

SAW duplexer

WCDMA band VIII

Series/type: B8514

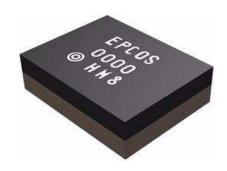
Ordering code: B39941B8514P810

Date: April 9, 2013

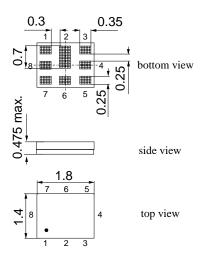
Version: 2.0

EPCOS AG is a TDK Group Company.

[©] EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.


SAW duplexer 897.5 / 942.5 MHz

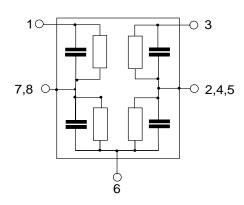
Preliminary Data


Application

- Low-loss SAW duplexer for mobile telephone WCDMA Band VIII systems
- Low insertion attenuation
- Low amplitude ripple
- Usable passband 35 MHz
- 50 Ω single-ended in both in Antenna-Rx and Tx-Antenna paths

Features

- Package size 1.8 x 1.4 x 0.475 mm³.
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni, Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitive Level 3



Pin configuration

■ 1 RX output (single-ended)

■ 3 TX input (single-ended)

■ 6 Antenna■ 2,4,5,7,8 Ground

897.5 / 942.5 MHz **SAW** duplexer

Preliminary Data

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification: ANT terminating impedance: 50Ω || 5.6nH

 $Z_{ANT} = Z_{TX} = Z_{RX} =$ TX terminating impedance: 50Ω RX terminating impedance: 50Ω

Characteristics Tx - A	Ant				min.	typ.	max.	
						@25 °C		
Center frequency				f _C	_	897.5	_	MHz
Maximum insertion a	itteni	uation						
@f _{Carrier} 882.4		912.6	MHz	$\alpha_{\text{WCDMA}}^{-1)}$	_	2.0	2.7	dB
880.0		915.0	MHz		_	2.2	3.9	dB
880.0		915.0	MHz		_	2.2	$2.8^{3)}$	dB
Amplitude ripple (p-p)							
@f _{Carrier} 882.4		912.6	MHz	$\Delta \alpha_{WCDMA}^{1)}$	_	1.0	2.1	dB
880.0		915.0	MHz		_	1.2	3.1	dB
Error Vector Magnitude								
@f _{Carrier} 882.4		912.6	MHz	EVM ²⁾	_	2.3	6.0	%
VSWR								
TX port 880.0		915.0	MHz		_	1.7	2.0	
ANT port 880.0		915.0	MHz		_	1.7	2.2	
Attenuation				α				
10.0		716.0	MHz		30	35	_	dB
716.0		728.0	MHz		30	35	_	dB
728.0		793.0	MHz		30	35	_	dB
@f _{Carrier} 927.4		957.6	MHz	$\alpha_{\text{WCDMA}}^{-1)}$	42	51	_	dB
@f _{Carrier} 927.4		957.6	MHz	$\alpha_{WCDMA}^{1)}$	443)	51	_	dB
1559.0	1	1563.0	MHz		42	45	<u> </u>	dB

¹⁾ Attenuation of WCDMA signal ("Powertransferfunction"). Please refer to annotation on page 8.

²⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141 3) T= +25°C

SAW duplexer 897.5 / 942.5 MHz

Preliminary Data

Characteristics

Temperature range for specification: T = -20 °C to +85 °C ANT terminating impedance: Z_{ANT} = $50 \Omega \parallel 5.6 nH$

ANT terminating impedance: $Z_{ANT} = 50 \Omega$ TX terminating impedance: $Z_{TX} = 50 \Omega$ RX terminating impedance: $Z_{RX} = 50 \Omega$

Characteristics Tx - An	min.	typ.	max.				
					@25 °C		
Attenuation			α				
1565.42 .	1573.374	MHz		42	45	_	dB
1573.374	1577.466	MHz		40	45	_	dB
1577.466	1585.42	MHz		40	45	_	dB
1597.5515 .	1605.886	MHz		40	44	_	dB
1760.0 .	1830.0	MHz		35	38	_	dB
1830.0 .	1880.0	MHz		27	36	_	dB
2110.0 .	2170.0	MHz		27	33	_	dB
2400.0	2500.0	MHz		26	30	_	dB
2620.0 .	2745.0	MHz		22	27	_	dB
3520.0 .	3660.0	MHz		20	26	_	dB
4400.0	4575.0	MHz		20	25	_	dB
5150.0 .	5490.0	MHz		10	19	_	dB
5725.0 .	5850.0	MHz		10	14	_	dB

897.5 / 942.5 MHz **SAW** duplexer

Preliminary Data

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification: ANT terminating impedance: 50 Ω || 5.6nH

 $Z_{ANT} = Z_{TX} = Z_{RX} =$ TX terminating impedance: 50Ω RX terminating impedance: $50\,\Omega$

x - An	t				min.	typ.	max.	
						@25 °C		
у				f _C	_	942.5	_	MHz
tion at	ten	uation						
27.4		957.6	MHz	$\alpha_{\text{WCDMA}}^{1)}$	_	1.9	2.6	dB
25.0		960.0	MHz		_	2.4	4.3	dB
25.0		960.0	MHz		_	2.4	2.8 ³⁾	dB
e (p-p)								
		957.6	MHz	$\Delta \alpha_{\text{WCDMA}}^{1)}$	_	0.6	1.2	dB
25.0		960.0	MHz		_	2.7	3.1	dB
Error Vector Magnitude								
27.4		957.6	MHz	EVM ²⁾	_	3.4	8.0	%
27.4		957.6	MHz	EVM ⁴⁾	_	3.4	5.0 ³⁾	%
925.0		960.0	MHz		_	1.7	2.2	
925.0		960.0	MHz		_	1.9	2.2	
				α				
10.0		880.0	MHz		40	58	_	dB
02.5		910.0	MHz		30	55	_	dB
82.4		912.6	MHz	$\alpha_{\text{WCDMA}}^{1)}$	45	55	_	dB
0.08		1045.0	MHz	-	20	29	_	dB
t))) (1)	ion at 27.4 25.0 25.0 27.4 25.0 gnitud 27.4 27.4 25.0 25.0 10.0 02.5 82.4	ion atten 27.4 25.0 25.0 27.4 25.0 27.4 25.0 gnitude 27.4 27.4 25.0 10.0 02.5 82.4	ion attenuation 27.4 957.6 25.0 960.0 25.0 960.0 26 (p-p) 27.4 957.6 25.0 960.0 gnitude 27.4 957.6 27.4 957.6 25.0 960.0 25.0 960.0 25.0 960.0 25.0 960.0	ion attenuation 27.4 957.6 MHz 25.0 960.0 MHz 25.0 960.0 MHz 26 (p-p) 27.4 957.6 MHz 25.0 960.0 MHz 27.4 957.6 MHz 27.4 957.6 MHz 27.4 957.6 MHz 27.4 957.6 MHz 27.4 960.0 MHz 27.4 960.0 MHz 25.0 960.0 MHz 25.0 960.0 MHz 25.0 910.0 MHz 25.0 910.0 MHz 26.2 910.0 MHz 27.4 912.6 MHz	y f _C ion attenuation 27.4 957.6 MHz α _{WCDMA} ¹⁾ 25.0 960.0 MHz 25.0 960.0 MHz 2 (p-p) 27.4 957.6 MHz Δα _{WCDMA} ¹⁾ 25.0 960.0 MHz gnitude 27.4 957.6 MHz EVM ²⁾ 27.4 957.6 MHz EVM ⁴⁾ 25.0 960.0 MHz 25.0 910.0 MHz 28.4 912.6 MHz α _{WCDMA} ¹⁾	y f _C — ion attenuation 27.4 957.6 MHz $\alpha_{\text{WCDMA}}^{1}$ — 25.0 960.0 MHz — 26 (p-p) 27.4 957.6 MHz $\Delta \alpha_{\text{WCDMA}}^{1}$ — 25.0 960.0 MHz — 25.0 960.0 MHz — 27.4 957.6 MHz $\Delta \alpha_{\text{WCDMA}}^{1}$ — 25.0 960.0 MHz — 26.0 960.0 MHz — 26.0 960.0 MHz — 27.0 960.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y f _C — 942.5 — 942.5 — 1.9 42.5 — 1.9 2.6 27.4 957.6 MHz $\alpha_{\text{WCDMA}}^{1}$ — 1.9 2.6 25.0 960.0 MHz — 2.4 4.3 25.0 960.0 MHz — 2.4 2.83 $\alpha_{\text{WCDMA}}^{2}$ — 0.6 1.2 25.0 960.0 MHz — 2.7 3.1 gnitude 27.4 957.6 MHz EVM² — 3.4 8.0 27.4 957.6 MHz EVM² — 3.4 5.03 27.4 957.6 MHz EVM² — 1.7 2.2 25.0 960.0 MHz — 1.7 2.2 25.0 960.0 MHz — 1.9 2.2 $\alpha_{\text{WCDMA}}^{2}$ — 1.9 58.4 912.6 MHz $\alpha_{\text{WCDMA}}^{2}$ — 1.9 55.5 — 82.4 912.6 MHz $\alpha_{\text{WCDMA}}^{2}$ — 45 55 —

¹⁾ Attenuation of WCDMA signal ("Powertransferfunction"). Please refer to annotation on page 8.

²⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141 $^{3)}$ T= +25 $^{\circ}$ C

SAW duplexer 897.5 / 942.5 MHz

Preliminary Data SMD

Characteristics

 $T = -20 ^{\circ}C \text{ to } +85 ^{\circ}C$ Temperature range for specification: ANT terminating impedance: $50\,\Omega$ || 5.6nH

 $Z_{ANT} = Z_{TX} = Z_{RX} =$ TX terminating impedance: 50Ω RX terminating impedance: 50Ω

Charcteristics Rx - Ant	min.	typ. @25 °C	max.	
Attenuation				
1045.0 1805.0 MHz	35	52		dB
1805.0 1920.0 MHz	40	51		dB
1920.0 2400.0 MHz	35	48		dB
2400.0 2500.0 MHz	40	47		dB
2685.0 2880.0 MHz	40	46		dB
2880.0 3700.0 MHz	35	42	_	dB
3700.0 3840.0 MHz	35	42		dB
4625.0 4800.0 MHz	35	41		dB
5550.0 5725.0 MHz	30	38		dB
5725.0 5875.0 MHz	30	37		dB

SAW duplexer 897.5 / 942.5 MHz

Preliminary Data

Characteristics

 $T = -20 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C}$ Temperature range for specification: ANT terminating impedance:

 $Z_{ANT} = 50 \Omega \parallel 5.6 \text{nH}$ $Z_{TX} = 50 \Omega$ $Z_{RX} = 50 \Omega$ TX terminating impedance: RX terminating impedance:

Charcteristics Tx - Rx	min.	typ. @25 °C	max.	
Isolation				
@f _{Carrier} 882.4 912.6 MHz α_{WCDMA} 1)	53	56	_	dB
880.0 915.0 MHz	52	55	_	dB
@f _{Carrier} 927.4 957.6 MHz α _{WCDMA} 1)	48	59	_	dB
@f _{Carrier} 927.4 957.6 MHz α_{WCDMA} 1)	55 ²⁾	59	_	dB

Attenuation of WCDMA signal ("Powertransferfunction"). Please refer to annotation on page 8. $^{2)}$ T= +15 $^{\circ}$ C to +85 $^{\circ}$ C

SAW Components B8514 897.5 / 942.5 MHz **SAW** duplexer **Preliminary Data** SMD

Maximum ratings

Storage temperature range	T _{stg}	-40/+85 ¹⁾	°C	
DC voltage	V_{DC}	5 ²⁾	V	
ESD voltage	V_{ESD}	1003)	V	machine model, 1 pulse
Input power at	P_{IN}			
880.0 915.0 MHz		29	dBm	ι continuous wave
elsewhere		10	dBm	∫ 50 °C, 5000 h

¹⁾ extended upperlimit: 96h@125°C acc. to IEC 60062-2-2 Bb

Annotation for characteristics section

Attenuation of WCDMA signal ("Powertransferfunction", $\alpha_{\text{WCDMA}})$ is determined by

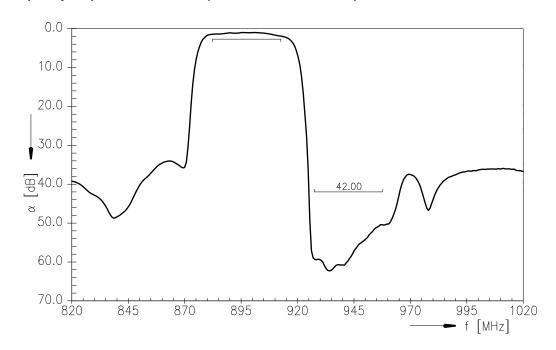
$$\int_{\infty}^{\infty} \! \left| S_{ds21}(f) H_{RRC}(f - f_{Carrier}) \right|^2 \! df$$

 $f_{Carrier}$ according to 3GPP TS 25.101 (e.g. for UMTS-Passband, $f_{Carrier}$ ranges from 2112.4 MHz (lowest Rx channel) to 2167.6 MHz (highest Rx channel)). $H_{RRC}(f)$ is the transfer function of the root-raised cosine transmit pulse shaping filter according to 3GPP TS 25.101 with the following normalization:

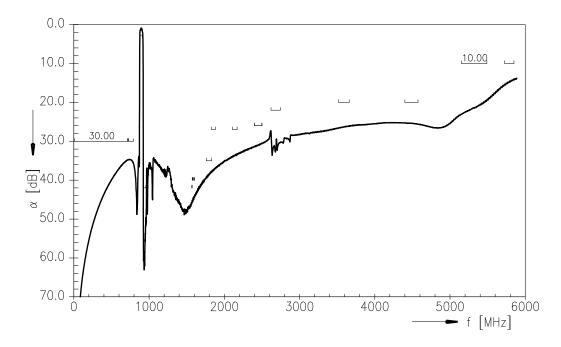
$$\int_{-\infty}^{\infty} \left| H_{RRC}(f) \right|^2 df = 1$$

 ^{2) 168}h Damp Heat Steady State acc. to IEC 60068-2-67 Cy
 3) acc. to JESD22-A115A (machine model), 1 negative & 1 positive pulse.

SAW Components


SAW duplexer

Preliminary Data

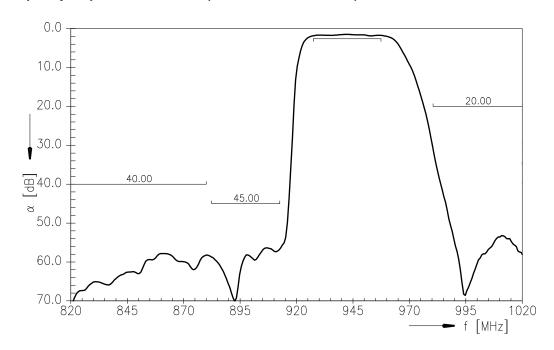

B8514

897.5 / 942.5 MHz

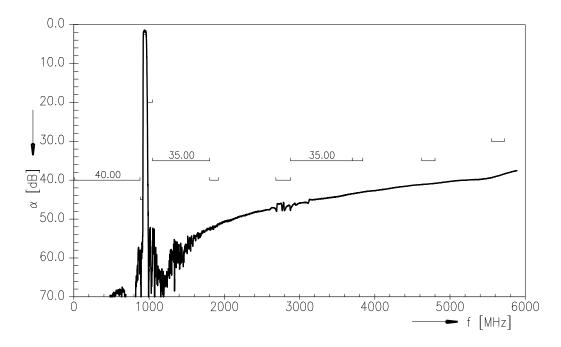
Frequency response Tx-Antenna (Power transfer function)

Frequency response Tx-Antenna (wideband)

SAW Components


SAW duplexer

Preliminary Data

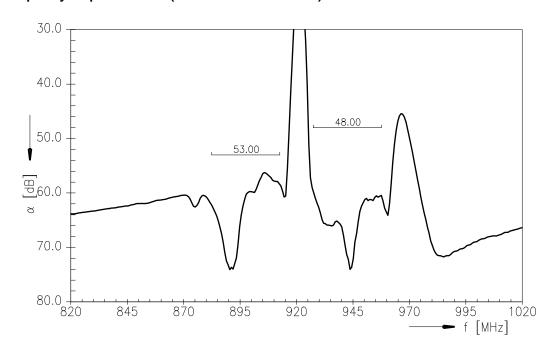

B8514

897.5 / 942.5 MHz

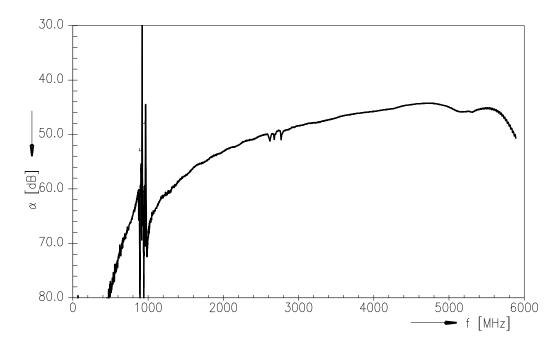
Frequency response Antenna-Rx (Power transfer function)

Frequency response Antenna-Rx (wideband)

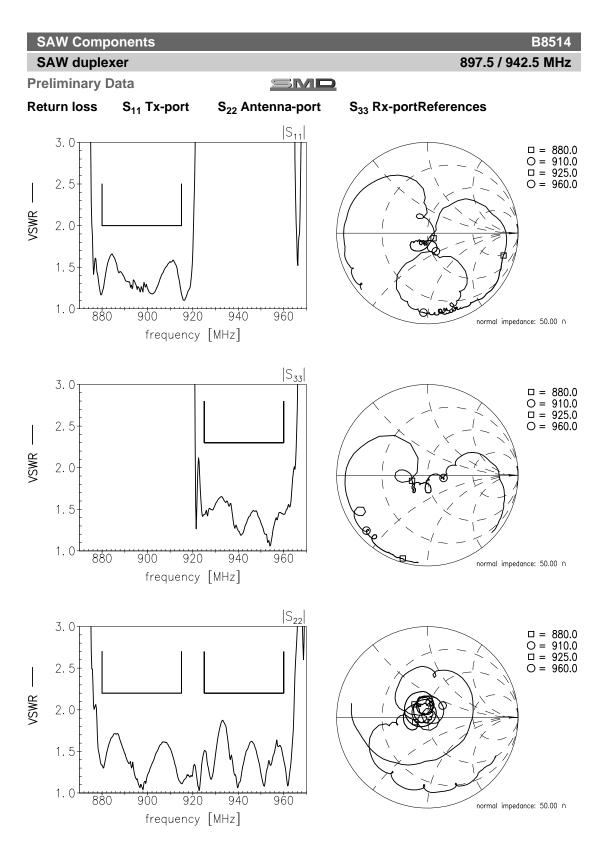
SAW Components


SAW duplexer

Preliminary Data


B8514

897.5 / 942.5 MHz


Frequency response Tx-Rx (Power transfer function)

Frequency response Tx-Rx (wideband)

SAW Components		B8514
SAW duplexer		897.5 / 942.5 MHz
Preliminary Data	SMD	

References

Туре	B8514
Ordering code	B39941B8514P810
Marking and package	C61157-A8-A38
Packaging	F61074-V8247-Z000
Date codes	L_1126
S-parameters	B8514_NB_UN.s3p, B8514_WB_UN.s3p See file header for pin/port assignment.
Soldering profile	S_6001
RoHS compatible	RoHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8 th , 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.
Moldability	Before using in overmolding environment, please contact your EPCOS sales office.
Matching coils	See Inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm

For further information please contact your local EPCOS sales office or visit our webpage at $\underline{www.epcos.com}$.

Published by EPCOS AG Systems, Acoustics, Waves Business Group P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2013. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Important notes

The following applies to all products named in this publication:

- Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.