

SUPER-SEMI

SUPER-MOSFET

Super Gate Metal Oxide Semiconductor Field Effect Transistor

100V Super Gate Power Transistor SG*100N08L

Rev. 1.0 Jul. 2016

www.supersemi.com.cn

SGO100N08L 100V N-Channel MOSFET

Description

The SG-MOSFET uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Jun, 2015 SG-FET

Features

• VDS	
 ID (at Vgs=10V) 	
RDS(on) (at Vgs=10V)	
(at Vgs=4.5V)	

100V 14A <8.2mΩ <10.5mΩ

Excellent Avalanche Performance

SGO100N08L

Absolute Maximum Ratings

Symbol	Parameter	SGO100N08L	Unit
V _{DS}	Drain-Source Voltage	100	V
I _D	Drain Current -Continuous (TA = 25°C) -Continuous (TA = 70°C)	14* 11*	А
I _{DM}	Drain Current - Pulsed (Note 1)	56*	А
V _{GS}	Gate-Source voltage	±20	V
I _{AS}	Avalanche Current, single pulse (Note 1)	38	А
E _{AS}	Avalanche Energy, single pulse, L=0.5mH (Note 1)	720	mJ
PD	Power Dissipation - TA = 25°C (Note 2) - TA = 70°C	3.1 2.0	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C

* Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	SGO100N08L	Unit
	Maximum Junction-to-Ambient, t<10s(Note 3)	31(typ.)	°C/W
R _{eja}	Maximum Junction-to-Ambient, Steady- State(Note 3,4)	59(typ.)	°C/W
R _{ejl}	Maximum Junction-to-Lead, Steady-State	16(typ.)	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characteri	stics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25℃	100	115	-	V
IDSS	Zero Gate Voltage Drain Current	VDS = 100V, VGS = 0V −TJ = 55°C	-	-	1 5	μΑ μΑ
IGSSF	Gate-Body Leakage Current, Forward	Vgs = 20V, Vds = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	Vgs = -20V, Vds = 0V	-	-	-100	nA
On Characteris	stics					
VGS(th)	Gate Threshold Voltage	$VDS = VGS$, $ID = 250\mu A$	1.4	2.0	2.3	V
RDS(on)	Static Drain-Source On- Resistance	VGS = 10V, ID = 14A VGS = 4.5V, ID = 12A	-	6.8 8.9	8.2 10.5	mΩ
g FS	Forward Transconductance	VDS = 5V, ID = 12A	-	45	-	S
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz	-	1.4	-	Ω
Dynamic Char	acteristics					
Ciss	Input Capacitance	VDS = 50V, VGS = 0V,	-	2570	-	pF
Coss	Output Capacitance	f=1MHz	-	470	-	pF
Crss	Reverse Transfer Capacitance		-	16	-	pF
Switching Cha	racteristics					
td(on)	Turn-On Delay Time	$VDS = 50V, RG = 3\Omega,$	-	10	-	ns
tr	Turn-On Rise Time	ID = 12A , VGS = 10V (Note 5, 6)	-	6.5	-	ns
td(off)	Turn-Off Delay Time		-	31	-	ns
tf	Turn-Off Fall Time		-	11	-	ns
Qg(10V)	Total Gate Charge	VDS = 50V, ID = 12A,	-	39	-	nC
Qg(4.5V)	Total Gate Charge	VGS = 0~10V (Note 5, 6)	-	19	-	nC
Qgs	Gate-Source Charge	$VDS = 50V, RG = 3\Omega,$ ID = 12A, VGS = 10V (Note 5, 6) VDS = 50V, ID = 12A, VGS = 0~10V (Note 5, 6) atings	-	7	-	nC
Qgd	Gate-Drain Charge		-	9.5	-	nC
Drain-Source I	Diode Characteristics and Maximum R	Ratings				
Is	Maximum Continuous Drain-Source	ce Diode Forward Current	-	-	4.5	Α
Isм	Maximum Pulsed Drain-Source Di	ode Forward Current	-	-	14	Α
VSD	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 1A	-	0.7	1.0	V
trr	Reverse Recovery Time	VGS = 0V, VR=50V, IS = 12A	-	31	-	ns
Qrr	Reverse Recovery Charge	dlF/dt =500A/µs (Note 5)	-	145	-	nC

NOTES:

1. Repetitive Rating: Pulse width limited by maximum junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C. 2. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.

3. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design.

4. The R_{BJA} is the sum of the thermal impedance from junction to lead R_{BJL} and lead to ambient. 5. Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2%

6. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1: On-Region Characteristics

 $I_{\rm D}\left(A\right)$ Figure 3: On-Resistance vs Drain current and Gate voltage

Figure 5: Drain-Source breakdown voltage

Typical Performance Characteristics

Figure 9: Avalanche Characteristics

Figure 10: Maximum Forward Biased Safe Operating Area

Gate Charge Test Circuit and Waveform

Resistive Switching Test Circuit and Waveforms

SGO100N08L 100V N-Channel MOSFET

RECOMMENDED LAND PATTERN

SVD (DOL 6	DIMENSIONS IN MILLIMETERS			
SIMBOLS	MIN	NOM	MAX	
Α	1.35	1.65	1.75	
A1	0.10	0.15	0.25	
A2	1.25	1.50	1.65	
b	0.31	0.41	0.51	
с	0.17	0.20	0.25	
D	4.80	4.90	5.00	
Е	3.80	3.90	4.00	
e	1.27 BSC			
E1	5.80	6.00	6.20	
h	0.25	0.30	0.50	
L	0.40	0.69	1.27	
θ	0°	4°	8°	

©2015 Super Semiconductor Corporation SGO100N08L Rev.1.0 www.supersemi.com.cn