

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER :

(客戶):志盛翔

DATE :

(日期):2019-03-01

CATEGORY (品名) DESCRIPTION (型号) VERSION (版本) Customer P/N	 : ALUMINUM ELECTROLYTIC CAPACITORS : KM 400V120μF(φ18x35) : 01 :
SUPPLIER	:

SUPPL	ER	CUSTOMER					
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)				
李婷	刘渭清						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SPECIFICATION KM SERIES					ALTERNATION HISTORY RECORDS				
Dari	Data			<u></u>	Contorta				
Rev.	Date	Mark	Pa	ge	Contents	Purpose	Drafter	Approver	
	V		01				Date	1	
	Version		01				Page	1	

		AN YUE ELECTRONICS COMPANY LIMITED					ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES						N	
[abl	e 1 Product Dimen	sions a	nd Ch	aracteristic	S									
	L+2.0 -	→ <p< th=""><th> ↓ +</th><th>1±0.5</th><th><u>_</u>A</th><th>node</th><th>F±0.5</th><th>node</th><th>0.25</th><th>max</th><th>Un</th><th>it: mm</th><th></th><th></th></p<>	↓ +	1±0.5	<u>_</u> A	node	F±0.5	node	0.25	max	Un	it: mm		
								S	hape Code		D		18	
									nape code		L		35	
											F		7.5	
									PC Type		H H1		4.0	
											d		0.8	
No.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(°C)	tan ð (120Hz,	Leakage Current	Max Ripple Current at 105°C 120Hz	Load lifetime		nension (mm)	1	Sleeve	
	i alt ivo.	(,,,,,)	(μι)		Tange(C)	20°C)	(µA,2min)	(mA rms)	(Hrs)	D×L	F	фd		
1	EKM127M2GL35PC**P	400	120	-20%~+20%	-25~105	0.24	1480	570	2000	18X35	7.5	0.8	PET	

C O N T E N T S	Sheet
. Application	4
. Part Number System	4
. Construction	5
. Characteristics	5~10
1 Rated voltage & Surge voltage	5~10
.2 Capacitance (Tolerance)	
.3 Leakage current	
.4 tanδ	
.5 Terminal strength	
.6 Temperature characteristic	
.7 Load life test	
1.8 Shelf life test	
1.9 Surge test	
1.10 Vibration	
1.11 Solderability test	
1.12 Resistance to solder heat	
1.13 Change of temperature	
1.14 Damp heat test	
1.15 Vent test	
.16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Contro Substances')"	olled 11
Attachment: Application Guidelines	12~15

Version 01	Page	3
------------	------	---

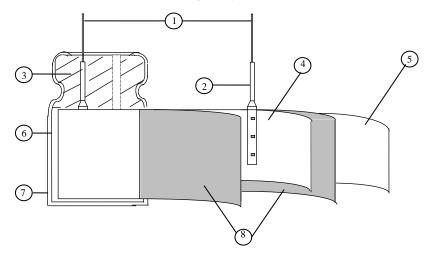
ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс EGS 1 05 н 1 1 S Ρ м 1 D SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE TOL VOLTAGE CASE SIZE TYPE Image: Constraint of the second sec Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Code Case Size Feature Code SAMXON Product Lir ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D RR For internal use only Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к ±10 E,M or 0,1,2,3,4,5,9) 0K 8 0.33 334 2.0mm Pitch τт 1A 10 ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 EGF EGT 1C 16 14 4.5 16 16.5 18 18.5 20 22 м 1D ±20 20 105 3.5mm Pitch тν A K 7 Code 1 Sleeve Material 1E EGK EGE EGD EGC 25 5.0mm Pitch PET Р 30 11 тс 2.2 225 Ν ±30 13 B S B 8.5 8 20 M 220 N 22 N 250 O 34 W 355 Q A W 355 Q R 42 445 6 51 S 51 S.5 T 760 U 800 8 90 X 000 Z 32 ERS ERF ERL ERR Lead Cut & Form 35 1V 3.3 335 -40 0 w 40 1G СВ-Туре СВ 4.7 475 42 1**M** -20 0 А FR 50 1H ERE ERD ERH EBD СЕ-Туре CE 10 106 57 1L -20 +10 С 63 1J НЕ-Туре HE 22 226 71 1S 51 63.5 76 ERA ERB ERC EFA ENP 75 1**T** -20 +40 х KD-Type ĸD 336 33 80 1K 85 1R -20 +50 90 100 FD-Type FD s 47 476 90 19 ENH ERW ERY ELP EAP EQP EDP Code 45 05 54 07 77 11 1A 100 2A 4.5 ЕН-Туре EΗ -10 в 107 100 120 20 5.4 125 2B PCB Termial -10 +20 220 227 v 150 2Z 160 2C 10. ETP EHP EUP sw 330 337 -10 +30 Q 180 2P 11 11.5 1A 12 12 12.5 1B 13 13 13.5 1C 20 20 25 25 29.5 2J 30 30 31.5 3A 35 35 35.5 3E 50 50 2D 200 sx Snap-in EKP EEP 470 477 -10 +50 215 22 т EFP 220 2N sz 2200 228 -5 +10 230 23 Е EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWL 250 2E Lug SG 22000 229 -5 +15 275 2Т F 05 300 21 33000 339 -5 +20 310 2R G 50 80 1L 1K 1M 1P 06 315 2F 47000 50 80 100 105 110 120 130 140 150 479 330 2U 0 +20 R Т5 2V 350 100000 10T Screw 360 2X 0 +30 0 т6 VNS 375 2Q VKS VKS VKM VRL VNH VZS VRF 150000 15T 0 +50 385 2Y I. D5 400 2G 220000 22T +5 +15 420 2M z D6 450 2W 330000 ззт +5 +20 D 500 2H 25 1000000 550 10M +10 +50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5


Version 01 Pa

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5
	• -	8-	-

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Tabl	ITEM	PERFORMANCE											
	Rated voltage	WV (V.DC)	6.3	10		16		25	35	50	63	100	
	(WV)	SV (V.DC)	8	13		20		32	44	63	79	125	
4.1													
	Surge	WV (V.DC)	160	200	22	20	250	350	400	420	450		
	voltage (SV)	SV (V.DC)	200	250	27	70	300	400	450	470	500		
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T < Criteria >	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>										
4.3	Leakage current	<condition></condition> Connecting the capacitor with a protective resistor $(1k\Omega \pm 10\Omega)$ in series for 2 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1											
4.4	tanδ	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria> Refer to Table 1</criteria></condition>											
<condition> Tensile Strength of Terminals Fixed the capacitor, applied force to the terminal in lead out direction for seconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rule 90° within 2~3 seconds, and then bent it for 90° to its original position with seconds. Tensile force N Bending force N</condition>									rubber) fo				
4.5	Terminal strength	Diamet					(kg				(gf)		
			nm and					.51)			(0.25)		
		Over 0. <criteri< b=""> No notic</criteri<>	a>			11 be :	10 (1	*	eakage o).51) ness at the	e terminal	

Version	01	I age	6
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>	1							
		STEP	Testi	<i>v i</i>	erature(°C)			Time		
		1		20 ± 2				h thermal	•	
		2		-40(-25)	± 3	Time	to reac	h thermal	equilibriu	m
		3		20 ± 2	2	Time	to reac	thermal of	equilibriu	m
		4		$105\pm$	2	Time	to read	h thermal of	equilibriu	m
		5		20 ± 2	2	Time	to reac	h thermal	equilibriu	m
		<criteria></criteria>								
		a. tanδ shall				4.4The l	eakage	current me	asured sl	nall not
	Temperature	more than 8 tin		-						
	characteristi	b. In step 5, t			nin the lin	nit of Iter	n 4.4T	he leakage	current s	shall not
4.6	cs	more than the	-		·	1 11 .		.1 1	6.1 6.1	
		c. At-40°C (-2 table.	25 C), 1	mpedance	(z) ratio s	shall not	exceed	the value of	of the foll	lowing
		Working Voltag	ge (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+2	0℃	5	4	3	2	2	2	2
		Z-40°C/Z+2	0℃	10	8	6	4	3	3	3
		Working Voltag	ge (V)	100	160~220) 250-	-350	400~420	450	
		Z-25°C/Z+20		2	3		1	6	15	
		Z-40°C/Z+20	0°C	3		_				
		For capacitance		× 1000u	E 4 110	-	.1 10		7 05/7	
			e value	$> 1000\mu$	F, Add 0.	5 per and	ther I	000µ F for	L-23/L+.	20°C,
			e value	> 1000µ		-		00µFtor 00µFfor		
		Capacitance, ta			Add 1.0) per ano	ther 10	00µ F for		
		Capacitance, tar <condition></condition>	nδ, an	d impedar	Add 1.0) per ano e measur	ther 10 red at 1	00µ F for 20Hz.	Z-40°C/Z	Z+20°C.
		Capacitance, tat <condition> According to I</condition>	nδ, and	d impedar 34-4No.4.	Add 1.0 nce shall b 13 method) per ano e measur	ther 10 red at 1 apacito	00µ F for 20Hz.	Z-40°C/Z	z+20°C.
		Capacitance, tan Condition > According to II $105 \ C \pm 2$ with	nδ, and EC6038 h DC bi	d impedar 34-4No.4. as voltage	Add 1.0 nce shall b 13 method e plus the 1) per ano e measur ls, The ca	ther 10 red at 1 apacito le curr	00µ F for 20Hz. r is stored a ent for Tab	Z-40°C/Z	z+20°C. erature o ne sum o
		Capacitance, tar Condition> According to II $105 \ C \pm 2$ with DC and ripple	$n\delta$, and EC6038 h DC bi e peak	d impedar 34-4No.4. as voltage voltage sł	Add 1.0 nce shall b 13 method e plus the r nall not ex	l per ano e measur ls, The ca rated ripp kceed the	ther 10 red at 1 apacito le curr e rated	00µ F for 20Hz. r is stored a ent for Tab working	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
	Load	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should</condition>	nδ, and EC6038 h DC bi peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not e: 5 hours red	l per ano e measur ls, The ca rated ripp kceed the	ther 10 red at 1 apacito le curr e rated	00µ F for 20Hz. r is stored a ent for Tab working	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
4.7	Load life	Capacitance, tar Condition> According to II $105 \ C \pm 2$ with DC and ripple	nδ, and EC6038 h DC bi peak	d impedar 34-4No.4. as voltage voltage sh ed after 16	Add 1.0 nce shall b 13 method e plus the r nall not e: 5 hours red	l per ano e measur ls, The ca rated ripp kceed the	ther 10 red at 1 apacito le curr e rated	00µ F for 20Hz. r is stored a ent for Tab working	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
4.7		Capacitance, tat <condition> According to II 105 ℃ ±2 with DC and ripple product should result should n</condition>	nδ, and EC6038 h DC bi peak be test heet the	d impedar 34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin	s, The car rated ripp covering	ther 10 red at 1 apacito le curr e rated time at	00µ F for 20Hz. r is stored a ent for Tab working atmospher	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
4.7	life	Capacitance, tax <Condition> According to II $105 \ C \pm 2$ with DC and ripple product should n <Criteria> The characteri Leakage	nδ, and EC6038 h DC bi be test be test heet the stic sha e curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not e: 6 hours red g table:	s, The car rated ripp covering	ther 10 red at 1 apacito le curr e rated time at	00µ F for 20Hz. r is stored a ent for Tab working atmospher	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri</criteria></condition>	nδ, and EC6038 h DC bi be test be test heet the stic sha e curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: e followin	b per ano e measure ls, The ca rated ripp kceed the covering <u>g require</u> 4.3 shall	ther 10 red at 1 apacito le curr e rated time at ements. be sati	00µ F for 20Hz. r is stored a ent for Tab working atmospher	Z-40°C/Z at a tempe le 1. (Th voltage) '	erature o ne sum o Then the
4.7	life	Capacitance, tax <Condition> According to II $105 \ C \pm 2$ with DC and ripple product should n <Criteria> The characteri Leakage	nδ, and EC6038 h DC bi be test be test heet the stic sha e curren	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method plus the r nall not e: 6 hours red g table: e followin Value in Within \pm	b per ano e measure ls, The car tated ripp acceed the covering g require 4.3 shall 20% of	ther 10 red at 1 apacito le curr e rated time at ements. be sati initial	00µ F for 20Hz. r is stored a ent for Tab working atmospher	Z-40°C/Z at a tempe le 1. (Th voltage) ' ic conditi	erature o ne sum o Then the
4.7	life	Capacitance, tax <Condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should n <Criteria> The characteri Leakage Capacit	no , and EC6038 h DC bi be test be tes	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the n nall not ex 5 hours red g table: e followin Value in Within <u>d</u> Not more	b per ano e measure ls, The car rated ripp covering g require 4.3 shall 20% of e than 20	ther 10 red at 1 apacito le curr e rated time at ements. be sati initial 0% of	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value.	Z-40°C/Z at a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacit tanδ Appeara</criteria></condition>	no , and EC6038 h DC bi be test be tes	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the t	Add 1.0 nce shall b 13 method e plus the n nall not ex 5 hours red g table: e followin Value in Within <u>d</u> Not more	b per ano e measure ls, The car rated ripp covering g require 4.3 shall 20% of e than 20	ther 10 red at 1 apacito le curr e rated time at ements. be sati initial 0% of	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie	Z-40°C/Z at a tempe le 1. (Th voltage) ' ic conditi d value.	erature o ne sum o Then the
4.7	life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should m <criteria> The characteri Leakage Capacit tanδ Appeara</criteria></condition>	nδ , and EC6038 h DC bi be test be test heet the stic sha e curren ance Ch	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange	Add 1.0 nce shall b 13 method plus the r pall not e: 5 hours red 5 hours red 5 table: e followin Value in Within <u>-</u> There sha	b per ano e measure ls, The car rated ripp covering g require 4.3 shall 20% of e than 20 all be no	ther 10 red at 1 apacito le curr e rated time at ements. be sati initial 0% of leakag	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro	Z-40°C/Z at a tempe le 1. (Th voltage) ' ic conditi d value. lyte.	rature o reature o re sum o Then the tons. The
4.7	life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should n <criteria> The characteri Leakage Capacitt tanδ Appeara <condition></condition></criteria></condition>	$n\delta$, and EC6038 h DC bi be peak γ be test heet the stic sha e curren ance Ch ance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet that thange stored wi	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours red g table: e followin Value in Within <u>d</u> Not more There shall	b per ano e measure ls, The car rated ripp covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 20</u> all be no	ther 10 red at 1 apacito le curr e rated time at <u>be sati</u> initial 0% of leakag	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur	Z-40°C/Z it a tempe ile 1. (Th voltage) ' ic conditi d value. lyte. e of 105 :	$\pm 2^{\circ}C$. erature one sum of Then the theorem is theorem is the theorem is the theorem is the theorem is the
4.7	life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should n <criteria> The characteri Leakage Capacita tan$\overline{\delta}$ Appeara <condition> The capacitors a 1000+48/0 hou</condition></criteria></condition>	nδ, and EC6038 h DC bi be testu- be testu- neet the <u>stic sha</u> e curren ance CH ance	d impedar 34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet thu</u> thange stored wi lowing thi	Add 1.0 nce shall b 13 method e plus the r nall not ex 6 hours red g table: <u>e followin</u> Value in Within <u>d</u> Not more There shall th no volta	b per ano e measure ls, The car ated ripp acceed the covering <u>g require</u> <u>4.3 shall</u> <u>20% of</u> <u>e than 20</u> all be no	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> be sati initial 0% of leakag ed at a itors sh	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specific e of electro temperatur	Z-40°C/Z it a tempe le 1. (Thyoltage) ' ic conditi d value. lyte. e of 105 : pyed from	$\pm 2^{\circ}$ C. erature o he sum o Then the tons. The ±2°C fo in the tes
4.7	life	Capacitance, tax <condition> According to II 105 $\mathbb{C} \pm 2$ with DC and ripple product should result should m <criteria> The characteri Leakage Capacitation> Condition> The capacitors at 1000+48/0 how chamber and b</criteria></condition>	nδ , and EC6038 h DC bi be peak v be testuneet the stic sha e current ance Ch ance ance are then urs. Follow	d impedar 34-4No.4. as voltage voltage sh ed after 16 following 11 meet the tt nange stored wi lowing thi yed to stal	Add 1.0 nce shall b 13 method e plus the r hall not e: 5 hours red g table: e followin Value in Within <u>1</u> Not more There shall th no volta	b per ano e measure ls, The caracted ripp acceed the covering <u>g require</u> 4.3 shall <u>20% of</u> <u>e than 20</u> all be no age appli he capac room ter	ther 10 red at 1 apacito le curr e rated time at <u>be sati</u> <u>initial</u> 0% of <u>leakag</u> ed at a itors sh nperatu	00µ F for 20Hz. r is stored a ent for Tab working v atmospher sfied value. the specifie e of electro temperatur all be remo	Z-40°C/Z at a tempe le 1. (Thyoltage) ' ic condition d value. lyte. e of 105 - poved from hours. N	$\pm 2^{\circ}$ C. retature of the sum of Then the the the ± 2°C fo in the tess Next the
4.7	life test	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should result should n <criteria> The characteri Leakage Capacita tan$\overline{\delta}$ Appeara <condition> The capacitors a 1000+48/0 hou</condition></criteria></condition>	nδ , and EC6038 h DC bi be peak v be test heet the stic sha e curren ance Cl ance ance are then urs. Follow e allow ected to	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method plus the n nall not ex 5 hours red 5 hours red 5 table: e followin Value in Within <u>d</u> Not more There shall th no volta is period to bilized at limiting red	b per ano e measure as the capac rated ripp covering <u>g require</u> 4.3 shall <u>20% of</u> <u>all be no</u> age appli he capac room ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh nperatu $c \pm 100$	00 μ F for 20Hz. r is stored a ent for Tak working v atmospher sfied value. the specific e of electro temperatur all be removing for 4~8 Ω) with I	Z-40°C/Z it a tempe ile 1. (Th voltage) ' ic conditi d value. lyte. e of 105 = boved from hours. N D.C. rateo	$\pm 2^{\circ}$ C fo n the tes Next the 1 voltage
	life test Shelf	Capacitance, tax <condition> According to II 105 $\mathbb{C} \pm 2$ with DC and ripple product should result should</condition>	nδ , and EC6038 h DC bi be testineet the stic sha e curren ance Ch ance are then urs. Follow e allow ected to nin. Aft	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method plus the n nall not ex 5 hours red 5 hours red 5 table: e followin Value in Within <u>d</u> Not more There shall th no volta is period to bilized at limiting red	b per ano e measure as the capac rated ripp covering <u>g require</u> 4.3 shall <u>20% of</u> <u>all be no</u> age appli he capac room ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh nperatu $c \pm 100$	00 μ F for 20Hz. r is stored a ent for Tak working v atmospher sfied value. the specific e of electro temperatur all be removing for 4~8 Ω) with I	Z-40°C/Z it a tempe ile 1. (Th voltage) ' ic conditi d value. lyte. e of 105 = boved from hours. N D.C. rateo	$\pm 2^{\circ}$ C fo n the tes Next the 1 voltage
	life test Shelf life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should n <criteria> The characteri Leakage Capacitt tanδ Appeara <condition> The capacitors a 1000+48/0 how chamber and b shall be conne applied for 30r</condition></criteria></condition>	nδ , and EC6038 h DC bi be testineet the stic sha e curren ance Ch ance are then urs. Follow e allow ected to nin. Aft	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method plus the n nall not ex 5 hours red 5 hours red 5 table: e followin Value in Within <u>d</u> Not more There shall th no volta is period to bilized at limiting red	b per ano e measure as the capac rated ripp covering <u>g require</u> 4.3 shall <u>20% of</u> <u>all be no</u> age appli he capac room ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh nperatu $c \pm 100$	00 μ F for 20Hz. r is stored a ent for Tak working v atmospher sfied value. the specific e of electro temperatur all be removing for 4~8 Ω) with I	Z-40°C/Z it a tempe ile 1. (Th voltage) ' ic conditi d value. lyte. e of 105 = boved from hours. N D.C. rateo	$\pm 2^{\circ}$ C fo n the tes Next the 1 voltage
	life test Shelf life	Capacitance, tax <condition> According to II $105 \ C \pm 2$ with DC and ripple product should n <criteria> The characteri Leakage Capacitt tanδ Appeara <condition> The capacitors a 1000+48/0 how chamber and b shall be conne applied for 30r</condition></criteria></condition>	nδ , and EC6038 h DC bi be testineet the stic sha e curren ance Ch ance are then urs. Follow e allow ected to nin. Aft	d impedar 34-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi yed to stal a series	Add 1.0 nce shall b 13 method plus the n nall not ex 5 hours red 5 hours red 5 table: e followin Value in Within <u>d</u> Not more There shall th no volta is period to bilized at limiting red	b per ano e measure as the capac rated ripp covering <u>g require</u> 4.3 shall <u>20% of</u> <u>all be no</u> age appli he capac room ter esistor(11	ther 10 red at 1 apacito le curr e rated time at <u>ements.</u> <u>be sati</u> <u>initial</u> <u>0% of</u> <u>leakag</u> ed at a itors sh nperatu $c \pm 100$	00 μ F for 20Hz. r is stored a ent for Tak working v atmospher sfied value. the specific e of electro temperatur all be removing for 4~8 Ω) with I	Z-40°C/Z it a tempe ile 1. (Th voltage) ' ic conditi d value. lyte. e of 105 = boved from hours. N D.C. rateo	$\pm 2^{\circ}$ C fo n the tes Next the 1 voltage

·		D	_
Version	01	Page	7

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<criteria></criteria>	
		The characteristic shall meet the fe	ollowing requirements.
		Leakage current V	alue in 4.3 shall be satisfied
	Shelf	Capacitance Change W	Vithin $\pm 20\%$ of initial value.
4.8	life	tanδ N	ot more than 200% of the specified value.
	test	Appearance T	here shall be no leakage of electrolyte.
		**	ed more than 1 year, the leakage current may
		-	bugh about 1 k Ω resistor, if necessary.
		<condition></condition>	
		Applied a surge voltage to the cap	pacitor connected with a (100 \pm 50)/C _R (k Ω) resistor.
		-	o 1000 cycles, each consisting of charge of 30 ± 5 s
		followed discharge of 5 min 30s.	
		The test temperature shall be 15	~35°C.
		C_R :Nominal Capacitance (μ F)	
1.0	Surge	<criteria></criteria>	
4.9	test		ot more than the specified value.
			Vithin $\pm 15\%$ of initial value.
			ot more than the specified value.
		Appearance T	here shall be no leakage of electrolyte.
		Attention:	
		-	abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency range Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter greate in place with a bracket. 4mm or less	
		<criteria> After the test, the following items Inner construction No m Appearance of ele</criteria>	 x / y b be soldered a shall be tested: a termittent contacts, open or short circuiting. a mage of tab terminals or electrodes. b techanical damage in terminal. No leakage b terrolyte or swelling of the case. b markings shall be legible.

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>					
		The capacitor shall be tes	ted under the following	conditions:			
		Soldering temperature	: 245±3°C				
		Dipping depth	: 2mm				
4.11	Solderability	Dipping speed	: 25±2.5mm	n/s			
	test	Dipping time	: 3±0.5s				
		<criteria></criteria>					
		Coating quality		n of 95% of the surface being			
			immersed				
		<condition></condition>					
		-		o solder bath at 260 ± 5 °C for $10\pm$			
		1 seconds or $400 \pm 10^{\circ}$ C for	$r3_{-0}^{+1}$ seconds to 1.5~2.0	mm from the body of capacitor .			
		Then the capacitor shall b	be left under the normal	temperature and normal humidity			
	Resistance to	for 1~2 hours before mea	surement.				
4.12	solder heat	<criteria></criteria>					
	test	Leakage current	Not more than t	he specified value.			
		Capacitance Change	Within $\pm 10\%$ c	of initial value.			
		tanδ	Not more than t	he specified value.			
		Appearance	There shall be n	o leakage of electrolyte.			
		<condition></condition>					
			rding to IFC60384-4No	.4.7methods, capacitor shall be			
		placed in an oven, the co					
			emperature	Time			
		(1)+20℃		≤ 3 Minutes			
	Change of	(2)Rated low temper	ature (-40°C) (-25°C)	30 ± 2 Minutes			
4.13	temperature	(3)Rated high temper		30 ± 2 Minutes			
	test	$(3) \text{ function in the importance (+105 C)} \qquad 30 \pm 2 \text{ functions} $ $(1) \text{ to } (3)=1 \text{ cycle, total 5 cycle}$					
		<criteria></criteria>					
		The characteristic shall m	eet the following require	ement			
		Leakage current	Not more than the s	specified value.			
		tanδ	Not more than the s	<u>.</u>			
		Appearance	There shall be no le	eakage of electrolyte.			
		<condition></condition>					
		Humidity Test:	1No 1 12 moths	aitor shall be even and for 500 ± 9			
		-	-	citor shall be exposed for 500 ± 8			
		meet the following requir		$^{\circ}$ C, the characteristic change shall			
		<criteria></criteria>	ement.				
	Damp heat	Leakage current	Not more than the spe	cified value.			
4.14	test	Capacitance Change	Within $\pm 20\%$ of init				
		tanδ	Not more than 120% of				
		Appearance	There shall be no leak	age of electrolyte.			

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		<condition></condition>							
		The following tes	st only apply to those p	roducts	with ve	ent prod	ucts at d	liameter	≥Ø6
		with vent.							
		D.C. test							
		-	connected with its po	•	versed	to a DC	power	source.	Then a
			from below table is ap	plied.					
	Vent	<table 3=""></table>		_					
4.15	test	Diameter (m		_					
		22.4 or les		_					
		Over 22.4	10						
		<criteria></criteria>							
		The vent shall op	erate with no dangero	us cond	itions s	uch as f	lames o	r dispers	sion o
		pieces of the capa	acitor and/or case.						
		<condition></condition>							
			permissible ripple curi					nt	
			can be applied at maxim	mum op	erating	tempera	ature		
		Table-1				~ .			
			value of D.C voltage a		peak A	C volta	ge shall	not exce	ed th
		rated voltage a	and shall not reverse vo	oitage.					
		Frequency M	ultipliers:	r	1		r	r	7
		Rated	Coefficient Freq.						
		Voltage	(Hz)	50	120	300	1k	10k~	
	Maximum	(V)	Cap.(µ F)						
	permissible		~47	0.75	1.00	1.35	1.57	2.00	-
4.16	(ripple current)	6.3~100	68~470	0.80	1.00	1.23	1.34	1.50	-
	current)		≥560 0.47~220	0.85	1.00	1.10 1.25	1.13 1.40	1.15 1.60	1
		160~450	≥270	0.80	1.00	1.10	1.40	1.15	-
			>270	0.90	1.00	1.10	1.15	1.15]

Version	01	Page	10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
Ticavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated .	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	ounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo com	apounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Version

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) defined and the series resistance (ESR) defined a
 - At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- b) At lower temperatures, leakage current and capacitance decr(2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
 - A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12	
--------------------	--

SAMXON

(0)	
(6)	Wiring Near the Pressure Relief Vent
	Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
(7)	Circuit Board patterns Under the Capacitor
(7)	Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
(8)	Screw Terminal Capacitor Mounting
	Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.
	Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6	Electrical Isolation of the Capacitor
110	Completely isolate the capacitor as follows.
	Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
(2)	Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7	The Product endurance should take the sample as the standard.
1.8	If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9	Capacitor Sleeve
	The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the
	capacitor.
	The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
	CAUTION!
	Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open
	circuits which could occur during use.
	 (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or easen devices there possible to assure continued expertision in case of main circuit failure.
	(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
	apacitor Handling Techniques
	Considerations Before Using
	Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
(2)	with a resistor with a value of about $1k\Omega$.
(3)	Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
	rated voltage in series with a resistor of approximately $1k\Omega$.
(A)	
	If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
(5) 2.2	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion
(5)2.2(1)	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor.
 (5) 2.2 (1) (2) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
 (5) 2.2 (1) (2) (3) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 (5) 2.2 (1) (2) (3) (4) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
 (5) 2.2 (1) (2) (3) (4) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the
 (5) 2.2 (1) (2) (3) (4) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
 (5) 2.2 (1) (2) (3) (4) 2.3 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering
 (5) 2.2 (1) (2) (3) (4) 2.3 (1) 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
 (5) 2.2 (1) (2) (3) (4) 2.3 (1) (2) I (3) I 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
 (5) 2.2 (1) (2) (3) (4) 2.3 (1) (2) I (3) I 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
 (5) 2.2 (1) (2) (3) (4) (2) I (3) I (4) A 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
 (5) 2.2 (1) (2) (3) (4) (2) I (3) I (4) A 2.4 	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
 (5) 2.2 (1) (2) (3) (4) (5) (6) (7) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (9) (1) (1) (1) (1) (2) (2) (3) (4) (4)	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. Flow Soldering Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
 (5) 2.2 (1) (2) (3) (4) (5) (6) (7) (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (9) (1) (1) (1) (1) (2) (2) (3) (4) (4)	Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. Flow Soldering Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01		Page	14
---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01		Page	15
------------	--	------	----