

SUPER-SEMI

SUPER-MOSFET

Super Junction Metal Oxide Semiconductor Field Effect Transistor

650V Super Junction Power MOSFET Gen-II SS*65R360S2

Rev. 1.0 Mar. 2019

www.supersemi.com.cn

SSB65R360S2/SSI65R360S2 650V N-Channel Super-Junction MOSFET Gen-II

Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance. This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion in switching mode operation for higher efficiency.

SSB65R360S2

s TO-263

Features

- Multi-Epi process SJ-FET
- 700V @TJ = 150 °C • Typ. RDS(on) = 0.33Ω
- Ultra Low Gate Charge (typ. Qg = 23nC)
- 100% avalanche tested

TO-262

Absolute Maximum Ratings

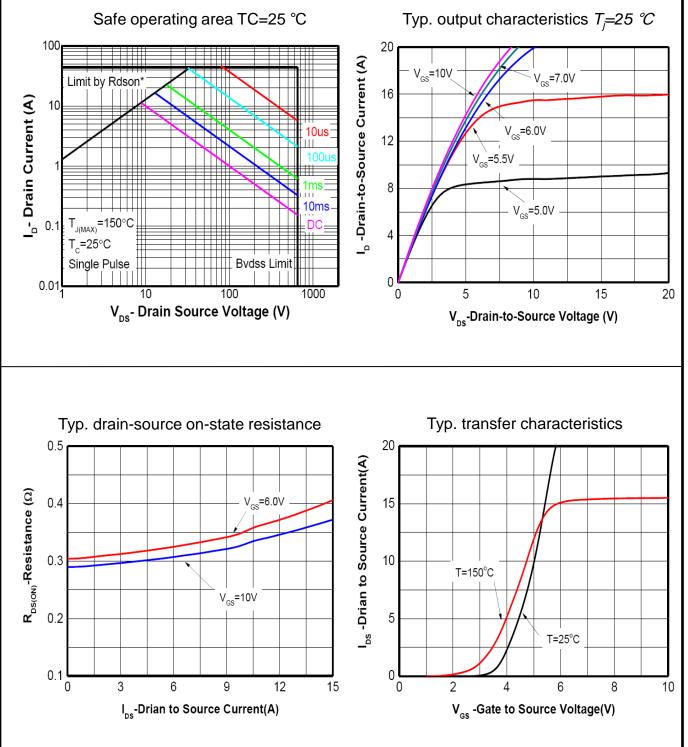
Symbol	Parameter	SSB_I65R360S2	Unit	
V _{DSS}	Drain-Source Voltage	650	V	
ID	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)	13* 8.2*	А	
I _{DM}	Drain Current - Pulsed (Note 1)	52	А	
V _{GSS}	Gate-Source voltage	±30	V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	163	mJ	
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	3.3	А	
dv/dt	ak Diode Recovery dv/dt (Note 3) 15		V/ns	
dVds/dt	Drain Source voltage slope (Vds=480V)	Source voltage slope (Vds=480V) 50		
PD	Power Dissipation (TC = 25°C)	105	w	
TJ, T _{STG}	perating and Storage Temperature Range -55 to +150		°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/16" from Case for 10 Seconds	260	°C	

Top View

* Drain current limited by maximum junction temperature. Maximum duty cycle D=0.7

Thermal Characteristics

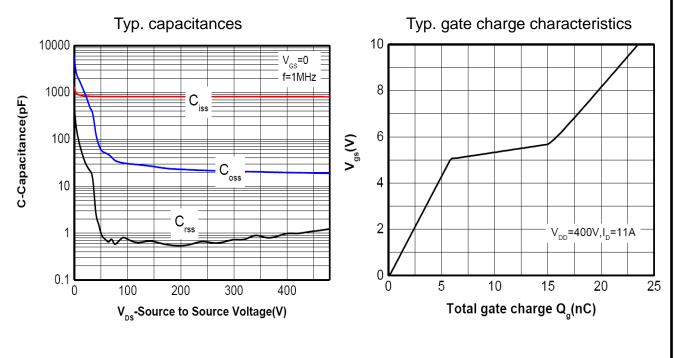
Symbol Parameter		SSB_I65R360S2		
R _{θJC}	Thermal Resistance, Junction-to-Case	1.2	°C/W	
R _{ecs}	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W	
R _{0JA}	Thermal Resistance, Junction-to-Ambient	62	°C/W	

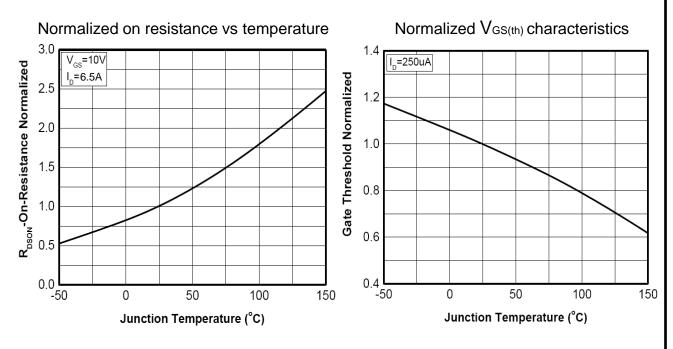


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Charact	eristics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25°C	650	-	-	V
BVDSS		Vgs = 0V, ID = 250µA, TJ = 150℃	-	700	-	V
∆BVdss/∆Tj	Breakdown Voltage Temperature Coefficient	ID = 250 μ A, Referenced to 25°C	-	0.6	-	V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 650V, VGS = 0V -Tc = 125°C	-		1 100	μΑ μΑ
IGSSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V	-	-	100	nA
Igssr	Gate-Body Leakage Current, Reverse	VGS = -30V, VDS = 0V	-	-	-100	nA
On Charact	eristics					
VGS(th)	Gate Threshold Voltage	$VDS = VGS$, $ID = 250\mu A$	2.0	3.0	4.0	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID = 6.5A	-	0.33	0.37	Ω
Dynamic Ch	haracteristics					
Ciss	Input Capacitance	VDS = 100V, VGS = 0V, f = 1.0MHz	-	810	-	pF
Coss	Output Capacitance		-	30	-	pF
Crss	Reverse Transfer Capacitance	T = 1.0 MHZ	-	0.8	-	pF
Qg	Total Gate Charge		-	23	-	nC
Qgs	Gate-Source Charge	VGS = 10V, ID = 6.5A VDS = 100V, VGS = 0V, f = 1.0MHz VDS = 400V, ID = 13A, VGS = 10V (Note 4) f=1 MHz, open drain	-	6	-	nC
Qgd	Gate-Drain Charge	VGS = 10V (Note 4)	-	9	-	nC
Rg	Gate resistance	f=1 MHz, open drain	-	6.5	-	Ω
Switching C	haracteristics		1		1	
td(on)	Turn-On Delay Time		-	11.5	-	ns
tr	Turn-On Rise Time	VDS = 400V, ID = 6.5A	-	23.5	-	ns
td(off)	Turn-Off Delay Time	$R_G = 10\Omega$, $V_{GS} = 10V$	-	43	-	ns
tf	Turn-Off Fall Time	— (Note 4)	-	21.5	-	ns
Drain-Sourc	e Diode Characteristics and Maximum I	Ratings				
ls	Maximum Continuous Drain-Source Dioc	le Forward Current	-	-	13	A
ISM	Maximum Pulsed Drain-Source Diode Fo		-	-	52	A
VSD	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 13A$	-	0.9	1.4	V
trr	Reverse Recovery Time		-	250	-	ns
Qrr	Reverse Recovery Charge	VGS = 0V, VDS = 400V,	-	1.8	-	μC
Irrm	Peak Reverse Recovery Current	─ Is = 6.5A, dIF/dt =100A/µs	-	14.9	-	A

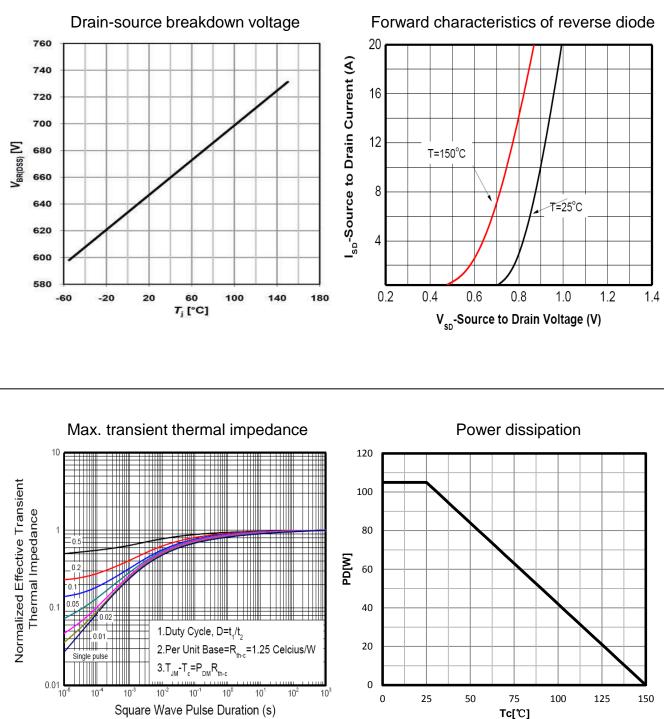
NOTES:

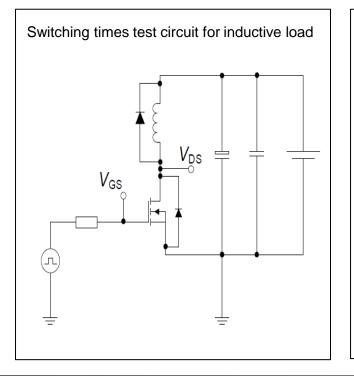
1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. $ID=I_{AS}$, VDD=50V, Starting TJ=25 °C 3. I_{SD} =ID, di/dt ≤ 200A/us, V_{DD} ≤ BV_{DSS} , Starting TJ = 25 °C 4. Essentially Independent of Operating Temperature Typical Characteristics



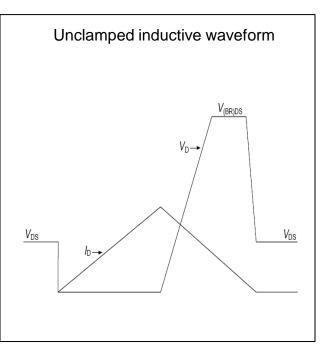


SSB65R360S2/SSI65R360S2 650V N-Channel Super-Junction MOSFET Gen-II

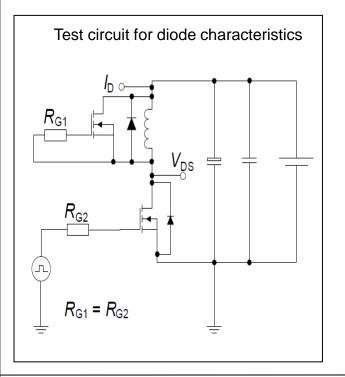


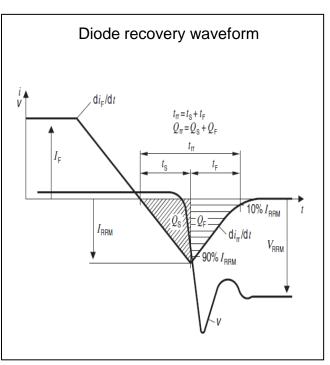


Typical Performance Characteristics

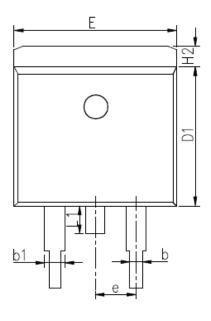

Switching times test circuit and waveform for inductive load

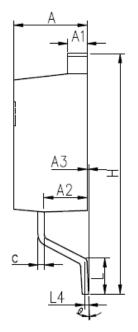
Unclamped inductive load test circuit and waveform

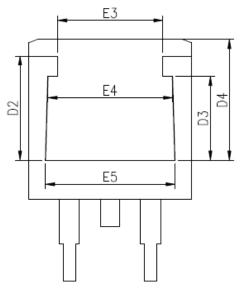


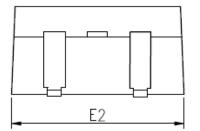


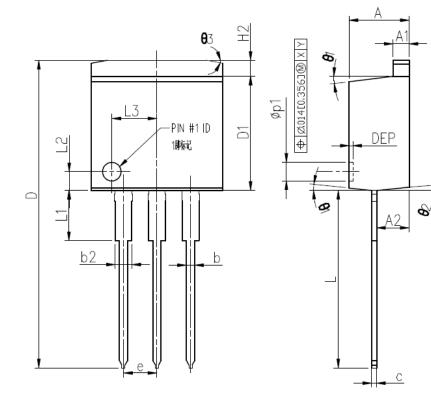
SSB65R360S2/SSI65R360S2 650V N-Channel Super-Junction MOSFET Gen-II

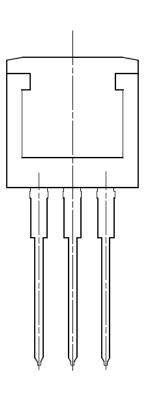



Test circuit and waveform for diode characteristics








COMMON DIMENSIONS

	MM			
SYMBOL	MIN	NOM	MAX	
Α	4.27	4.57	4.87	
A1	1.22	1.27	1.42	
A2	2.39	2.69	2.99	
A3	0.00	0.13	0.20	
b	0.70	0.81	1.01	
b1	1.17	1.27	1.50	
С	0.30	0.38	0.53	
D1	8.40	8.70	9.00	
D2	5.33	6.33	6.63	
D3	4.54	5.54	5.84	
D4	6.60	7.60	8.00	
E	9.88	10.16	10.50	
E2	9.80	10.10	10.40	
E3	4.94	5.94	6.24	
E4	6.67	7.67	7.97	
E5	7.06	8.06	8.36	
е		2.54	BSC	
Н	14.70	15.10	15.50	
H2	1.00	1.27	1.50	
L	2.00	2.30	2.60	
L1	1.35	1.55	1.75	
L4	0.25 BSC			
θ	0°	5°	9°	

COMMON DIMENSIONS

	MM			INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	4.45	4.57	4.70	0.175	0.180	0.185	
A1	1.22	1.27	1.32	0.048	0.050	0.052	
A2	2.29	2.67	2.92	0.090	0.105	0.115	
b	0.71	0.813	0.97	0.028	0.032	0.038	
b2	1.22	1.270	1.40	0.048	0.050	0.055	
С	0.35	0.381	0.76	0.014	0.015	0.030	
D	23.20	23.61	24.02	0.913	0.930	0.946	
D1	8.38	8.70	8.89	0.330	0.343	0.350	
E1	10.03	10.16	10.54	0.395	0.400	0.415	
е	2.54 BSC			0.100 BSC			
H2	-	-	1.31	-	-	0.052	
L	13.34	13.73	14.10	0.525	0.541	0.555	
L1	3.30	3.56	4.06	0.130	0.140	0.160	
L2		1.49 REF			0.059 REF		
L3	3.40 REF			0.134 REF			
ΦP1	1.07	1.20	1.32	0.042	0.047	0.052	
θ1	-	7°	-	-	7°	-	
θ2	-	3°	-	-	3°	-	
θ3	-	-	12°	-	-	12°	
θ4	-	-	3°	-	-	3°	
DEP	0.10	0.18	0.25	0.004	0.007	0.010	

DISCLAIMER

SUPER SEMICONDUCTOR reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, SUPER SEMICONDUCTOR does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, SUPER SEMICONDUCTOR hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling SUPER SEMICONDUCTOR products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify SUPER SEMICONDUCTOR for any damages arising or resulting from such use or sale.

INFORMATION

For further information on technology, delivery terms and conditions and prices, please contact SUPER SEMICONDUCTOR office or website (**www.supersemi.com.cn**).