# **AW9201 Single Key Capacitive Controller**

#### **FEATURES**

- Configurable Touch Sensitivity
- RF Noise Filter
- Automatically Calibrate Varying Environmental Changes
- Intrinsic Capacitance Compensation
- Support Interrupt Output, Open-drain output, Low Active
- Support Compatible I<sup>2</sup>C Interface, Interface Voltage range of 1.8V ~ 2.8V
- I<sup>2</sup>C Address: 0x45
- Single Power Supply, Voltage Range: 2.5V-3.6V
- QFN1.6mm×1.6mm\_8L Package

## **APPLICATIONS**

Mobile Phones, MID
Portable Media Player
White Goods

#### GENERAL DESCRIPTION

AW9201 is capacitive single-channel touch sensor. It integrates a precise Capacitance Digital Converter (CDC) and a DSP core for touch detecting.

This device automatically track slow varying environmental changes via special signal processing algorithms. The integrated RF noise filter and touch detection algorithm to ensure the reliability of applications in a variety of environments.

AW9201 provides compatible I<sup>2</sup>C interface to communicate with MCU, it supports 400kHz fast mode.

AW9201 is available in QFN1.6mm×1.6mm\_8L package. Operating voltage range is 2.5V-3.6V.

## TYPICAL APPLICATION CIRCUIT

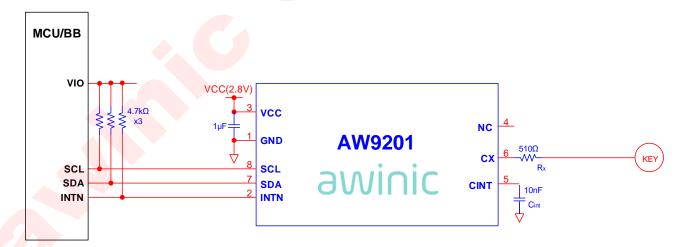



Figure 1 Typical Application Circuit

All trademarks are the property of their respective owners.

## PIN CONFIGURATION AND TOP MARK

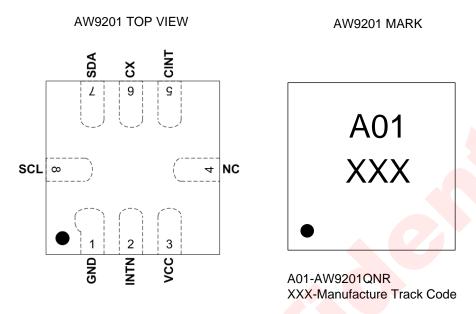
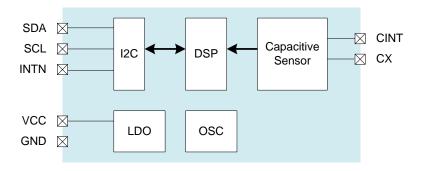




Figure 2 Pin Configuration and Top Mark

## **PIN DEFINITION**

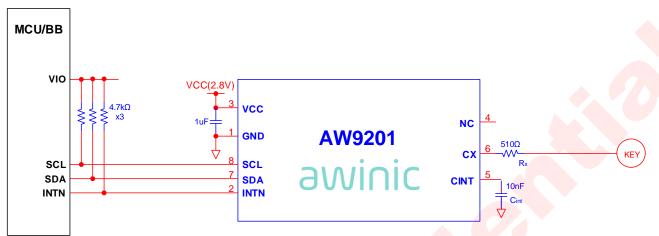
| No. | NAME | DESCRIPTION                                                                                       |  |  |
|-----|------|---------------------------------------------------------------------------------------------------|--|--|
| 1   | GND  | Power ground.                                                                                     |  |  |
| 2   | INTN | Interrupt output. Open-drain output and low active. (Typically tie $4.7k\Omega$ resistor to VIO). |  |  |
| 3   | VCC  | Power supply, 2.5 – 3.6V                                                                          |  |  |
| 4   | NC   | Not connect, floating                                                                             |  |  |
| 5   | CINT | Reference capacitance.(10nF).                                                                     |  |  |
| 6   | CX   | Touch Sensor.                                                                                     |  |  |
| 7   | SDA  | <sup>2</sup> C data bus                                                                           |  |  |
| 8   | SCL  | I <sup>2</sup> C clock input                                                                      |  |  |

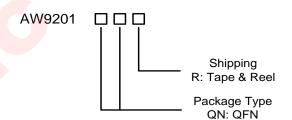
## **FUNCTIONAL BLOCK DIAGRAM**



### Figure 3 Functional Block Diagram

## **TYPICAL APPLICATION CIRCUITS**





Figure 4 Typical Application Circuit

#### NOTE:

- 1, Pin Cx must be connected a  $500\Omega \sim 600\Omega$  resistance.
- 2, The capacitor Cint and resistor Rx need to be as close as possible to the chip placement.

## ORDERING INFORMATION

| Part Number  | Temperature  | Package                                          | Marking | MSL<br>Level | ROHS | Delivery Form |
|--------------|--------------|--------------------------------------------------|---------|--------------|------|---------------|
| AW9201QNR    | -40℃~85℃     | 1.6mm <mark>×1</mark> .6mm <mark>×0.75</mark> mm | A01     | MSL3         | ROHS | 3000units     |
| AVV320TQIVIN | -40 C - 65 C | QFN1.6mm×1.6mm-8L                                | Α01     | IVIOLO       | +HF  | Tape and Reel |





# ABSOLUTE MAXIMUM RATINGS (NOTE 1)

| PARAMETER                        | PARAMETERS                                          |               |  |  |
|----------------------------------|-----------------------------------------------------|---------------|--|--|
| Supply voltage ran               | ge V <sub>CC</sub>                                  | -0.3V to 3.6V |  |  |
| Input voltage range              | SCL, SDA                                            | -0.3V to 3.6V |  |  |
| Output voltage range             | SDA, INTN                                           | -0.3V to 3.6V |  |  |
| Junction-to-ambient therma       | al resistance θ <sub>JA</sub>                       | 60℃/W         |  |  |
| Operating free-air tempe         | -40°C to 85°C                                       |               |  |  |
| Maximum Junction temp            | 125℃                                                |               |  |  |
| Storage temperatur               | Storage temperature T <sub>STG</sub>                |               |  |  |
| Lead Temperature (Solderi        | ng 10 Seconds)                                      | 260℃          |  |  |
|                                  | ESD <sup>(NOTE 2)</sup>                             |               |  |  |
| HBM (human body                  | model)                                              | ±4kV          |  |  |
|                                  |                                                     |               |  |  |
| Tost Condition: JEDEC STANDARD A | +IT: 450mA                                          |               |  |  |
| Test Condition. JEDEC STANDARD N | Test Condition: JEDEC STANDARD NO.78B DECEMBER 2008 |               |  |  |

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a  $1.5k\Omega$  resistor into each pin. Test method: MIL-STD-883G Method 3015.7

## **ELECTRICAL CHARACTERISTICS**

Circuit of Figure 5, VCC=3.0V, T<sub>A</sub>=25°C for typical values (unless otherwise noted)

|                     | PARAMETER                                      | TEST CONDITION         | MIN  | TYP | MAX  | UNIT |
|---------------------|------------------------------------------------|------------------------|------|-----|------|------|
| Vcc                 | Power supply                                   | -                      | 2.5  | 3.0 | 3.6  | V    |
| ISTANDBY            | Current in Standby mode                        | GCR=0x00               | 75   | 95  | 115  | μА   |
| I <sub>NORMAL</sub> | Current in Normal mode                         | GCR=0x02               | 600  | 780 | 880  | μА   |
| lidle               | Current in IDLE mode                           | GCR=0x02<br>SCFG3=0x9A | 550  | 680 | 800  | μΑ   |
| Fosc                | Internal oscillator frequency accuracy (16MHz) |                        | 14.4 | 16  | 17.6 | MHz  |
| Digital Log         | gical Interface                                |                        |      |     |      |      |
| VIL                 | Logic input low level                          | SDA,SCL                | -0.3 |     | 0.45 | V    |
| V <sub>IH</sub>     | Logic input high level                         | SDA,SCL                | 0.9  |     |      | V    |
| Iı∟                 | Low level input current                        | SDA,SCL                |      | 5   |      | nA   |

| Іін             | High level input current        | SDA,SCL                            | 5    |     | nA |
|-----------------|---------------------------------|------------------------------------|------|-----|----|
| V <sub>OL</sub> | Logic output low level          | SDA, INTN<br>I <sub>OUT</sub> =3mA |      | 0.4 | V  |
| loL             | Maximum output current          | SDA, INTN                          | 2    |     | mA |
| IL              | Output leakage current          | SDA, INTN                          |      | 1   | μА |
| Accuracy ar     | nd Range of Measured Capacitano | е                                  |      |     |    |
| CXresolution    | Resolution <sup>(NOTE 3)</sup>  | CX                                 | 0.01 |     | pF |
| CXrange         | Range <sup>(NOTE 3)</sup>       | CX                                 | 50   |     | pF |

NOTE3: the value is test in default configuration.

## **INTERFACE TIMMING**

|                     | Parameter Name                            | MIN | TYP   | MAX | UNIT |    |
|---------------------|-------------------------------------------|-----|-------|-----|------|----|
| F <sub>SCL</sub>    | Interface Clock frequency                 |     |       | 400 | kHz  |    |
| <b>T</b>            | De alitale atom o                         | SCL | ), (C | 200 |      | ns |
| TDEGLITCH           | Deglitch time                             |     |       | 250 |      | ns |
| T <sub>HD:STA</sub> | (Repeat-start) Start condition hold time  | 0.6 |       |     | μs   |    |
| T <sub>LOW</sub>    | Low level width of SCL                    | 1.3 |       |     | μs   |    |
| THIGH               | High level width of SCL                   | 0.6 |       |     | μs   |    |
| T <sub>SU:STA</sub> | (Repeat-start) Start condition setup time | ie  | 0.6   |     |      | μs |
| T <sub>HD:DAT</sub> | Data hold time                            |     | 0     |     |      | μs |
| T <sub>SU:DAT</sub> | Data setup time                           |     | 0.1   |     |      | μs |
| T <sub>R</sub>      | Rising time of SDA and SCL                |     |       |     | 0.3  | μs |
| T <sub>F</sub>      | Falling time of SDA and SCL               |     |       |     | 0.3  | μs |
| T <sub>SU:STO</sub> | Stop condition setup time                 |     |       |     |      | μs |
| T <sub>BUF</sub>    | Time between start and stop condition     |     | 1.3   |     |      | μs |

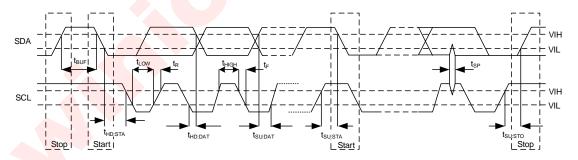



Figure 5 I<sup>2</sup>C timing



### **FUNCTIONAL DESCRIPTION**

#### **Work Mode**

#### Standby Mode

AW9201 will be in Standby mode after power-up or software reset. At that time, the device is in low power consumption, that the touch detection is disabled while I<sup>2</sup>C interface is active for communication.

#### Normal Mode

When the register bit GCR.SENE is set, the chip enter Normal mode. In this mode, AW9201 scans the touch sensor periodically and touch detection is active.

#### Idle Mode

In Normal mode, when a long time not to touch the key, the AW9201 will automatically enter IDLE mode. In IDLE mode, the AW9201 automatically in the insert wait time between the two scan frames, decrease key capacitor sampling rate, thereby reducing the chip power consumption.

In IDLE mode, once the fingers touch keys, AW9201 immediately back to the Normal mode.

The inserted waiting time is determined by the SCFG3.IPER register.

| SCFG3.IPER[2:0] | Inserted Wait Time |
|-----------------|--------------------|
| 000b            | 1ms                |
| 001b            | 16ms               |
| 010b            | 32ms               |
| 011b            | 48ms               |
| 100b            | 64ms               |
| 101b            | 80ms               |
| 110b            | 96ms               |
| 111b            | 112ms              |

#### Reset

#### Power-up Reset

After power-up, the power-up reset signal is generated, it will reset whole chips and alert a interrupt. User must read the register ISR to clear the interrupt.

#### Software Reset

Writing 0x55 to register IDRST through I2C interface, will produce a software reset and reset all registers.

#### Interrupt

INTN pin serves as an interrupt requirement signal. It is an open-drain output, and it is active low.

If no interrupt generated, the INTN port will keep HI-Z output and the pin should be pulled-up by outside resistor connected with power supply; If there's interrupt generated, the INTN port will be driven low. Once an interrupt generated, the master device can read the ISR register to decide which kind of interrupt source and the ISR register will be cleared automatically after the read operation and the INTN pin will return back to HIZ output.

AW9201 has 3 interrupt sources: power-up reset, the touch events and scanning boundary interrupt.

1) Power-up Reset Interrupt



After power-up, this interrupt is generated. This interrupt can not be masked. If the interrupt is generated, user clears it through read register ISR.

2) Scan Boundary Interrupt

When new CDC data is generated, the interrupt active.

This interrupt used for test purpose, it can be masked through writing 0 to register bit SBISE.

3) Touch event Interrupt

AW9201 through the GCR.TIE register enable the interrupt.

When touch detected, the device generates interrupt optionally in two ways (configure register bit GCR.IMD).

GCR.IMD=0: When key status changes, interrupt generated and register ISR.TIS is set to 1.

GCR.IMD=1: When key is ON, generates interrupt; when key released, clear interrupt.

#### I<sup>2</sup>C Interface

AW9201 uses a serial bus, which conforms to the I<sup>2</sup>C protocol to control the chip with two-wire: SCL and SDA. The maximum clock frequency supported is 400 KHz, which is compatible with I<sup>2</sup>C standard.

#### **Device Address**

The I<sup>2</sup>C device address (7-bit) of AW9201 is 45h, followed by the R/W bit(Read=1/Write=0).

#### Write Cycle

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow.

In a write process, the following steps should be followed:

- Master device generates START condition. The "START" signal is generated by lowering the SDA signal while the SCL signal is high.
- 2) Master device sends slave address (7-bit) and the data direction bit (R/W = 0).
- 3) Slave device sends acknowledge signal if the slave address is correct.
- 4) Master sends control register address (8-bit)
- 5) Slave sends acknowledge signal
- 6) Master sends data byte to be written to the addressed register
- Slave sends acknowledge signal
- 8) If master will send further data bytes the control register address will be incremented by one after acknowledge signal (repeat step 6,7)
- 9) Master generates STOP condition to indicate write cycle end

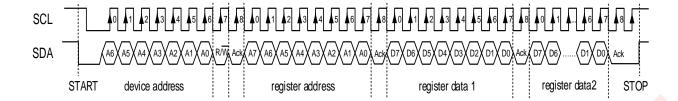



Figure 6 I<sup>2</sup>C Write Timing

#### Read Cycle

In a read cycle, the following steps should be followed:

- 1) Master device generates START condition
- 2) Master device sends slave address (7-bit) and the data direction bit (R/W = 0).
- 3) Slave device sends acknowledge signal if the slave address is correct.
- 4) Master sends control register address (8-bit)
- 5) Slave sends acknowledge signal
- 6) Master generates STOP condition followed with START condition or REPEAT START condition
- 7) Master device sends slave address (7-bit) and the data direction bit (R/W = 1).
- 8) Slave device sends acknowledge signal if the slave address is correct.
- 9) Slave sends data byte from addressed register.
- 10) If the master device sends acknowledge signal, the slave device will increase the control register address by one, then send the next data from the new addressed register.
- 11) If the master device generates STOP condition, the read cycle is ended.

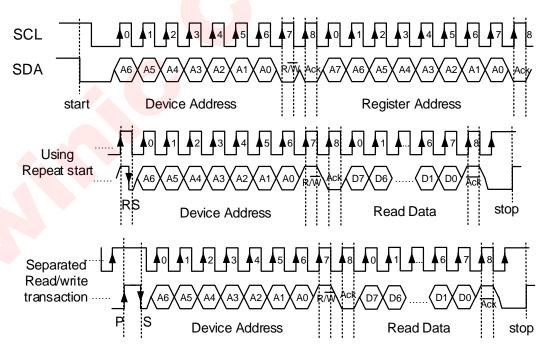



Figure 7 I<sup>2</sup>C Read Timing

#### SDA and SCL

The two interface line SCL and SDA should be connected to a positive supply, via a pull-up resistor and remain HIGH even when the bus is idle.

The pull-up resistor can be selected in the range of  $1k\sim10K\Omega$  to make the rising time fit with the requirement of  $I^2C$  compatible standard. The typical value is  $4.7K\Omega$ .

AW9201 can support different high level (1.8V~3.3V) of this two-wire interface. And deglitch circuit is also implemented inside to filter out the glitch in the SCL, SDA line.

## **Key Detection and Configuration**

The Sigma-Delta method of capacitive sensing is employed on AW9201. The capacitance to digital converter (CDC) samples the sensor and generates 16 bit data to integrated processor.

The decision logic is implemented in processor. The processor analyzes data of capacitance measurement, tracks the slow capacitance changes due to environmental factors, and runs decision logic to detect button touches.

#### Key Status output

The touch state output on register ISR.TS.

If Touch is ON, the register bit ISR.TS is set to 1;if Touch is OFF, clear register bit ISR.TS.

#### Touch decision

AW9201 has two touch threshold registers: SETTH and CLRTH, the touch threshold is selected by the user to obtain the desired touch sensitivity.

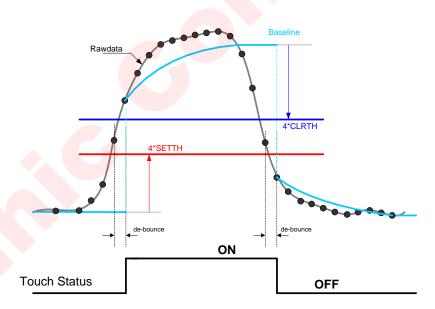



Figure 8 Touch Decision

A touch ON is identified when for at least 2 consecutive capacitance changes (delta) greater than 4×SETTH, A touch OFF is identified when for at least 2 consecutive capacitance changes (delta) lower than 4×CLRTH.

#### Configurable capacitance resolution

AW9201 provides 4bit (up to 16 stage) capacitance resolution for capacitance measurement (register SCFG1.SENS), with smaller setting value, the higher the resolution.

| SCFG1.SENS | Resolution                                         |
|------------|----------------------------------------------------|
| (binary)   |                                                    |
| 0000       | capacitance resolution 1 ( the maximum resolution) |
| 0001       | capacitance resolution 2                           |
| 0010       | capacitance resolution 3                           |
| 0011       | capacitance resolution 4                           |
| 0100       | capacitance resolution 5                           |
| 0101       | capacitance resolution 6                           |
| 0110       | capacitance resolution 7                           |
| 0111       | capacitance resolution 8                           |
| 1000       | capacitance resolution 9                           |
| 1001       | capacitance resolution 10                          |
| 1010       | capacitance resolution 11                          |
| 1011       | capacitance resolution 12                          |
| 1100       | capacitance resolution 13                          |
| 1101       | capacitance resolution 14                          |
| 1110       | capacitance resolution 15                          |
| 1111       | capacitance resolution 16 (the minimum resolution) |

#### Parasitic capacitance compensation

In practical application, the parasitic capacitance is too large, will affect the touch detection. A built-in specialized parasitic capacitance cancellation circuit can as far as possible to eliminate the impact of parasitic capacitance on measurement.

The register SCFG2.OFFSET sets the parasitic capacitance cancellation.

#### Adaptive Calibration(Environmental variation compensation)

AW9201 detect the capacitance changes based on the baseline, that is an average of sampling data of capacitance for long times. But the changes of the environment (temperature, humidity, voltage and so on) will cause the baseline drift. An adaptive calibration filter in AW9201 tracks environmental changes automatically, ensure reliable detection.

AW9201 can configure the baseline tracking speed through the registers BLTRACES.

#### RF noise Filter

AW9201 uses a special digital filter to eliminate the interference of 217Hz RF Noise. Through register SCFG2.bit7~bit6 to choose whether or not to open the RF filter.

#### Frame Period (Sample Rate)

AW92<mark>01 continuously transmit N carrier to sensor CX for each CDC conversion period, between two sampling period without waiting time. The carrier number is selected by register SCNUM.</mark>

The Frame period is Tscan = 2usx(SCNUM+1) x4096.

#### The Maximum Time of Touch ON state

When the time of finger staying in the key exceeds the register MOT, AW9201 will automatically re-initialization baseline and then start a new detection.

| MOT | Maximum time of ON state |
|-----|--------------------------|
| 00b | forever                  |
| 01b | 600×Tscan                |

| 10b | 2000×Tscan |
|-----|------------|
| 11b | 100×Tscan  |





## **REGISTER CONFIGURATION**

| Address<br>(Hex) | Name      | W/R | 7      | 6    | 5       | 4     | 3      | 2    | 1    | 0    |
|------------------|-----------|-----|--------|------|---------|-------|--------|------|------|------|
| 00               | IDRSTR    | R   | 0      | 0    | 1       | 1     | 0      | 0    | 1    | 1    |
| 01               | GCR       | WR  | 0      | 0    | 0       | IMD   | 0      | TIE  | SENE | 0    |
| 02               | ISR       | R   | 0      | 0    | 0       | PUIS  | TIS    | 0    | TS   | 0    |
| 03               | -         | -   | -      | •    | -       | -     | -      | -    | -    | -    |
| 04               | SETTH     | WR  | SETTH  |      |         |       |        |      |      |      |
| 05               | CLRTH     | WR  | CLRTH  |      |         |       |        |      |      |      |
| 06               | SCFG1     | WR  | SENS   |      |         |       | SCNUM  | 1    |      |      |
| 07               | SCFG2     | WR  | RF     |      | 0       | OFFSE | Τ      |      |      |      |
| 08               | SCFG3     | WR  | MOT    |      | IDLEIN' | TIM   | FIDLE  | IPER |      |      |
| 09               | DEB       | WR  | 0      | 5    |         |       | TDEB   |      | 0    |      |
| 0A               | BLTRACES  | WR  | 0      | BLUS |         |       | 0      | BLDS |      |      |
| 0B               | BLDTH     | WR  | BLDTH  |      |         |       |        |      |      |      |
| 0D               | SBISE     | WR  | 0      | 0    | 0       | 0     | SBISE  | 0    | 0    | 0    |
| 20               | SAMPLEH   | R   | SAMPL  | EH   |         |       |        |      |      |      |
| 21               | SAMPLEL   | R   | SAMPL  | EL   |         |       |        |      |      |      |
| 22               | LPFH      | R   | LPFH   |      |         |       |        |      |      |      |
| 23               | LPFL      | R   | LPFL   |      |         |       |        |      |      |      |
| 24               | DELTAH    | R   | DELTAI | Н    |         |       |        |      |      |      |
| 25               | DELTAL    | R   | DELTAI | L    |         |       |        |      |      |      |
| 27               | BASELINEH | R   | BASELI | NEH  |         |       |        |      |      |      |
| 28               | BASELINEL | R   | BASELI | NEL  |         |       |        |      |      |      |
| 2B               | CDCFILTER | WR  | 0      | 1    | 0       | 0     | FILCOE | F    | 0    | 0    |
| 2D               | SBIS      | R   | 0      | 0    | 0       | 0     | 0      |      | 0    | SBIS |

## **REGISTER DETAILED DESCRIPTION**

## IDRST, Chip ID and Software Reset

| Address: ( | Address: 00H, RW |                                                                                          |               |    |    |    |    |  |
|------------|------------------|------------------------------------------------------------------------------------------|---------------|----|----|----|----|--|
| 7          | 6                | 5                                                                                        | 5 4 3 2 1 0   |    |    |    |    |  |
| D7         | D6               | D5                                                                                       | D4            | D3 | D2 | D1 | D0 |  |
| Bit        | Symbol           | Description                                                                              | Description _ |    |    |    |    |  |
| 7:0        | IDRST            | <ol> <li>Chip ID, Read out is 0x33</li> <li>Write 55H, then reset whole chip.</li> </ol> |               |    |    |    |    |  |

## GCR, Global Control Register

| Address: 0 | 01H,RW |              |               |               |               |               |   |  |  |
|------------|--------|--------------|---------------|---------------|---------------|---------------|---|--|--|
| 7          | 6      | 5            | 5 4 3 2 1 0   |               |               |               |   |  |  |
| 0          | 0      | 0            | IMD           | 0             | TIE           | SENE          | 0 |  |  |
| Bit        | Symbol | Description  |               |               |               |               |   |  |  |
| 7:5        | -      | Reserved.    | Must be 0.    |               |               |               |   |  |  |
| 4          | IMD    | Touch Inter  | rupt mode     |               |               |               |   |  |  |
|            |        | 0: touch e   | events trigge | red, generate | es interrupt. |               |   |  |  |
|            |        | 1: touch C   | ON generate   | interrupt; to | uch OFF clea  | ar interrupt. |   |  |  |
| 3          | -      | Reserved.    | Must be 0.    |               |               |               |   |  |  |
| 2          | TIE    | Touch Inter  | rupt enable   |               |               |               |   |  |  |
|            |        | 1: enable    |               |               |               |               |   |  |  |
|            |        | 0: disable   | 0: disable    |               |               |               |   |  |  |
| 1          | SENE   | Touch dete   | ction functio | n enable      |               |               |   |  |  |
|            |        | 1: enable. ( | Chip in Norm  | al work state | e             |               |   |  |  |



|   |   | 0: disable. Chip in Standby state. |
|---|---|------------------------------------|
| 0 | - | Reserved. Must be 0.               |

## ISR, Status and Interrupt Register

| Address: | Address: 02H, R |                                                                                                                                   |              |                |              |          |   |  |
|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------|----------|---|--|
| 7        | 6               | 5                                                                                                                                 | 4            | 3              | 2            | 1        | 0 |  |
| 0        | 0               | 0                                                                                                                                 | PUIS         | TIS            | -            | TS       | - |  |
| Bit      | Symbol          | Description                                                                                                                       | )            |                |              |          |   |  |
| 7:5      | -               | Reserved.                                                                                                                         | Must be 0    |                |              |          |   |  |
| 4        | PUIS            | Power-up reset interrupt. After power-up, this bit set 1. Clear after read this register.  1: power-up interrupt  0: no interrupt |              |                |              |          |   |  |
| 3        | TIS             |                                                                                                                                   | pt generated | r. Clear after | read this re | egister. |   |  |
| 2        | -               | 1                                                                                                                                 |              |                |              |          |   |  |
| 1        | TS              | Touch state 1: Touch 0: Touch                                                                                                     | ON           |                |              |          |   |  |
| 0        | -               | -                                                                                                                                 |              |                |              |          |   |  |

## SETTH, Touch Set Threshold

| Address: 04H, RW |                                                |             |   |   |  |   |   |   |
|------------------|------------------------------------------------|-------------|---|---|--|---|---|---|
| 7                | 6                                              | 5           | 4 | 3 |  | 2 | 1 | 0 |
|                  | SETTH                                          |             |   |   |  |   |   |   |
| Bit              | Symbol                                         | Description | n |   |  |   |   |   |
| 7:0              | 7:0 SETTH Touch set threshold. Default is 20H. |             |   |   |  |   |   |   |

### CLRTH, Touch Clear Threshold

| Address: ( | Address: 05H, RW |             |                                        |   |   |   |   |  |
|------------|------------------|-------------|----------------------------------------|---|---|---|---|--|
| 7          | 6                | 5           | 4                                      | 3 | 2 | 1 | 0 |  |
|            | CLRTH            |             |                                        |   |   |   |   |  |
| Bit        | Symbol           | Description | n                                      |   |   |   |   |  |
| 7:0        | CLRTH            | Touch cle   | Touch clear threshold. Default is 14H. |   |   |   |   |  |
|            |                  |             |                                        |   |   |   |   |  |

## SCFG1, Scan Control Register 1

| Address: 06H, RW |        |             |               |                |               |        |   |  |
|------------------|--------|-------------|---------------|----------------|---------------|--------|---|--|
| 7                | 6      | 5           | 4             | 3              | 2             | 1      | 0 |  |
|                  | SENS   |             |               | SCNUM          |               |        |   |  |
| Bit              | Symbol | Description | Description   |                |               |        |   |  |
| 7:4              | SENS   | Resolution  | of Capacita   | ince detection | n. Default is | s 07H. |   |  |
|                  |        | 0000b: R    | esolution 1 ( | Maximum re     | esolution)    |        |   |  |
|                  |        | 0001b: R    | esolution 2   |                |               |        |   |  |
|                  |        | 0010b: R    | esolution 3   |                |               |        |   |  |
|                  |        |             |               |                |               |        |   |  |
|                  |        | 1111b: R    | esolution 16  | (Minimum r     | esolution)    |        |   |  |

13



| 3:0 | SCNUM | The number of scan carrier. Default is 02H. |
|-----|-------|---------------------------------------------|
|     |       | Nc = (SCNUM+1)×4096                         |
|     |       | The time of sample is Tscan = Ncx 2us.      |

## SCFG2, Scan Control Register 2

| Address: | 07H,RW |                                                                 |                |                            |                            |             |   |
|----------|--------|-----------------------------------------------------------------|----------------|----------------------------|----------------------------|-------------|---|
| 7        | 6      | 5                                                               | 4              | 3                          | 2                          | 1           | 0 |
| RF       |        | 0                                                               | OFFSET         |                            |                            |             |   |
| Bit      | Symbol | Description                                                     | 1              |                            |                            |             |   |
| 7:6      | RF     | The RF no                                                       | ise filter con | figure registe             | er.                        |             |   |
|          |        | 00b: disa                                                       | ble            |                            |                            |             |   |
|          |        | 01b: sele                                                       | ct filter 1    |                            |                            |             |   |
|          |        | 10b: sele                                                       | ct filter 2    |                            |                            |             |   |
|          |        | 11b: sele                                                       | ct filter 3    |                            |                            |             |   |
| 5        | -      | Reserved.                                                       | Must be 0      | -                          |                            |             |   |
| 4:0      | OFFSET | Parasitic C                                                     | apacitance     | Compensatio                | n selection                | . / 0       |   |
|          |        | 00000b:                                                         | no compen      | sate                       |                            |             |   |
|          |        | 00001b:                                                         | compensat      | e capacitanc               | e is 2×C <sub>full-s</sub> | scale /16   |   |
|          |        | 00010b: compensate capacitance is 3×C <sub>full-scale</sub> /16 |                |                            |                            |             |   |
|          |        |                                                                 |                |                            |                            |             |   |
|          |        | 11111b:                                                         | compensat      | e capacitan <mark>c</mark> | e is 32×C <sub>ful</sub>   | l-scale /16 |   |

## SCFG3, Scan Control Register 3

| Address: | 08H,RW    |             |                                               |                 |               |              |               |  |
|----------|-----------|-------------|-----------------------------------------------|-----------------|---------------|--------------|---------------|--|
| 7        | 6         | 5           | 4                                             | 3               | 2             | 1            | 0             |  |
| MOT      |           | IDLEINTII   | V                                             | FIDLE           | IPER          |              |               |  |
| Bit      | Symbol    | Description | n                                             |                 |               |              |               |  |
| 7:6      | MOT       | Maximum     | Maximum t <mark>ime</mark> of Touch ON state. |                 |               |              |               |  |
|          |           | AW9201      | stay in touc                                  | h ON state      | for long th   | nan MOT s    | etting, will  |  |
|          |           | automatic   | ally <mark>re-initi</mark> ali                | zation baseli   | ne, start a n | ew detection | n.            |  |
|          |           | 00: disa    | ole                                           |                 |               |              |               |  |
|          |           |             | 600 (600 <b>)</b>                             | ,               |               |              |               |  |
|          |           |             | 2000 (2000                                    | ,               |               |              |               |  |
|          |           |             | •                                             | (Tscan)         |               |              |               |  |
| 5:4      | IDLEINTIM |             |                                               | OFF state for   | r long than I | DLEINTIM     | setting, will |  |
|          |           | enter IDLI  | E state.                                      |                 |               |              |               |  |
|          |           | 00: nev     | er                                            |                 |               |              |               |  |
|          |           | 01: N=6     | 4 (64×T                                       | scan)           |               |              |               |  |
|          |           | 10: N=2     | .56 (256×                                     | Tscan)          |               |              |               |  |
|          |           | 11: N=1     | 024 (1024                                     | ×Tscan)         |               |              |               |  |
| 3        | -         | Reserved    | . Must be 0.                                  |                 |               |              |               |  |
| 2:0      | IPER      | In IDLE st  | ate, AW920                                    | 1 insert waitir | ng time to re | duce samp    | le rate.      |  |
|          |           | Default va  | lue is 02H.                                   |                 |               |              |               |  |
|          |           | 000: 0m     | S                                             |                 |               |              |               |  |
|          |           | 001: 16r    | ns                                            |                 |               |              |               |  |
|          |           | 001: 32r    | ns                                            |                 |               |              |               |  |
|          |           | 011: 48r    |                                               |                 |               |              |               |  |
|          |           | 100: 64r    |                                               |                 |               |              |               |  |
|          |           | 101: 80r    | ns                                            |                 |               |              |               |  |



| 110: 96ms  |
|------------|
| 111: 112ms |

## TDEB, Touch De-bounce Configuration Register

| Address: 09H, RW |        |                          |                            |                                             |   |              |             |  |
|------------------|--------|--------------------------|----------------------------|---------------------------------------------|---|--------------|-------------|--|
| 7                | 6      | 5                        | 4                          | 3                                           | 2 | 1            | 0           |  |
| 0                | 5      |                          |                            | TDEB                                        |   | 0            |             |  |
| Bit              | Symbol | Description              | 1                          |                                             |   |              |             |  |
| 7:4              | -      | Reserved. Must set 101b. |                            |                                             |   |              |             |  |
| 3:2              | TDEB   | For conse                | threshold, des<br>es<br>es | figuration.<br>nes the cap<br>determined to |   | nanges(delta | a) is great |  |
| 1:0              | -      | Reserved.                | Must set 0.                |                                             |   |              |             |  |

## BLTRACE, Tracing Baseline Configuration Registers

| Address : 0 | OAH, RW |           |                                                                   |                            |                |             |            |  |
|-------------|---------|-----------|-------------------------------------------------------------------|----------------------------|----------------|-------------|------------|--|
| 7           | 6       | 5         | 4                                                                 | 3                          | 2              | 1           | 0          |  |
| 0           | BLUS    |           |                                                                   | 0                          | BLDS           |             |            |  |
| Bit         | Symbol  | Descript  | Description                                                       |                            |                |             |            |  |
| 6:4         | BLUS    | Baseline  | up tracing f                                                      | ilter control.             | Default is 3.  |             |            |  |
|             |         | In touch  | off state, wh                                                     | nen consecu                | tive BLUS×2    | times the s | ample data |  |
|             |         | greater   | han baseline                                                      | e, then basel              | ine incremer   | nt 1.       |            |  |
| 2:0         | BLDS    | Baseline  | down tracir                                                       | ng filter contro           | ol. Default is | 3.          |            |  |
|             |         | In touch  | In touch off state, when consecutive BLDS×2 times the sample data |                            |                |             |            |  |
|             |         | less that | n baseline, tl                                                    | <mark>he</mark> n baseline | decrease 1.    |             |            |  |

### BLDTH, Baseline Down Threshold

| Address : 0BH, RW |        |          |                                     |   |   |   |   |
|-------------------|--------|----------|-------------------------------------|---|---|---|---|
| 7                 | 6      | 5        | 4                                   | 3 | 2 | 1 | 0 |
|                   | BLDTH  |          |                                     |   |   |   |   |
| Bit               | Symbol | Descript | Description                         |   |   |   |   |
| 7:0               | BLDTH  |          | s 8.<br>ontinuous s<br>ce is too la | • |   |   |   |
|                   |        | baseline | ).                                  |   |   |   |   |

## SBISE, Scan boundary Interrupt Enable

| Address : 0DH, RW |        |             |                                    |   |   |   |   |
|-------------------|--------|-------------|------------------------------------|---|---|---|---|
| 7                 | 6      | 5           | 4                                  | 3 | 2 | 1 | 0 |
|                   | SBISE  |             |                                    |   |   |   |   |
| Bit               | Symbol | Description |                                    |   |   |   |   |
| 7:4               | -      | Reserve     | Reserve bits, should be 0          |   |   |   |   |
| 3                 | SBISE  | Interrup    | Interrupt enable.                  |   |   |   |   |
|                   |        | 1, ena      | 1, enable scan boundary interrupt. |   |   |   |   |
|                   |        | 0, disa     | 0, disable.                        |   |   |   |   |
| 2:0               | -      | Reserve     | Reserve bits, should be 0          |   |   |   |   |



## DEBUG, Debug Data Registers

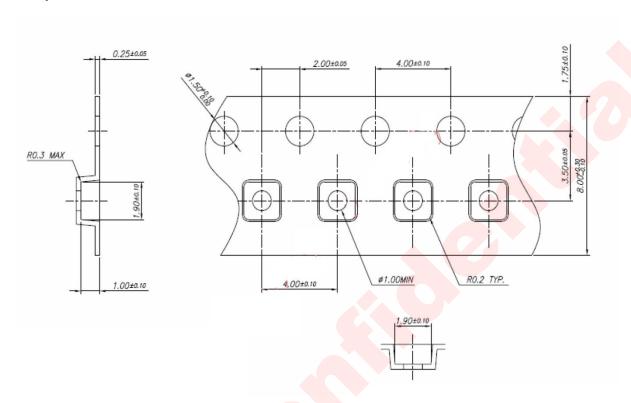
| Address | Name      | Description                           |
|---------|-----------|---------------------------------------|
| 20H     | SAMPLEH   | CDC Raw-data high 8 bit               |
| 21H     | SAMPLEL   | CDC Raw-data Low 8 bit                |
| 22H     | LPFH      | Filtered CDC data high 8 bit          |
| 23H     | LPFL      | Filtered CDC data low 8 bit           |
| 24H     | DELTAH    | Capacitance changes data high 8bit    |
| 25H     | DELTAL    | Capacitance changes data low 8bit     |
| 26H     | BASELINEH | Long term average CDC data high 8 bit |
| 27H     | BASELINEL | Long term average CDC data low 8 bit  |

## CDCFILTER, CDC Data Filter Setting

| Address: | 2BH, RW |                                          |             |         |   |   |    |   |
|----------|---------|------------------------------------------|-------------|---------|---|---|----|---|
| 7        | 6       | 5                                        | 4           | 3       | 2 | 1 |    | 0 |
| 0        | 1       | 0                                        | 0           | FILCOEF |   | 0 | YZ | 0 |
| Bit      | Symbol  | Description                              |             |         |   |   |    |   |
| 7:4      | -       | Reserved. Must set 0100b.                |             |         |   |   |    |   |
| 3:2      | FILCOEF | CDC filter coefficient . Default is 11b. |             |         |   |   |    |   |
|          |         | 00: 1/4                                  |             |         |   |   |    |   |
|          |         | 01: 1/8                                  |             |         |   |   |    |   |
|          |         | 10: 1/2                                  |             |         |   |   |    |   |
|          |         | 11: bypas                                | s           |         |   |   |    |   |
| 1:0      | -       | Reserved.                                | Must set 1. |         |   |   |    |   |

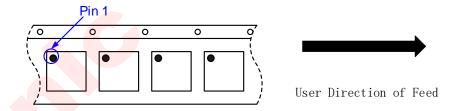
## SBIS, Scan Boundary Interrupt

| Address : 2 | 2DH, R |                                                                                                      |             |   |   |   |      |
|-------------|--------|------------------------------------------------------------------------------------------------------|-------------|---|---|---|------|
| 7           | 6      | 5                                                                                                    | 4           | 3 | 2 | 1 | 0    |
| -           | -      | -                                                                                                    | -           | - | - | - | SBIS |
| Bit         | Symbol | Description                                                                                          | Description |   |   |   |      |
| 7:6         | -      | Read out 0.                                                                                          |             |   |   |   |      |
| 0           | SBIS   | After SBIS, the new CDC is generated. This bit is cleared after read.  1: Interrupt  0: no Interrupt |             |   |   |   |      |

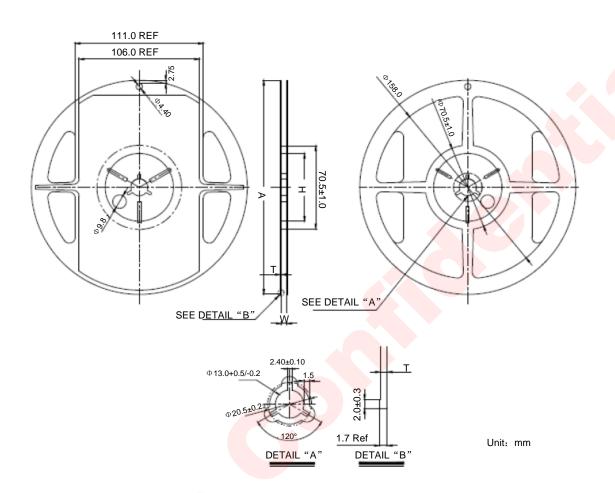

## **PCB LAYOUT CONSIDERATION**

AW9201 is a capacitive sensor, to obtain the optimal performance, PCB layout should be considered carefully. Refer to are users guide.




## **TAPE AND REEL INFORMATION**

## **Carrier Tape**




NOTE: All Dimensions in Millimeters.

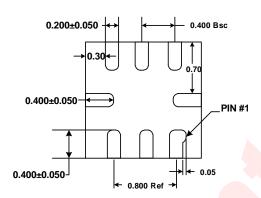
### Pin 1 direction



#### Reel



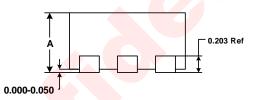

| P/N              | A±1.0   | H±1.0 | T±0.3 | W±0.5 |
|------------------|---------|-------|-------|-------|
| RD27608(-BK,-BL) | Ф178.0  | Ф60.0 | 1.40  | 9.0   |
| RS27608(-BK,-BL) | Ф178.0  | Ф60.0 | 1.40  | 9.0   |
| RD27612(-BK,-BL) | Ф 178.0 | Ф60.0 | 1.40  | 13.2  |
| RS27612(-BK,-BL) | Ф178.0  | Ф60.0 | 1.40  | 13.2  |


#### Notes:

- 1. RD stands for Reel Dipped;
- 2. RS stands for Reel Standard;
- 3. BK stands for black Reel;
- 4. BL stands for blue Reel;

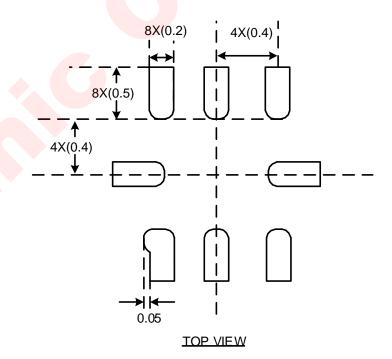
19

## **PACKAGE DESCRIPTION**

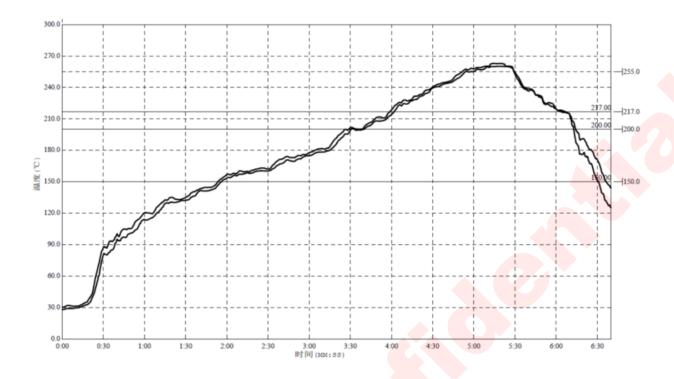





**TOP VIEW** 


TSLP 0.800 0.800 NOM 0.750 MIN 0.700

**BOTTOM VIEW** 




SIDE VIEW

## **RECOMMENDED LAND PATTERN**



## **REFLOW**



| Reflow Note                                 | Spec          |  |  |
|---------------------------------------------|---------------|--|--|
| Average ramp-up rate (217°C to peak)        | Max. 3°C /sec |  |  |
| Time of Preheat temp. (from 150°C to 200°C) | 60-120sec     |  |  |
| Time to be maintained above 217°C           | 60-150sec     |  |  |
| Peak Temperature                            | >260°C        |  |  |
| Time within 5°C of actual peak temp         | 20-40sec      |  |  |
| Ramp-d <mark>own rate</mark>                | Max. 6°C /sec |  |  |
| Time from 25°C to peak temp                 | Max. 8min     |  |  |

## **Package Reflow Standard Profile**

NOTE 1: All data are compared with the package-top temperature, measured on the package surface;

NOTE 2: AW9201 adopted the Pb-Free assembly.



## **REVISION HISTORY**

| Vision | Date      | Change Record                                                  |  |  |
|--------|-----------|----------------------------------------------------------------|--|--|
| V1.0   | Oct. 2014 | Officially Released                                            |  |  |
| V1.0.1 | May 2016  | Update Ordering Information                                    |  |  |
| V1.0.2 | Sep. 2016 | Update Package Description                                     |  |  |
| V1.1   | Nov. 2017 | Remove the Chinese description Update the ordering information |  |  |
| V1.2   | Sep. 2018 | Update the storage temperature                                 |  |  |

## **RELATED PARTS**

| Part No.   | Description                              | Comments                                                          |
|------------|------------------------------------------|-------------------------------------------------------------------|
| AW9136 QNR | Capacitive Key and LED Driver Controller | QFN3×3-20L, 3 channel capacitive key and 6 channel LED controller |
| AW9163 QNR | Capacitive Key and LED Driver Controller | QFN3×3-20L, 6 channel capacitive key and 3 channel LED controller |

## **DISCLAIMER**

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.

AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.