

WS72141

300nA Nano-Power Rail-to-Rail Input Output Operational Amplifiers

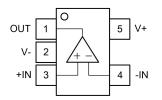
Descriptions

The WS72141 is a single low-voltage operational amplifier with rail-to-rail input/output swing. Ultra low power makes this amplifier ideal for battery-powered and portable applications. The WS72141 has a gain-bandwidth product of 13kHz (TYP) and is unity gain stable. These specifications make this operational amplifier appropriate for low frequency applications, such as battery current monitoring and sensor conditioning.

WS72141 is available in SOT-23-5L packages. Standard products are Pb-Free and halogen-Free.

Applications

- Handsets and Mobile Accessories
- Current Sensing
- Wireless Remote Sensors, Active RFID Readers
- Environment/Gas/Oxygen Sensors
- Threshold Detectors/Discriminators
- Low Power Filters
- Battery or Solar Powered Devices
- Sensor Network Powered by Energy Scavenging


Features

- Wide Supply Voltage : 1.6~5.5V
- Quiescent Current per : 300nA Typical Amplifier
- GBWP : 13kHz
- Rail-to-Rail Input/Output Swing
- Unity Gain Stable
- -40°C to 125°C Operation Temperature Range
- Available in Green SOT-23-5L Packages

Http://www.willsemi.com

SOT-23-5L

SOT-23-5L Pin configuration (Top view)

Marking

2141 = Device code	
--------------------	--

GE = Special code

Y = Year code

W = Week code

Order Information

Device	Package	Shipping
WS72141E-5/TR	SOT-23-5L	3000/Reel &Tape

Pin Descriptions

Pin Number	Symbol	Descriptions
1	OUT	Output
2	V-	Negative supply
3	+IN	Non-inverting input
4	-IN	Inverting input
5	V+	Positive supply

Absolute Maximum Ratings⁽¹⁾

Parameter	Symbol	Value	Unit
Supply Voltage, ([V+] - [V-])	Vs ⁽²⁾	6	V
Input Common Mode Voltage Range	V _{ICR}	(V ⁻)-0.3 to (V ⁺)+0.3	V
Output Short-Circuit Duration	t _{SO} ⁽³⁾	Unlimited	/
Operating Fee-Air Temperature Range	T _A	-40 to 125	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Junction Temperature Range	TJ	150	°C
Lead Temperature Range	TL	260	°C

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values, except differential voltage are with respect to network terminal.
- 3. A heat sink may be required to keep the junction temperature below the absolute maximum, depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies the amount of PC board metal connected to the package. The specified values are for short traces connected to leads.

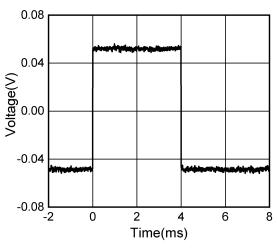
Symbol	Parameter	Condition	Minimum level	Unit	
HBM	Human Body Model ESD	MIL-STD-883H Method 3015.8	±8000	V	
	Human body woder ESD	JEDEC-EIA/JESD22-A114A	10000		
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	±2000	V	
MM	Machine Model ESD	JEDEC-EIA/JESD22-A115	±400	V	

ESD, Electrostatic Discharge Protection

Electronics Characteristics

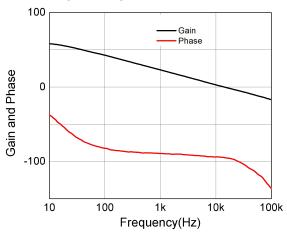
The *denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 27^{\circ}$ C. $V_S = 5$ V, $V_{CM} = V_{OUT} = V_S/2$, $R_{load} = 100$ k Ω , $C_{load} = 60$ pF.

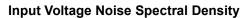
Symbol	1	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vos	Input Offse	t Voltage	V_{CM} = $V_{S}/2$ and V_{CM} =GND	*	-3.5	±0.1	3.5	mV
α _{VOS}	Input Offse	t Voltage Drift				1.6		μV/°C
I _{IB}	Input Bias	Current				<10		pА
los	Input Offse	t Current				<10		pА
Vn	Input Volta	ge Noise	f=0.1Hz to10Hz			8		μV _{P-P}
en	Input Volta	ge Noise Density	f=1kHz			80		nV/√Hz
R _{IN}	Input Resis	tance				>1		ТΩ
CMRR	Common M	lode Rejection Ratio	V _{CM} =0.1V to 4.9V	*	55	75		dB
V _{CM}	Common Mode Input Voltage Range			*	(V⁻)-0.3		(V ⁺)+0.3	V
PSRR	Power Sup	ply Rejection Ratio		*	65	91		dB
			$V_{OUT}=2.5V, R_{load}=100k\Omega$			118		dB
A _{VOL}	A _{VOL} Open Loop Large Signal G		V _{OUT} =0.1V to 4.9V, R _{load} =100kΩ	*	85	118		dB
Vol,Voh	Output Swi	ng from Supply Rail	R_{load} =100k Ω			5		mV
Rout	Closed-Loc	p Output Impedance	G=1,f=1kHz,I _{OUT} =0			4.3		Ω
Isc	Output Sho	ort-Circuit Current	Sink or Source Current		12	15		mA
Vdd	Supply Volt	tage			1.6		5.5	V
lq	Quiescent	Current per Amplifier		*		300	450	nA
PM	Phase Margin		R_{load} =100k Ω , C_{load} =60pF			80		degrees
GM	Gain Margin		R _{load} =100kΩ, C _{load} =60pF			18		dB
GBWP	Gain-Band	width Product	f=1kHz			13		kHz
ts	Settling Time	1.5 to 3.5V, Unity Gain	0.1%			0.4		ms
		2.45 to 2.55V, Unity Gain	0.1%			0.04		
SR	Slew Rate		A _V =1, V _{OUT} =1.5V to 3.5V, R _{load} =100kΩ, C _{load} =60pF			7		mV/μs
FPBW	Full Power	Bandwidth ^{Note1}	2V _{P-P}			300		Hz

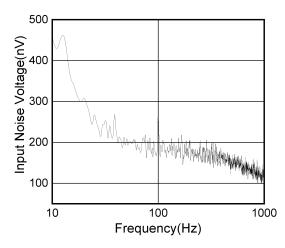

Note:

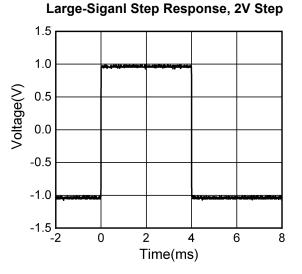
1. Full power bandwidth is calculated from the slew rate FPBW = SR/($\pi \cdot V_{P-P}$).

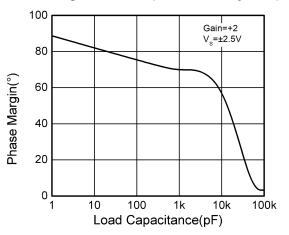
111 SEMI

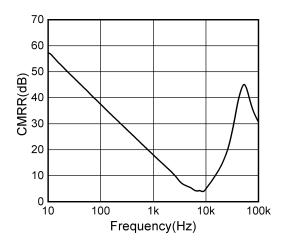

Typical Characteristics


 $T_A=25^{\circ}C$, $V_S=5V$, $V_{CM}=V_S/2$, unless otherwise noted

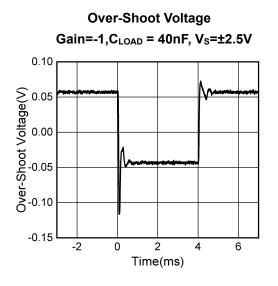


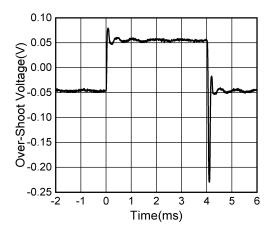

Small-Siganl Step Response, 100mV Step



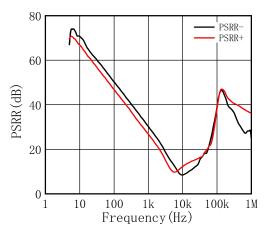


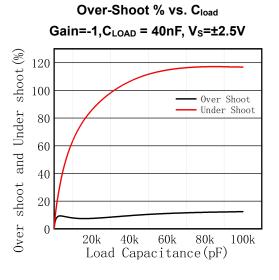
Phase Margin vs. Cload (Stable for Any Cload)



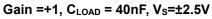

III SEMI

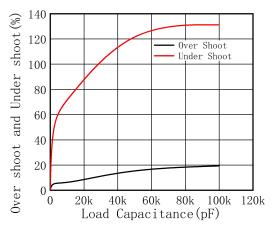
Typical Characteristics (continued) T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

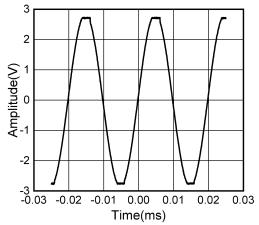



Over-Shoot Voltage

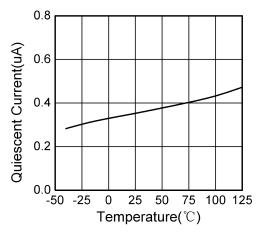
 $Gain=+1, C_{LOAD} = 40nF, V_{S}=\pm2.5V$

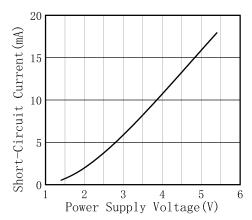



Power-Supply Rejection Ratio

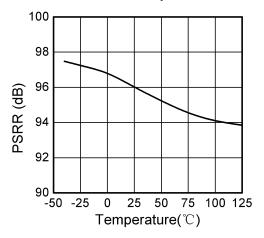


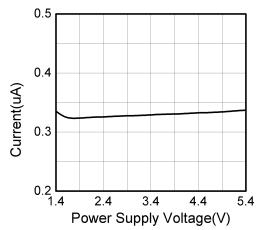
Over-Shoot % vs. C_{load}

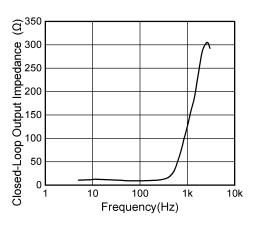

VIN = -0.2V to 5.7V, No Phase Reversal

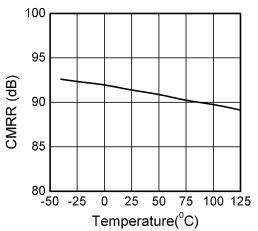

JI SEMI

Typical Characteristics (continued) T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

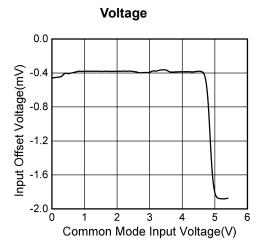

Quiescent Supply Current vs. Temperature

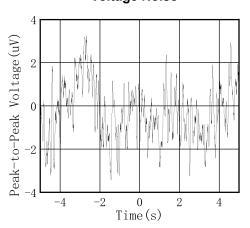

Short-Circuit Current vs. Supply Voltage


PSRR vs. Temperature


Quiescent Supply Current vs. Supply Voltage

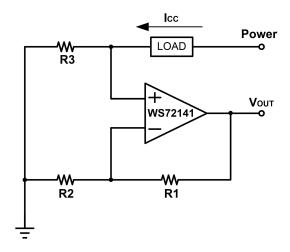
Closed-Loop Output Impedance vs. Frequency


CMRR vs. Temperature

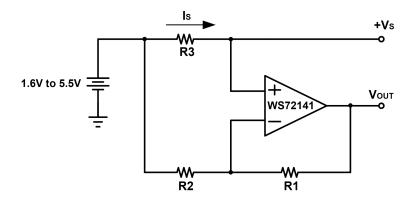


Typical Characteristics (continued) T_A=25°C, V_S=5V, V_{CM}=V_S/2, unless otherwise noted

Input Offset Voltage vs. Common Mode Input


0.1Hz to 10Hz Time Domain Output Voltage Noise

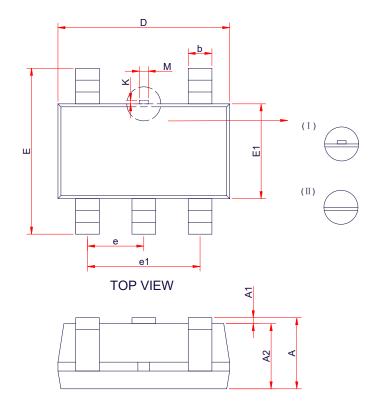
Application Circuit

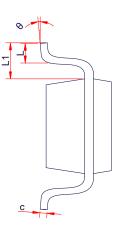

(1) WS72141 in Low Side Battery Current Sensor

Application Circuit for Low Side Battery Current Sensor

$$V_{OUT} = I_{CC} \times R_3 \times (\frac{R_1}{R_2} + 1)$$

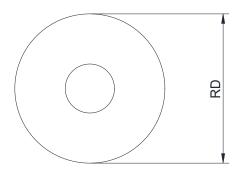
(2) WS72141 in High Side Battery Current Sensor

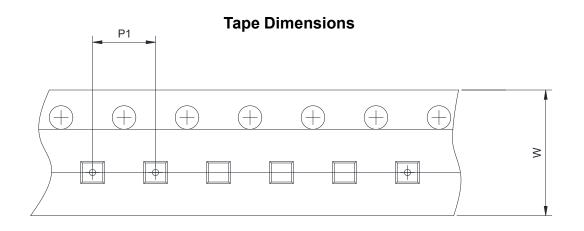

Application Circuit for High Side Battery Current Sensor

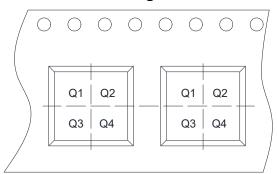

$$I_{S} = \frac{+V_{S} - V_{OUT}}{R_{1} \times R_{3} \div R_{2}}$$

PACKAGE OUTLINE DIMENSIONS

SIDE VIEW


SIDE VIEW


Cumhal	Dimensions in Millimeters				
Symbol	Min.	Тур.	Max.		
A	-	-	1.45		
A1	0.00	-	0.15		
A2	0.90	1.10	1.30		
b	0.30	0.40	0.50		
С	0.10	-	0.21		
D	2.72	2.92	3.12		
E	2.60	2.80	3.00		
E1	1.40	1.60	1.80		
е	0.95 BSC				
e1		1.90 BSC			
L	0.30	0.45	0.60		
М	0.10	0.15	0.25		
К	0.00	-	0.25		
θ	0°	0° - 8°			


TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	🗹 7inch	🔲 13inch		
W	Overall width of the carrier tape	🗹 8mm	🔲 12mm	🔲 16mm	
P1	Pitch between successive cavity centers	🗖 2mm	🗹 4mm	🔲 8mm	
Pin1	Pin1 Quadrant	🗖 Q1	🗖 Q2	🔽 Q3	🗖 Q4