MOSFET - P-Channel Logic Level PowerTrench[®]

-40 V, 13.5 mΩ, -50 A

FDD9510L-F085

Features

- Typ $R_{DS(on)} = 11 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$; $I_D = -50 \text{ A}$
- Typ $Q_{g(tot)} = 28 \text{ nC}$ at $V_{GS} = -10 \text{ V}$; $I_D = -50 \text{ A}$
- UIS Capability
- Qualified to AEC Q101
- These Devices are Pb-Free and are RoHS Compliant

Applications

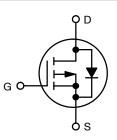
- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electrical Power Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

ABSOLUTE MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain to Source Voltage	V _{DSS}	-40	V
Gate to Source Voltage	V _{GS}	±16	V
Drain Current – Continuous (V _{GS} = –10 V) (T _C = 25°C) (Note 1)	۱ _D	-50	A
Pulsed Drain Current (T _C = 25°C)	۱ _D	See Figure 4	A
Single Pulse Avalanche Energy (Note 2)	E _{AS}	35.3	mJ
Power Dissipation	PD	75	W
Derate above 25°C	PD	0.5	W/°C
Operating and Storage Temperature Range	T _J , T _{STG}	–55 to +175	°C
Thermal Resistance (Junction to Case)	$R_{\theta JC}$	2	°C/W
Maximum Thermal Resistance (Junction to Ambient) (Note 3)	R_{\thetaJA}	52	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Current is limited by wirebond configuration


- 2. Starting Tj = 25°C, L = 40 μ H, I_{AS} = -42 A, V_{DD} = -40 V during inductor charging and V_{DD} = 0 V during time in avalanche
- 3. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2 oz copper.

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Quantity
FDD9510L-F085	FDD9510L	D-PAK (TO-252)	13″	16 mm	2500 Units

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
F CHARAC	TERISTICS	•					
BV _{DSS}	Drain to Source Breakdown Voltage	V_{GS} = 0 V, I _D =	V _{GS} = 0 V, I _D = -250 μA		-	-	V
I _{DSS}	I _{DSS} Drain to Source Leakage Current	$V_{DS} = -40 \text{ V}, \qquad T_{J} = 25 \text{ V}, \\ V_{GS} = 0 \text{ V} \qquad T_{J} = 17 \text{ T}, $	$T_J = 25^{\circ}C$	-	-	-1	μA
			T _J = 175°C (Note 4)	-	-	-1	mA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±16 V		-	-	±100	nA
CHARACT	ERISTICS			-			
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		-1	-1.9	-3	V
R _{DS(on)}	Drain to Source On-Resistance	V_{GS} = -4.5 V, I_D = -50 A, T_J = 25°C		-	16	22	mΩ
		$V_{GS} = -10 V,$	$T_J = 25^{\circ}C$	-	11	13.5	mΩ
	I _D = -50 A	$I_{\rm D} = -50 {\rm A}$	T _J = 175°C (Note 4)	-	18	22.7	mΩ
NAMIC CH	ARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = -20 V, V _{GS} = 0 V, f = 1 MHz		-	2020	-	pF
C _{oss}	Output Capacitance			-	785	-	pF
C _{rss}	Reverse Transfer Capacitance			-	36	-	pF
Rg	Gate Resistance	V _{GS} = -0.5 V, f = 1 MHz		-	23	-	Ω
Q _{g(tot)}	Total Gate Charge	V _{DD} = -20 V, I _D = -50 A	V_{GS} = 0 V to -10 V	-	28	37	nC
Q _{g(-4.5)}	Total Gate Charge		V_{GS} = 0 V to -4.5 V	-	13	-	nC
Q _{g(th)}	Threshold Gate Charge		V_{GS} = 0 V to -1 V	-	2	-	nC
						-	

Q_{gd} Gate to Drain "Miller" Charge

Gate to Source Gate Charge

Q_{gs}

t _{on}	Turn-On Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = -20 \text{ V}, \text{ I}_{D} = -50 \text{ A}, \\ V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6 \ \Omega \end{array}$	-	-	44	ns
t _{d(on)}	Turn-On Delay Time	$V_{GS} = -10$ V, $H_{GEN} = 6 \Omega_2$	-	8	-	ns
tr	Turn-On Rise Time		-	21	-	ns
t _{d(off)}	Turn-Off Delay Time	Γ	-	113	-	ns
t _f	Turn-Off Fall Time		-	35	_	ns
t _{off}	Turn-Off Time		-	-	220	ns

 $V_{DD} = -20 \text{ V}, \text{ I}_{D} = -50 \text{ A}$

7

4

_

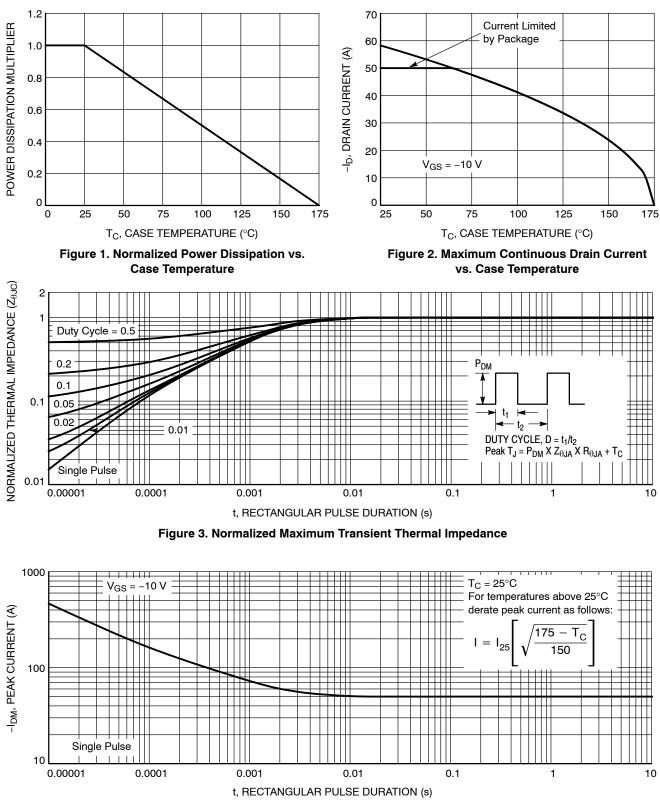
_

_

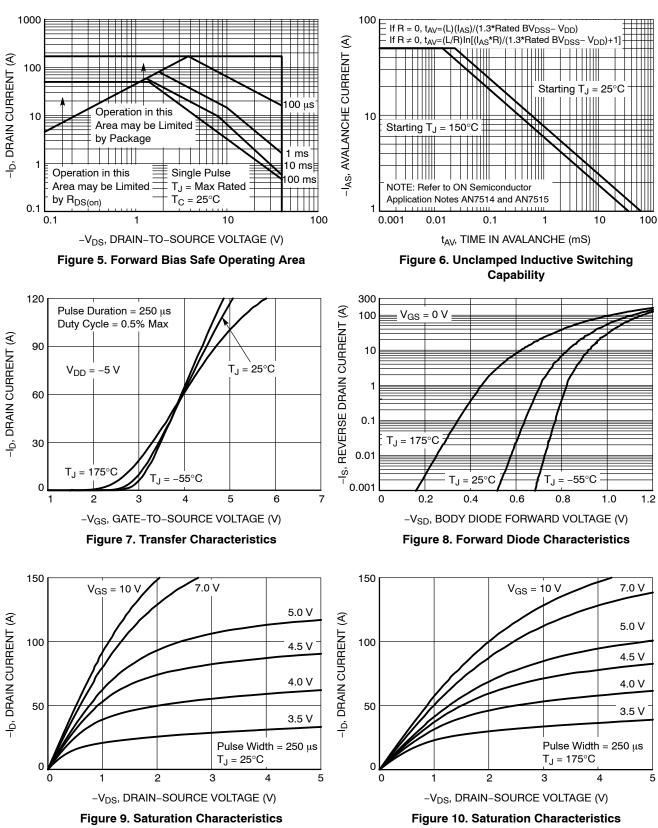
_

nC

nC

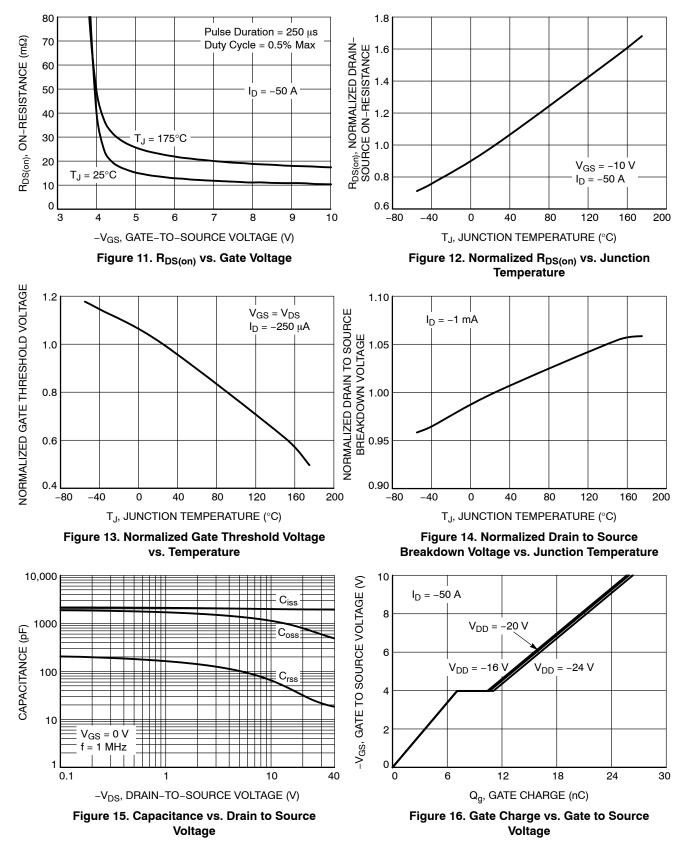

DRAIN-SOURCE DIODE CHARACTERISTICS

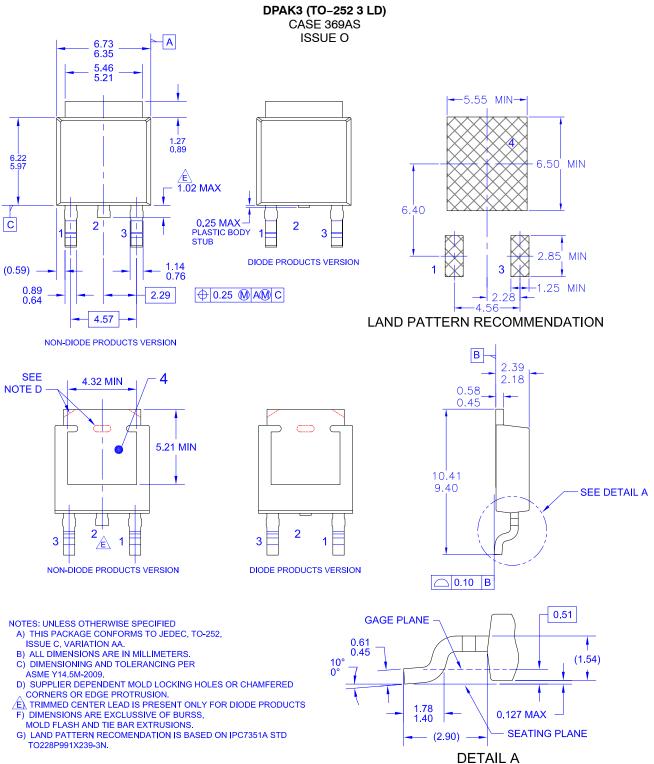
V _{SD}	Source to Drain Diode Voltage	$V_{GS}=0 \text{ V}, \text{ I}_{SD}=-50 \text{ A}$	-	-0.97	-1.25	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = -25 \text{ A}$	-	-0.9	-1.2	V
T _{rr}	Reverse Recovery Time	I_F = -50 A, dI _{SD} /dt = 100 A/µs	-	42	63	ns
Q _{rr}	Reverse Recovery Charge		-	31	56	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production

TYPICAL CHARACTERISTICS




TYPICAL CHARACTERISTICS

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC.

PACKAGE DIMENSIONS

(ROTATED -90°) SCALE: 12X

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor products are not application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for uses a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has adjust and hold ON Semiconductor and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative