度系数		电阻值:	范围 (Ω)		编带和包装数量/卷				
型 号	额定功率	额定环境温度	额定端子部温度	(×10 ⁻⁶ /K)	D:±0.5% E24 • E96	F:±1% E24 • E96	G:±2% E24	J:±5% E24	TCM	(pcs)	TD	TE	
		00		0~+400	_	1~10	-	0.27~10					
1H**4	1H ^{®4} 0.1W 70°C	_	0~+500	_	-	_	0.18~0.24	TCM: 15,000	_	-	-		
				±200	_	0.51~10	0.51~10	0.51~10		TPL: 20,000	-	_	
1E**4	0.166W	70°C	125°C	±300	_	0.2~0.47	0.2~0.47	0.2~0.47	_				
				±500	_	0.1~0.18	0.1~0.18	0.1~0.18		TP : 10,000			
4.1	0.2W	70°C	125°C	±200	_	1.02~10	1.1~10	1.1~10	_	TP : 10,000	5,000		
1J	0.25W	70°C	125°C	±200	_	0.1~1	0.1~1	0.1~1	1 -				
				±100	0.15~10	0.1~10	_	_					
	0.0014/	70%	105%	±200	_	_	0.1~10	0.1~10					
	0.33W	70°C	125°C	±500	_	_	_	0.051~0.091			5,000	4,000	
0.4				±800	_	_	_	0.03~0.047	1	TD : 10 000			
2A				±100	0.15~10	0.1~10	_	_	1 - '	TP : 10,000			
	0.514485	7000	10596	±200	_	_	0.1~10	0.1~10	1				
	0.5W ^{®5}	70°C	105°C	±500	_	_	_	0.051~0.091	1				
				±800	_	_	_	0.03~0.047	1				
	0.33W 70°C 0.5W**5 70°C		125°C	±100	0.15~10	0.1~10	_	_		-	5,000	4,000	
		70°C		±200	_	_	0.1~10	0.1~10					
		70°C		±500	_	-	_	0.056~0.091					
OD				±800	_	_	_	0.03~0.051					
ZB			110°C	±100	0.15~10	0.1~10	_	_					
		70°C		±200	_	-	0.1~10	0.1~10					
		110°C	±500	_	_	_	0.056~0.091] !					
				±800	_	_	_	0.03~0.051					
			125°C	±100	_	0.1~10	_	_	_	_	5,000	4,000	
	70%	70°C		±200	_	-	0.1~10	0.047~10					
	0.5W	5W /0°C		±500	_	_	_	0.036~0.043					
2E				±1000	_	_	_	0.024~0.033					
20	0.66W ^{®5} 70°C			±100	_	0.1~10	_	_					
		110°C	±200	_	-	0.1~10	0.047~10	1					
	0.0000	70 C	110 C	±500	-	_	_	0.036~0.043					
				±1000	_	_	_	0.024~0.033					
		70°C	125°C	±100	_	0.1~10	_	_	_	_	_	4,000	
WOL	W2H 0.75W			±200	-	_	0.1~10	0.1~10					
VV2Π				±500	_	_	_	0.056~0.091					
				±800	_	-	_	0.033~0.051					
W3A 1W	70°C	125°C	±100	-	0.1~10	_	_		_	_	4.000		
			±200	_	_	0.1~10	0.1~10						
WOA	W3A 1W	70 C	125°C	±500	_	-	_	0.056~0.091		_	_	4,000	
				±800	_	-	_	0.039~0.051					
			70°C 95°C	±100	_	0.1~10	_	_				4.000	
MOAO	Q147%5	2W ^{₩5} 70°C		±200	_	-	0.1~10	0.1~10					
W3A2	W3A2 2W**5			±500	_	-	_	0.056~0.091	_		4,000		
			±800	_	_	_	0.039~0.051	7					


使用温度范围: -55℃~+125℃(1H)、-55℃~+150℃(1E、1J、2A、2B、2E、W2H、W3A、W3A2)额定电压是√额定功率×公称电阻值所算出的值。
※4 SR73 1H、SR73 1E(F: ±1%)的公称电阻值仅为E24系列。
※5 以该额定功率使用时,请勿超过额定端子部温度。此外,请使用上页右侧端子部温度的功率降额曲线。根据客户的使用状况,如果不清楚是该使用额定环境温度还是额定端子部温度,请以额定端子部温度为优先。详情请参照卷首的"端子部温度功率降额曲线的说明"。
在高功率下使用时,根据基板散热条件的不同,部件温度可能会升高。请务必在确认端子部温度及产品规格书、使用注意事项后使用。


CURRENT SENSING


■温度上升数据





表面温度上升,由于是用本公司测定条件 测定的,根据使用状况、使用基板不同, 数值也有不同。

■单脉冲临界功率曲线

※可施加电压的上限为最高过载电压。 连续施加脉冲时的耐受性,请向我们咨询。 本数据为参考值,使用时请务必在实际机器上确认。

■性能

试验项目	标准值 ΔR±(%+0.005Ω)		试验方法		
	保证值	代表值			
电阻值	在规定的允许偏差内	_	25°C		
电阻温度系数	在规定值以内	_	+25°C/-55°C, +25°C/+125°C		
过载(短时间)	2	0.5	额定电压×2.5倍施加5秒钟(W3A2为额定电压的2.0倍)		
耐焊接热	3: 1H 1: 1E~W3A2	0.75: 1H 0.3: 1E~W3A2	260°C±5°C, 10s±1s		
温度突变	1	0.3	-40°C (30min.)/+125°C (30min.) 100 cycles		
耐湿负荷	3: 1H 2: 1E∼W3A2	1	40℃±2°C, 90%~95%RH, 1000h 1.5小时ON、0.5小时OFF的周期		
70℃或额定端子部温度时的 耐久性	3: 1H 2: 1E~W3A2	1	70°C±2°C或额定端子部温度±2°C, 1000h 1.5小时ON、0.5小时OFF的周期		
高温放置	1	0.3	+125°C, 1000h: 1H +150°C, 1000h: 1E, 1J, 2A, 2B, 2E, W2H, W3A, W3A2		

■使用注意事项

- 片式电阻器的基材是氧化铝。由于和安装基板的热膨胀系数不同,在反复施加热循环等热应力时,接合部的焊锡(焊接部)有时会发生龟裂。特别是大型尺寸W2H/W3A/W3A2,由于热膨胀大,而且本身发热也大,如果环境温度反复发生很大的变动,并且载荷反复进行ON/OFF,则需要注意龟裂的发生。用环氧树脂印刷电路板(FR-4),在使用温度范围的上、下限进行一般性的热循环试验时,1H~2E的类型不容易发生裂纹,而W2H/W3A/W3A2型则有容易发生裂纹的倾向。因热应力而发生的龟裂,取决于所安装的焊盘的大小、焊锡量、安装基板的散热性等,因此在环境温度有很大的变化或载荷ON/OFF的条件下使用时,请充分注意以进行设计。
- •根据焊盘布局的大小和接续焊接的量、焊接后的电阻值会有变动。应在事前确认阻值降低/提高的影响后、进行设备设计。