2.5 V / 3.3 V / 5.0 V 1:4 Clock Fanout Buffer

Description

The NB3L553 is a low skew 1-to 4 clock fanout buffer, designed for clock distribution in mind. The NB3L553 specifically guarantees low output-to-output skew. Optimal design, layout and processing minimize skew within a device and from device to device.

Features

- Input/Output Clock Frequency up to 200 MHz
- Low Skew Outputs (35 ps), Typical
- RMS Phase Jitter (12 kHz 20 MHz): 29 fs (Typical)
- Output goes to Three-State Mode via OE
- Operating Range: $V_{DD} = 2.375 \text{ V}$ to 5.25 V
- 5 V Tolerant Input Clock ICLK
- Ideal for Networking Clocks
- Packaged in 8-pin SOIC
- Industrial Temperature Range
- These are Pb-Free Devices

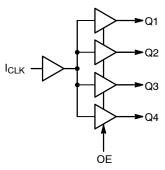


Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS*

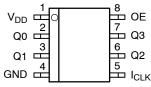
SOIC-8 D SUFFIX CASE 751

3L553 = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week ■ = Pb-Free Package

DFN8 MN SUFFIX CASE 506AA

6P = Specific Device Code


M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

PINOUT DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3L553DG	SOIC-8 (Pb-Free)	98 Units/Rail
NB3L553DR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel
NB3L553MNR4G	DFN-8 (Pb-Free)	1000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. OE, OUTPUT ENABLE FUNCTION

OE	Function
0	Disable
1	Enable

Table 2. PIN DESCRIPTION

Pin #	Name	Туре	Description
1	V_{DD}	Power	Positive supply voltage (2.375 V to 5.25 V)
2	Q0	(LV)CMOS/(LV)TTL Output	Clock Output 0
3	Q1	(LV)CMOS/(LV)TTL Output	Clock Output 1
4	GND	Power	Negative supply voltage; Connect to ground, 0 V
5	I _{CLK}	(LV)CMOS Input	Clock Input. 5.0 V tolerant
6	Q2	(LV)CMOS/(LV)TTL Output	Clock Output 2
7	Q3	(LV)CMOS/(LV)TTL Output	Clock Output 3
8	OE	(LV)TTL Input	V_{DD} for normal operation. Pin has no internal pullup or pull down resistor for open condition default. Use from 1 to 10 kOhms external resistor to force an open condition default state.
-	EP	Thermal Exposed Pad	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{DD}	Positive Power Supply	GND = 0 V	-	6.0	V
VI	Input Voltage	OE I _{CLK}	GND = 0 V and V _{DD} = 2.375 V to 5.25 V	$\begin{aligned} & \text{GND} - 0.5 \leq V_{\text{I}} \leq V_{\text{DD}} + 0.5 \\ & \text{GND} - 0.5 \leq V_{\text{I}} \leq 5.75 \end{aligned}$	V
T _A	Operating Temperature Range, Industrial	-	-	≥ -40 to ≤ +85	°C
T _{stg}	Storage Temperature Range	-	-	-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient)	0 Ifpm 500 Ifpm	SOIC-8	190 130	°C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	(Note 1)	SOIC-8	41 to 44	°C/W
θ _{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. ATTRIBUTES

Chara	Characteristic				
ESD Protection	Human Body Model Machine Model	> 2 kV > 150 V			
Moisture Sensitivity, Indefinite T	Level 1				
Flammability Rating	Oxygen Index: 28 to 34	UL-94 code V-0 @ 0.125 in			
Transistor Count		531 Devices			
Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test					

^{2.} For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 5. DC CHARACTERISTICS (V_{DD} = 2.375 V to 2.625 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{DD}	Power Supply Current @ 135 MHz, No Load	-	25	30	mA
V _{OH}	Output HIGH Voltage – I _{OH} = -16 mA	1.7	-	_	V
V _{OL}	Output LOW Voltage – I _{OL} = 16 mA	-	-	0.4	V
V _{IH,} I _{CLK}	Input HIGH Voltage, I _{CLK}	(V _{DD} ÷2)+0.5	-	5.0	V
V _{IL,} I _{CLK}	Input LOW Voltage, I _{CLK}	-	-	(V _{DD} ÷2)-0.5	V
V _{IH,} OE	Input HIGH Voltage, OE	1.8	-	V_{DD}	V
V _{IL,} OE	Input LOW Voltage, OE	-	-	0.7	٧
ZO	Nominal Output Impedance	-	20	-	Ω
CIN	Input Capacitance, I _{CLK} , OE	-	5.0	-	pF
IOS	Short Circuit Current	-	± 28	-	mA

DC CHARACTERISTICS (V_{DD} = 3.15 V to 3.45 V, GND = 0 V, T_A = -40° C to $+85^{\circ}$ C) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{DD}	Power Supply Current @ 135 MHz, No Load	-	35	40	mA
V _{OH}	Output HIGH Voltage – I _{OH} = -25 mA	2.4	-	-	٧
V _{OL}	Output LOW Voltage – I _{OL} = 25 mA	-	-	0.4	٧
V _{OH}	Output HIGH Voltage – I _{OH} = –12 mA (CMOS level)	V _{DD} – 0.4	-	-	٧
V _{IH,} I _{CLK}	Input HIGH Voltage, I _{CLK}	(V _{DD} ÷2)+0.7	-	5.0	٧
V _{IL,} I _{CLK}	Input LOW Voltage, I _{CLK}	-	-	(V _{DD} ÷2)-0.7	٧
V _{IH,} OE	Input HIGH Voltage, OE	2.0	-	V_{DD}	٧
V _{IL,} OE	Input LOW Voltage, OE	0	_	0.8	V
ZO	Nominal Output Impedance	_	20	-	Ω
CIN	Input Capacitance, OE	_	5.0	_	pF
IOS	Short Circuit Current	_	± 50	_	mA

DC CHARACTERISTICS (V_{DD} = 4.75 V to 5.25 V, GND = 0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{DD}	Power Supply Current @ 135 MHz, - No Load	-	45	85	mA
V _{OH}	Output HIGH Voltage – I _{OH} = –35 mA	2.4	-	-	V
V _{OL}	Output LOW Voltage – I _{OL} = 35 mA	-	-	0.4	٧
V _{OH}	Output HIGH Voltage – I _{OH} = –12 mA (CMOS level)	V _{DD} – 0.4	-	-	V
V _{IH,} I _{CLK}	Input HIGH Voltage, I _{CLK}	(V _{DD} ÷2) + 1	-	5.0	V
V _{IL,} I _{CLK}	Input LOW Voltage, I _{CLK}	-	-	(V _{DD} ÷2) – 1	V
V _{IH,} OE	Input HIGH Voltage, OE	2.0	-	V_{DD}	V
V _{IL,} OE	Input LOW Voltage, OE	-	-	0.8	V
ZO	Nominal Output Impedance	-	20	-	Ω
CIN	Input Capacitance, OE	-	5.0	-	pF
IOS	Short Circuit Current	-	± 80	-	mA

Table 6. AC CHARACTERISTICS; V_{DD} = 2.5 V ±5% (V_{DD} = 2.375 V to 2.625 V, GND = 0 V, T_A = -40°C to +85°C) (Note 3)

Symbol	Characteristic	Min	Тур	Max	Unit
f _{in}	Input Frequency	_	-	200	MHz
t _r /t _f	Output rise and fall times; 0.8 V to 2.0 V	-	1.0	1.5	ns
t _{pd}	Propagation Delay, CLK to Q _n (Note 4)	2.2	3.0	5.0	ns
t _{skew}	Output-to-output skew; (Note 5)	-	35	50	ps
t _{skew}	Device-to-device skew, (Note 5)	-	-	500	ps

AC CHARACTERISTICS; V_{DD} = 3.3 V ±5% (V_{DD} = 3.15 V to 3.45 V, GND = 0 V, T_{A} = -40°C to +85°C) (Note 3)

Symbol	Characteristic	Conditions	Min	Тур	Max	Unit
f _{in}	Input Frequency		-	-	200	MHz
t _{jitter} (φ)	RMS Phase Jitter (Integrated 12 kHz – 20 MHz) (See Figures 2 and 3)	f _{carrier} = 100 MHz	-	18	-	fs
t _r /t _f	Output rise and fall times; 0.8 V to 2.0 V		-	0.6	1.0	ns
t _{pd}	Propagation Delay, CLK to Q _n (Note 4)		2.0	2.4	4.0	ns
t _{skew}	Output-to-output skew; (Note 5)		-	35	50	ps
t _{skew}	Device-to-device skew, (Note 5)		ı	ı	500	ps

$\textbf{AC CHARACTERISTICS; V}_{DD} = \textbf{5.0 V} \pm \textbf{5\%} \ (V_{DD} = 4.75 \ V \ to \ 5.25 \ V, \ GND = 0 \ V, \ T_{A} = -40 ^{\circ} C \ to \ +85 ^{\circ} C) \ (Note \ 3)$

Symbol	Characteristic	Min	Min	Тур	Max	Unit
f _{in}	Input Frequency		-	=	200	MHz
t _{jitter} (φ)	RMS Phase Jitter (Integrated 12 kHz – 20 MHz) (See Figures 2 and 3)	f _{carrier} = 100 MHz	-	29	-	fs
t _r /t _f	Output rise and fall times; 0.8 V to 2.0 V		-	0.3	0.7	ns
t _{pd}	Propagation Delay, CLK to Q _n (Note 4)		1.7	2.5	4.0	ns
t _{skew}	Output-to-output skew; (Note 5)		_	35	50	ps
t _{skew}	Device-to-device skew, (Note 5)		-	_	500	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Outputs loaded with external $R_L = 33~\Omega$ series resistor and $C_L = 15~pF$ to GND. Duty cycle out = duty in. A 0.01 μ F decoupling capacitor should

be connected between V_{DD} and GND.

4. Measured with rail-to-rail input clock

^{5.} Measured on rising edges at $V_{DD} \div 2$ between any two outputs with equal loading.

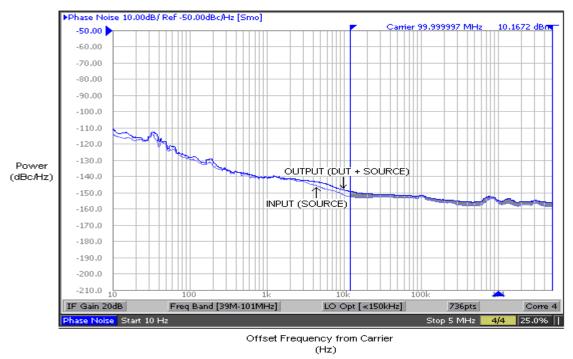


Figure 2. Phase Noise Plot at 100 MHz at an Operating Voltage of 3.3 V, Room Temperature

The above plot captured using Agilent E5052A shows Additive Phase Noise of the NB3L553 device measured with an input source generated by Agilent E8663B. The RMS phase jitter contributed by the device (integrated between 12 kHz to 20 MHz; as shown in the shaded area) is 18 fs (RMS Phase Jitter of the input source is 75.40 fs and Output (DUT+Source) is 93.16 fs).

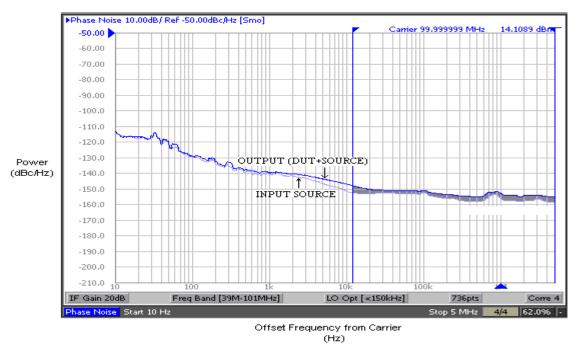
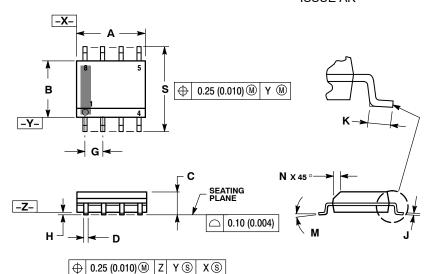
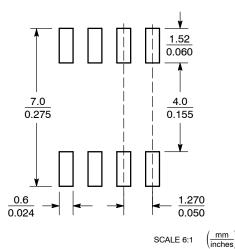



Figure 3. Phase Noise Plot at 100 MHz at an Operating Voltage of 5 V, Room Temperature

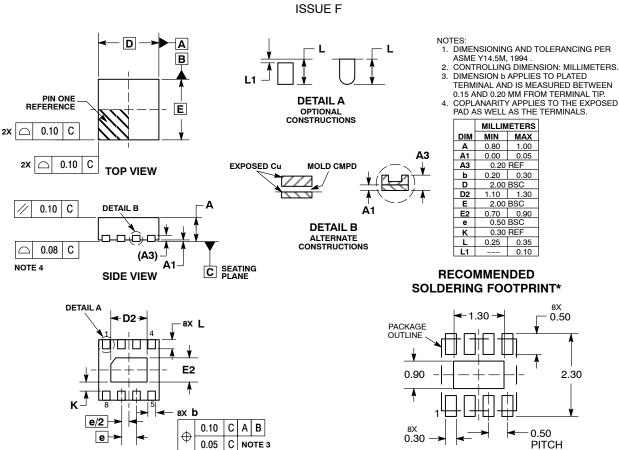
The above plot captured using Agilent E5052A shows Additive Phase Noise of the NB3L553 device measured with an input source generated by Agilent E8663B. The RMS phase jitter contributed by the device (integrated between 12 kHz to 20 MHz; as shown in the shaded area) is 29 fs (RMS Phase Jitter of the input source is 75.40 fs and Output (DUT+Source) is 103.85 fs).

PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DER SIDE
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	° 0	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DFN8 2x2, 0.5P CASE 506AA

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

BOTTOM VIEW

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative