

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

October 2016

FAM65V05DF1 Auto SPM® Series Automotive 3-Phase IGBT Smart Power Module

Features

- 27 pin Auto SPM[®] module
- 650 V-50 A 3-phase IGBT module with low loss IGBTs and soft recovery diodes optimized for motor control applications
- Integrated gate drivers with Internal V_S connection, Under Voltage lockout, Over-current shutdown, Temperature Sensing Unit and Fault reporting
- Electrically isolated AIN substrate with low Rthjc
- Module serialization for full traceability
- Pb-Free and RoHS compliant
- UL Certified No. E209204 (UL 1557)
- Automotive qualified

Applications and Benefits

Automotive high voltage auxiliary motors such as air conditioning compressor and oil pump


- Compact design
- Simplified PCB layout and low EMI
- Simplified Assembly
- High reliability

General Description

FAM65V05DF1 is an advanced Auto SPM module providing a fully-featured high-performance auxiliary inverter output stage for hybrid and electric vehicles. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing various protection features, in a compact 12cm² footprint.

Applications Note

AN-8422` — 650 V Auto SPM® Series; Automotive 3-Phase IGBT Smart Power Module User's Guide

Bottom View

Figure 1. Package view

Ordering Information

Part Number	Marking	Package	Packing Method Qty. per tube		Qty. per box
FAM65V05DF1	FAM65V05DF1	APM27-CAA	Tube	10	60

Pin Configuration

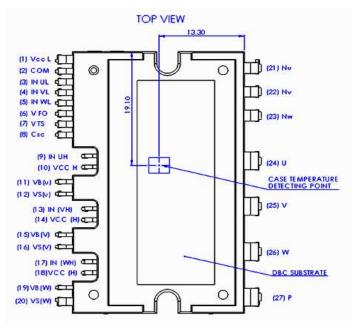


Figure 2. Pin configuration

Pin Description

Pin Number	Pin	Pin Function Description
1	VCC(L)	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM	Common Supply Ground
3	IN (UL)	Signal Input for Low-side U Phase
4	IN (VL)	Signal Input for Low-side V Phase
5	IN (WL)	Signal Input for Low-side W Phase
6	VFO	Fault Output
7	VTS	Output for LVIC temperature sense
8	CSC	Capacitor (Low-pass Filter) for Short-Current Detection Input
9	IN (UH)	Signal Input for High-side U Phase
10	VCC(H)	High-side Common Bias Voltage for IC and IGBTs Driving
11	VB(U)	High-side Bias Voltage for U Phase IGBT Driving
12	VS(U)	High-side Bias Voltage Ground for U Phase IGBT Driving
13	IN(VH)	Signal Input for High-side V Phase
14	VCC(H)	High-side Common Bias Voltage for IC and IGBTs Driving
15	VB(V)	High-side Bias Voltage for V Phase IGBT Driving
16	VS(V)	High-side Bias Voltage Ground for V Phase IGBT Driving
17	IN(WH)	Signal Input for High-side W Phase
18	VCC(H)	High-side Common Bias Voltage for IC and IGBTs Driving
19	VB(W)	High-side Bias Voltage for W Phase IGBT Driving
20	VS(W)	High-side Bias Voltage Ground for W Phase IGBT Driving
21	NU	Negative DC–Link Input for U Phase
22	NV	Negative DC–Link Input for V Phase
23	NW	Negative DC-Link Input for W Phase
24	U	Output for U Phase
25	V	Output for V Phase
26	W	Output for W Phase
27	Р	Positive DC-Link Input

Internal Equivalent Circuit and Input/Output Pins

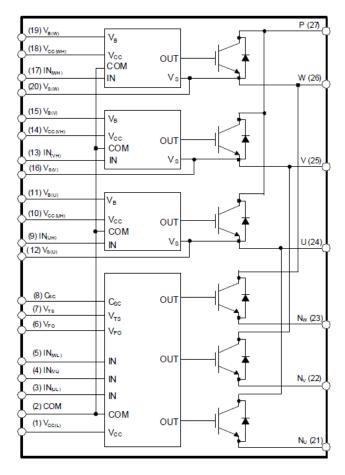


Figure 3. Schematic

Gate drivers block diagram

High side gate driver (x3 single channel):

- Control circuit under-voltage (UV) protection
- 3.3/5 V CMOS/LSTTL compatible, Schmitt trigger input

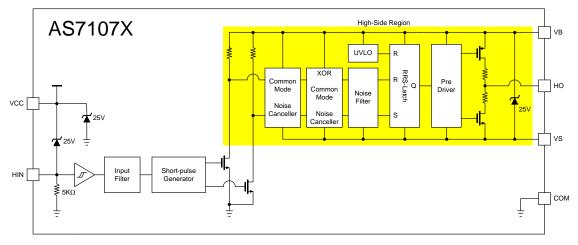


Figure 4. High Side gate drivers (block diagram)

Low side gate driver (x1 monolithic three-channel):

- Control circuit under-voltage (UV) protection
- Short circuit protection (SC)
- Temperature sensing unit
- Fault Output
- 3.3/5 V CMOS/LSTTL compatible, Schmitt trigger input

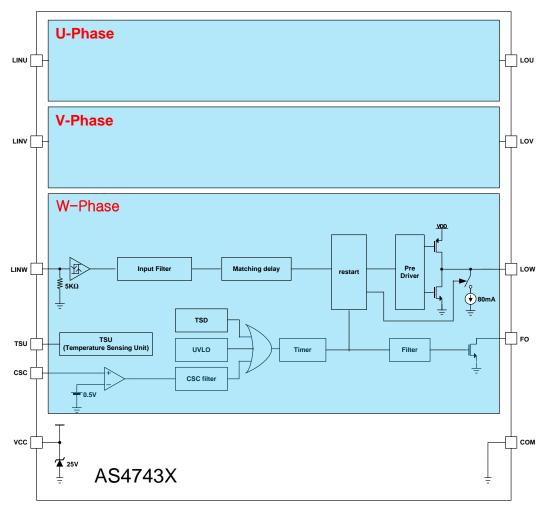


Figure 5. Low Side gate drivers (block diagram)

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified)

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.

Inverter Part

Symbol	Parameter	Condition	Rating	Unit
V _{PN}	Supply voltage	Applied between P- N _U , N _V , N _W	500	٧
V _{PN(Surge)}	Supply Voltage (surge)	Applied between P- N_U , N_V , N_W dl/dt \leq 3A/ns	575	V
V _{CES}	Collector-emitter Voltage at the IGBT/diode	T _J =25°C	650	٧
± I _C	IGBT continuous collector current	T _C = 100°C, T _{Jmax} =175°C (Note1)	50	Α
± I _{CP}	IGBT peak collector pulse current	$T_C = 25$ °C, $T_{Jmax}=175$ °C, $V_{CC}=V_{BS}=15$ V, less than 1ms (Note 6)	150	Α
Pc	Collector Dissipation	T _C = 25°C per IGBT	333	W
т.	Junction Tomporature	IGBT/Diode	-40 ~ +175	°C
T_J	Junction Temperature	Driver IC	-40 ~ +150	°C

Control Part

Symbol	Parameter	Condition	Rating	Unit
Vcc	Control Supply Voltage	Applied between V _{CC(H)} , V _{CC(L)} - COM	20	V
V_{BS}	High-side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)},V_{B(V)}$ - $V_{S(W)}$ - $V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - COM	-0.3 ~ V _{CC} +0.3	٧
V_{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3 ~ V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	5	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3 ~ V _{CC} +0.3	V
V_{TS}	Temperature sense unit		-0.3 ~ 2/3 x V _{CC})	V

Total System

Symbol	Parameter	Condition	Rating	Unit
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60Hz, Sinusoidal, AC 1 minute, Connection Pins to heat sink plate	2500	V _{rms}
T _{LEAD}	Max lead temperature at the base of the package during pcb assembly	No remelt of internal solder joints	200	°C

Package Characteristics

Symbol	Parameter	Conditions	Тур.	Max.	Units
R _{th(j-c)Q}	Junction to Case Thermal	Inverter IGBT part (per IGBT)	-	0.45	°C/W
$R_{th(j-c)F}$	Resistance (2)	Inverter FWD part (per DIODE)	-	0.85	°C/W
L_{σ}	Package Stray Inductance	P to N_U , N_V , N_W (3)	24	-	nΗ

Notes:

- 1. Current limited by package terminal, defined by design
- Case temperature measured below the package at the chip center, compliant with MIL STD 883-1012.1 (single chip heating), DBC discoloration allowed, please refer to application note <u>AN-9190</u> (Impact of DBC Oxidation on SPM® Module Performance)
- 3. Stray inductance per phase measured per IEC 60747-15

Electrical Specifications

Inverter part (T_J as specified)

Sy	mbol	Parameters	Conditions	Min	Тур	Max	Unit
Vo	CE(SAT)	Collector-Emitter Saturation Voltage	$V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}$ $I_{C} = 50 \text{ A}, T_{J} = 25^{\circ}\text{C}$	-	1.65	-	V
			$V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}$ $I_C = 50 \text{ A}, T_J = 125^{\circ}\text{C}$	-	1.9	2.4	V
	V_{F}	FWD Forward Voltage	$V_{IN} = 0 \text{ V}, I_F = 30 \text{ A}, T_J = 25^{\circ}\text{C}$	-	2.1	-	V
			$V_{IN} = 0 \text{ V}, I_F = 30 \text{ A}, T_J = 125^{\circ}\text{C}$		1.9	2.5	V
	t _{ON}		$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}$	-	0.73	-	
	t _{C(ON)}		I _C = 50 A	-	0.12	-	
	t _{OFF}	High Side Switching Times	$V_{IN} = 0 \text{ V} \leftrightarrow 5\text{V}, \text{ Ls}=55 \text{ nH},$	-	0.80	-	μs
	t _{C(OFF)}		Inductive Load	-	0.14	-	
	t _{rr}		T _J = 25°C ^(4,5)	-	0.10	-]
HS	ton		$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}$ $I_C = 50 \text{ A}$	-	0.70	-	μs
	t _{C(ON)}			-	0.15	-	
	t _{OFF}	High Side Switching Times	$V_{IN} = 0 \text{ V} \leftrightarrow 5\text{V}, \text{ Ls}=55 \text{ nH},$	-	0.87	-	
	t _{C(OFF)}		Inductive Load	-	0.19	-	
	t _{rr}		T _J = 125°C ^(4, 5)	-	0.20	-	
	t _{ON}	Low Side Switching Times	V _{PN} = 300 V, V _{CC} = V _{BS} = 15 V	-	0.68	-	
	t _{C(ON)}		I _C = 50 A	-	0.20	-	
	toff		$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}, \text{Ls}=55 \text{ nH},$	-	0.86	-	μs
	t _{C(OFF)}		Inductive Load	-	0.19	-	- "
	t _{rr}		$T_{J}=25^{\circ}C^{(4,5)}$	-	0.14	-	1
LS	ton	Low Side Switching Times	$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 15 \text{ V}$	-	0.64	-	
	t _{C(ON)}	3	I _C = 50 A	-	0.24	-	1
	t _{OFF}		$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}, \text{ Ls}=55 \text{ nH},$	-	0.88	-	μs
	t _{C(OFF)}		Inductive Load	-	0.23	-	1
	t _{rr}		T _J = 125°C ^(4,5)	-	0.20	-	1
S	CWT	Short Circuit withstand time (6)	$V_{CC} = V_{BS} = 15 \text{ V}, V_{PN} = 450 \text{ V},$ $T_{J} = 25^{\circ}\text{C}, \text{ Non-repetitive}$	-	5	-	μs
	I _{CES}	Collector-Emitter Leakage Current for IGBT and diode in	T _J = 25°C, V _{CE} = 650 V	-	3	-	μA
		parallel	T _J = 125°C, V _{CE} = 650 V	-	150	1500	μA

Notes:

- 4. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching times of IGBT itself under the given gate driving condition internally. Refer to Figure 6 for detailed information
- 5. Stray inductance Ls is sum of stray inductance of module & setup
- 6. Verified by design and bench-testing only

Control Part (T_J = -40°C to 150°C, unless otherwise specified, typical values specified at T_J=125°C)

Symbol	Parameters	Conditions		Min	Тур	Max	Unit
I _{QCCL}	Quiescent V _{CC} Supply	$V_{CC} = 15 \text{ V},$ $IN_{(UL, VL, WL)} = 0 \text{ V}$	V _{CC(L)} – COM	-	-	5	mA
I _{QCCH}	Current	$V_{CC} = 15 \text{ V},$ $IN_{(UH, VH, WH)} = 0 \text{ V}$	V _{CC(H)} – COM	-	-	150	μA
І _{РССН}	Operating V _{CC} Supply	V _{CC(UH, VH, WH)} = 15 V f _{PWM} = 20 kHz Duty=50%, applied to one PWM signal input for high-side	$\begin{array}{c} V_{CC(UH)}-COM \\ V_{CC(VH)}-COM \\ V_{CC(WH)}-COM \end{array}$	-	-	0.30	mA
Iqccl	Current	V _{CC(UH, VH, WH)} = 15 V f _{PWM} = 20 kHz Duty=50%, applied to one PWM signal input for low-side	V _{CC(L)} – COM	-	-	8.5	mA
I_{QBS}	Quiescent V _{BS} Supply Current	$V_{BS} = 15 \text{ V},$ $IN_{(UH, VH, WH)} = 0\text{V}$	$V_{B(U)} - V_{S(U)}$ $V_{B(V)} - V_{S(V)}$ $V_{B(W)} - V_{S(W)}$	-	-	150	μΑ
I _{PBS}	Operating V _{BS} Supply Current	V _{CC} =VBC=15 V IN _(UH, VH, WH) = 0 V	$V_{B(U)} - V_{S(U)}$ $V_{B(V)} - V_{S(V)}$ $V_{B(W)} - V_{S(W)}$	-	-	4.5	mA
V_{FOH}	5 4 0 4 4 V	V _{SC} = 0 V, V _{FO} Circuit: up	4.7 kΩ to 5 V Pull-	4.5	-	-	V
V_{FOL}	Fault Output Voltage	V _{SC} = 1 V, V _{FO} Circuit: up	V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pullup		-	0.5	V
V _{SC(ref)}	Short-Circuit Trip Level	V _{CC} = 15 V ⁽⁷⁾	C _{SC} -COM	0.45	0.52	0.59	V
UV _{CCD}		Detection Leve	l, T _J = 125°C	10.6	-	13.2	V
UV _{CCR}	Supply Circuit Under-	Reset Level,	T _J = 125°C	11.0	-	13.8	V
UV _{BSD}	Voltage Protection	Detection Leve	l, T _J = 125°C	10.5	-	13	V
UV _{BSR}		Reset Level, T _J = 125°C		10.8	-	13.3	V
t _{FOD}	Fault-out Pulse Width			-	60	-	μs
V_{TS}	LVIC Temperature Sensing Voltage Output	$V_{CC(L)} = 15 \text{ V}, T_{LVIC} = 125^{\circ} \text{C}^{(8)}$		-	2.4		V
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _(UH) , IN _(VH) , IN _(WH) ,		-	2.6	3.1	V
V _{IN(OFF)}	OFF Threshold Voltage		$IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)} - COM$		1.2	-	V

- Short-circuit current protection is functional only for low side T_{LVIC} is the junction temperature of the LVIC itself

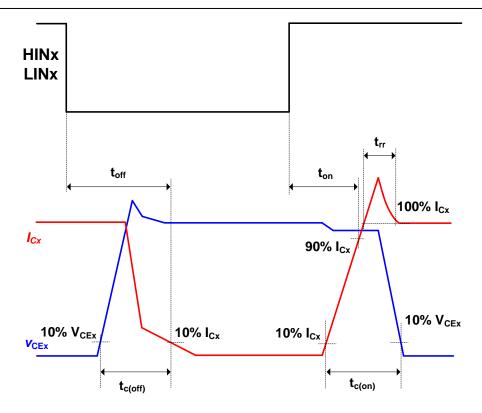


Figure 6a. Switching Time Definition

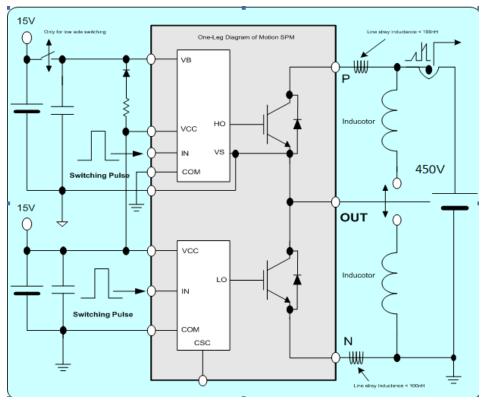


Figure 7b. Switching Evaluation Circuit

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating Conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	-	450	500	V
Vcc	Control Supply Voltage	Applied between $V_{\text{CC(H)}}$, $V_{\text{CC(L)}}$ - COM	13.5	15	16.5	V
V _{BS}	High-side Bias Voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.3	15	18.5	V
dV _{CC} /dt, dV _{BS} /dt	Control supply variation		-1	-	1	V/µs
t _{dead}	Blanking Time for Preventing Armshort	For Each Input Signal	1.0	-	-	μs
f _{PWM}	PWM Input Signal	T _C = 125°C	-	-	20	kHz
V _{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including surge voltage)	-4	-	4	V
TJ	Junction temperature		-40	-	150	°C

Mechanical Characteristics and Ratings

Parameter	Conditions	Conditions		Limits		Units
T di dinetei	Conditions	Conditions	Min.	Тур.	Max.	Omits
Mounting Torque	Mounting Screw: - M3	Recommended 0.62N•m	0.51	0.62	0.80	N•m
Device Flatness					+150	μm
Weight				15		g

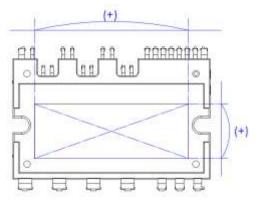


Figure 8. Flatness Measurement Position

Typical Inverter Characteristics

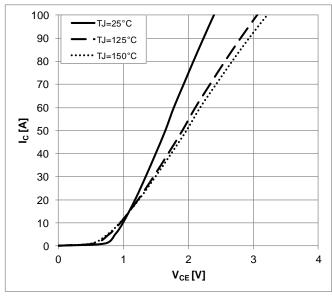


Figure 9. Output characteristics IGBT inverter (typical) $V_{CC} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}$

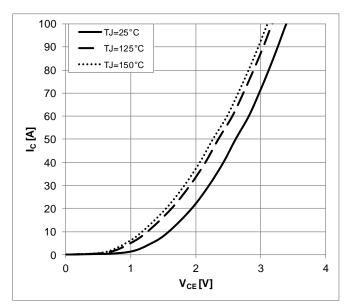


Figure 10. Forward characteristics DIODE inverter (typical) V_{IN} =0 V

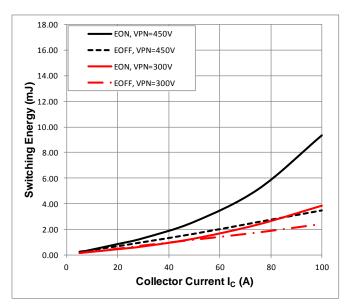


Figure 11. Switching losses IGBT inverter High-Side (typical) versus collector current VCC = VBS = 15 V VIN = 0 V ↔ 5 V, Ls=55 nH, Inductive Load, T_J=125°C

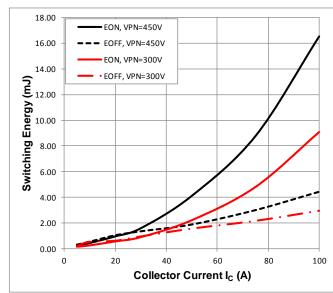


Figure 12. Switching losses IGBT inverter Low-Side (typical) versus collector current VCC = VBS = 15 V
VIN = 0 V ↔ 5 V, Ls=55 nH, Inductive Load, T,=125°C

Typical Inverter Characteristics

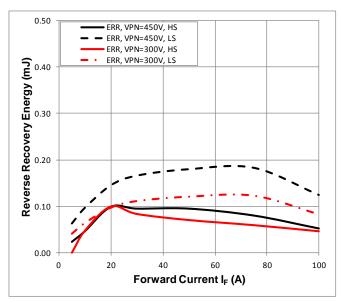


Figure 13. Reverse recovery energy DIODE inverter (typical) versus forward current

VCC = VBS = 15 V

VIN = 0 V ↔ 5 V, Ls=55nH, Inductive Load, T_J=125°C

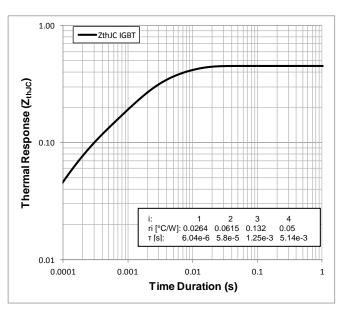


Figure 15. Transient thermal impedance IGBT inverter

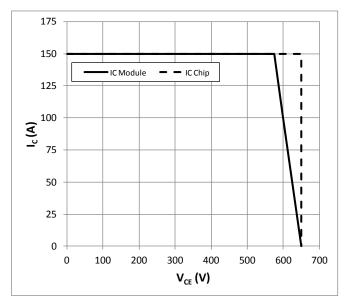


Figure 14. Reverse Bias Safe Operating Area IGBT (RBSOA) inverter

 $V_{CC} = V_{BS} = 15 \text{ V}, \text{ Tj}=150^{\circ}\text{C}$

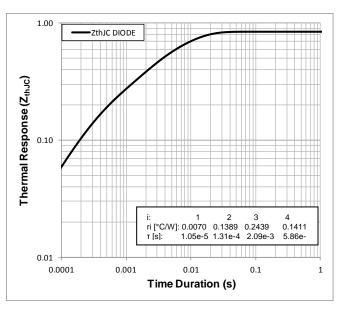


Figure 16. Transient thermal impedance DIODE inverter

Typical Controller Characteristics

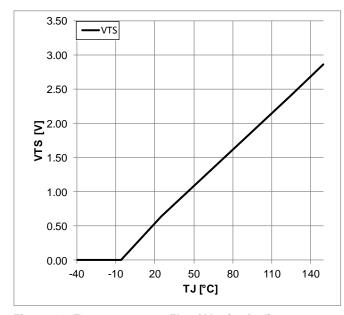


Figure 17. Temperature profile of V_{TS} (typical)

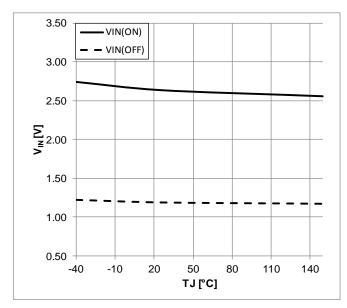


Figure 18. Threshold voltage versus temperature

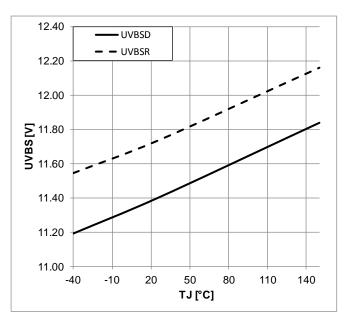
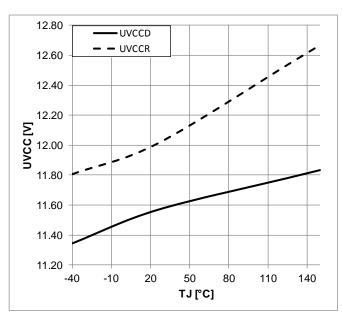
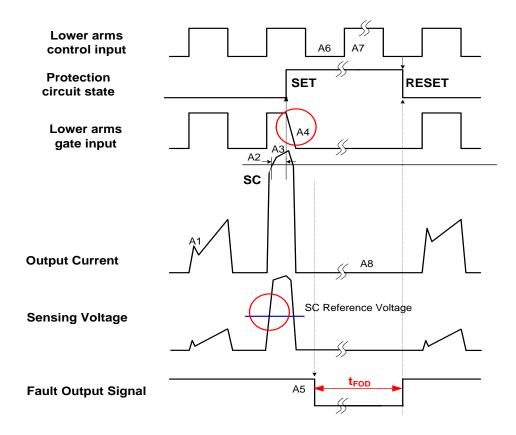
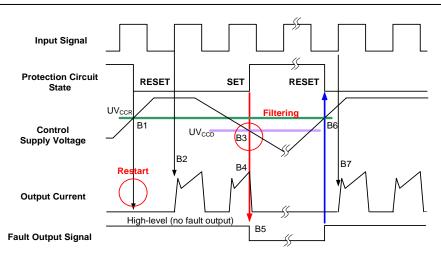


Figure 19. Supply under-voltage protection high-side (typical)


Figure 20. Supply under-voltage protection low-side (typical)

Timing Chart Protective Functions

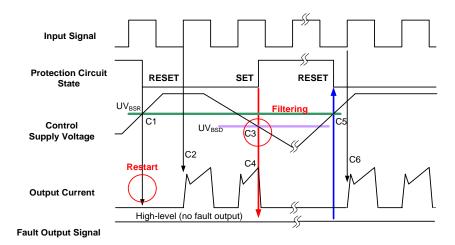
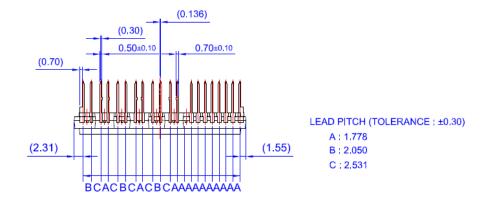
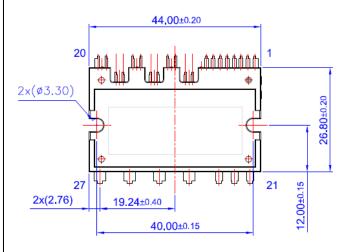
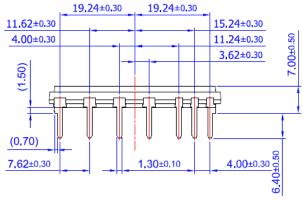

Step	Description
A1	Normal operation. IGBT on and carrying current
A2	Short-circuit current threshold reached
A3	Protection function triggered
A4	IGBT turns off with soft turn-off
A5	Fault output activated (initial delay 2 µs, t _{FOD} min. 50µs)
A6	IGBT "LO" input
A7	IGBT "HI" input is ignored
A8	Current stays at zero during fault state

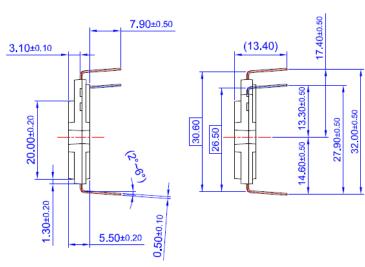
Figure 21. Short-Circuit Current Protection

Step	Description
B1	Control supply voltage rises above reset voltage UV _{CCR}
B2	Normal operation. IGBT on and carrying current
B3	Control supply voltage falls below detection voltage UV _{CCD}
B4	Filtered supply voltage falls below UV _{CCD} and IGBT turns off
B5	Fault output activated (initial delay 2 µs, t _{FOD} min. 50µs)
B6	Control supply voltage rises above reset voltage UV _{CCR}
В7	IGBT "HI" input is followed after fault output duration and supply voltage rise

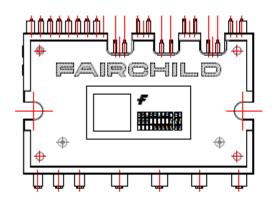

Figure 22. Under-Voltage Protection (Low-side)



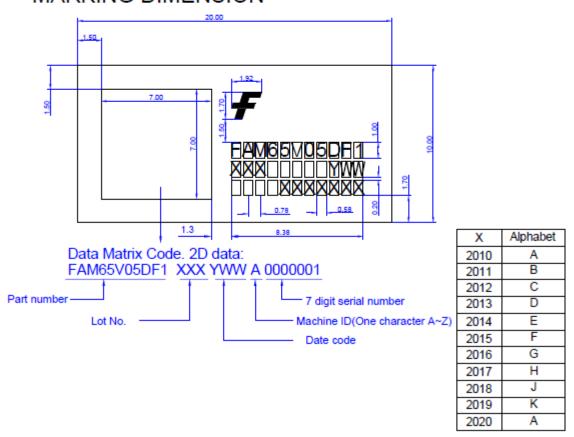

Step	Description
C1	Control supply voltage rises above reset voltage UV _{CCR}
C2	Normal operation. IGBT on and carrying current
С3	Control supply voltage falls below detection voltage UV _{CCD}
C4	Filtered supply voltage falls below UV _{CCD} and IGBT turns off
C5	Control supply voltage rises above reset voltage UV _{CCR}
C6	IGBT "HI" input is followed after supply voltage rise


Figure 23 Under-Voltage Protection (High-side)

Physical Dimensions Dimension is in millimeter unless otherwise noted.


NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D) () IS REFERENCE
- E) [] IS ASS'Y QUALITY
- F) DRAWING FILENAME: MOD27BJREV1.0



Physical Dimensions

* MARKING LAY-OUT

* MARKING DIMENSION

Note: Marking pattern shown for final production version, which slightly differ from previous engineering versions.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative