

BDS/GPS/GNSS INTEGRATED FRONT-END MODULE WITH LOW NOISE AMPLIFIER AND FILTER

FEATURES

Low Noise Figure: 1.7dB;

High power gain: 17dB typical @ 1.575 GHz

Low current consumption: 6.9mA

RF input/output impedance 50ohm

Supply voltage: 1.5V-3.6V

Operation frequency range: 1550MHz-1615MHz

Small DFN (6-pin, 1.5mm x 1.0 mm) package

 3kV HBM ESD protection (including RFIN and RFOUT pin)

 High Out-Of-Band jammer rejection at Cellular/PCS/WLAN bands

 Fully-integrated module without any component at input/output side

APPLICATIONS

- Small phones, Feature Phones;
- Tablet PCs;
- Personal Navigation Devices;
- Complete GPS/BDS chipset modules;
- Theft protection(laptop, ATM)
- Smart watch and other mobile devices

GENERAL DESCRIPTION

The AW5105 is a Front-End Module (FEM) with a fully integrated Low-Noise Amplifier and Pre-Filter for BDS/GPS/GNSS. The AW5105 requires no external capacitor/inductor, reduces assembly complexity and the PCB area, enabling a cost-effective solution.

The AW5105 achieves low noise figure, high gain, excellent linearity and high Out-Of-Band rejection. All these feature make AW5105 an excellent choice for GNSS LNA as it improves sensitivity with low noise figure and high gain, provides better immunity against out-of-band jammer signals with high linearity, and reduces filtering requirement of preceding stage and hence reduces the overall cost of the GNSS receiver.

The AW5105 is provided in a compact 1.5mm x 1.0mm, 6-pin DFN package.

TYPICAL APPLICATION CIRCUIT

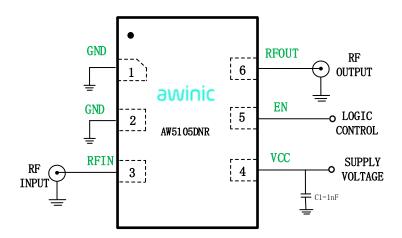


Figure 1 Typical Application Circuit of AW5105

PIN CONFIGURATION AND TOP MARK

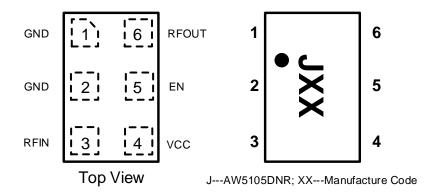


Figure 2 Pin Configuration and Top Mark

PIN DEFINITION

No.	NAME	DESCRIPTION
1	GND	GND
2	GND	GND
3	RFIN	RF INPUT
4	VCC	DC power supply
5	EN	Logic Control
6	RFOUT	RF OUTPUT

FUNCTIONAL BLOCK DIAGRAM

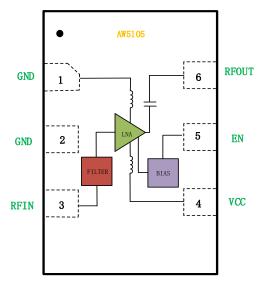
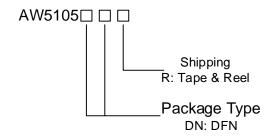



Figure 3 FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW5105DNR	-40°C∼85°C	1.5mm x 1.0mm x 0.55mm DFN-6L	JXX	MSL1	ROHS+HF	3000 units/ Tape and Reel

ABSOLUTE MAXIMUM RATINGS(NOTE1)

PARAMETERS	RANGE		
Supply Voltage VCC	-0.3 V to 4.2 V		
EN pin voltage	-0.3 V to 4.2 V		
Supply maximum current ICC	30 mA		
RFIN input power Pin	20 dBm		
Maximum Junction temperature T _{JMAX}	125 ℃		
Storage temperature T _{STG}	-65 ℃ to 150 ℃		
Operating free-air temperature range	-40 ℃ to 85 ℃		
Lead Temperature (Soldering 10 Seconds)	260 ℃		
ESD ^(NOTE 2)	•		
НВМ	±3kV		
CDM	±1kV		

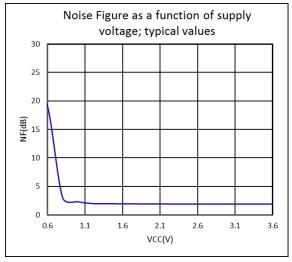
ELECTRICAL CHARACTERISTICS

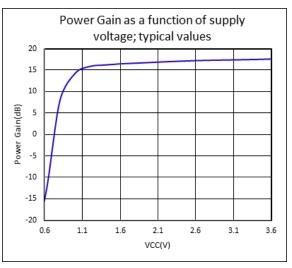
TA=25 °C, VCC=1.8 V, EN=1.8 V, Rs=Ro=50 ohm, frequency=1575.42 MHz for typical values (unless otherwise noted).

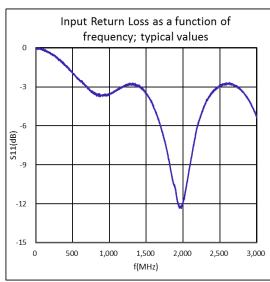
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
DC ELECTRICAL CHARACTERISTICS							
VCC	Supply Voltage		1.5	1.8	3.6	V	
ISD	Shut-down Current	EN=Low		0.1	1	μA	
IQ	Static Current	EN=2.8V		6.7		mA	
VEN	Digital Input Logic High		1			V	
VEN	Digital Input Logic Low				0.45	V	
AC ELECTRI	CAL CHARACTERISTICS						
GP	Power Gain			16.5		dB	
NF	Noise Figure	Input/Output 50ohm		1.7		dB	
S11	Input Return Loss	Input/Output 50ohm		-5		dB	
S22	Output Return Loss	Input/Output 50ohm		-15		dB	
Kf	Stability Factor	Input/Output 50ohm	1.0				
IB P-1dB	In-Band 1dB-compression point	Input/Output 50ohm		-9.2		dBm	
IIP3 OOB	Out of band input 3 rd order intercept point	f1=1712.7MHz f2=1850MHz Pin=-20dBm		-0.8		dBm	
IIP3 OOB	Out of band input 3 rd order intercept point	f1=1712.7MHz f2=1850MHz Pin=-30dBm		-0.5		dBm	
IIP2	Out of band input 2 nd order intercept point		6.2		dBm		
FREQUENCY RESPONSE CHARACTERISTICS							
PG ripple	Power Gain Ripple	f=1.57542GHz± 0.1MHz		0.1		dB	
ATT	Attenuation	f=DC~1GHz	20	25		dBc	
ATT	Attenuation	f=2.4~3GHz	10	15	_	dBc	

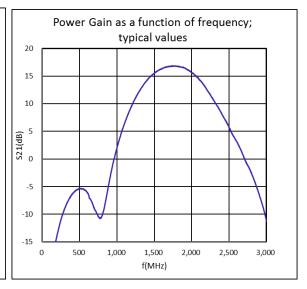
TA=25 °C, VCC=2.8 V, EN=2.8 V, Rs=Ro=50 ohm, frequency=1575.42MHz for typical values (unless otherwise noted).

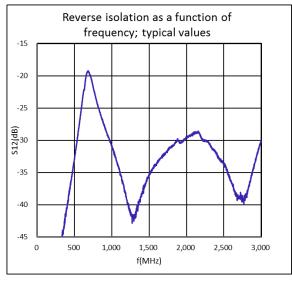
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
DC ELECTRICAL CHARACTERISTICS							
VCC	Supply Voltage		1.5	2.8	3.6	V	
ISD	Shut-down Current	EN=Low		0.1	1	μA	
IQ	Static Current	EN=2.8V		8.8		mA	
VEN	Digital Input Logic High		1			V	
VEN	Digital Input Logic Low				0.45	V	
AC ELECTRIC	CAL CHARACTERISTICS						
GP	Power Gain			17		dB	
NF	Noise Figure	Input/Output 50ohm		1.7		dB	
S11	Input Return Loss	Input/Output 50ohm		-5		dB	
S22	Output Return Loss	Input/Output 50ohm		-15		dB	
Kf	Stability Factor	Input/Output 50ohm	1.0				
IB P-1dB	In-Band 1dB-compression point	Input/Output 50ohm		-7		dBm	
IIP3 OOB	Out of band input 3 rd order intercept point	f1=1712.7MHz f2=1850MHz Pin=-20dBm		0.2		dBm	
IIP3 OOB	Out of band input 3 rd order intercept point	f1=1712.7MHz f2=1850MHz Pin=-30dBm		0.7		dBm	
IIP2	Out of band input 2 nd order intercept point			8.5		dBm	
FREQUENCY RESPONSE CHARACTERISTICS							
PG ripple	Power Gain Ripple	f=1.57542GHz± 0.1MHz		0.1		dB	
ATT	Attenuation	f=DC~1GHz	20	25		dBc	
ATT	Attenuation	f=2.4~3GHz	10	15		dBc	

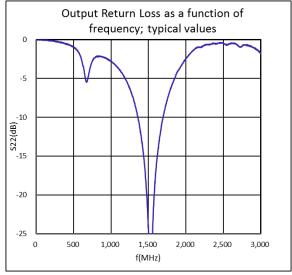

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

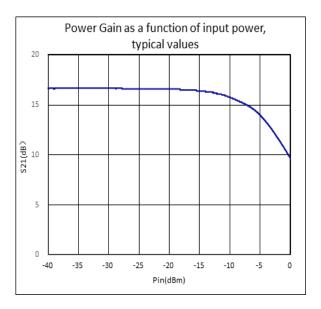

NOTE2: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: MIL-STD-883G Method 3015.7

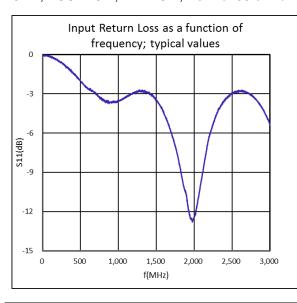


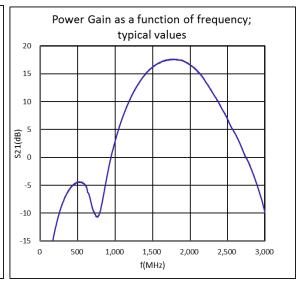

TYPICAL CHARACTERISTICS

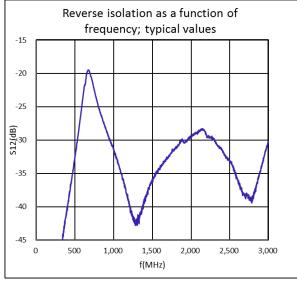

TA=25 $^{\circ}$ C, VCC=1.8 V, EN=1.8 V, Rs=Ro=50 ohm, for typical values (unless otherwise noted).

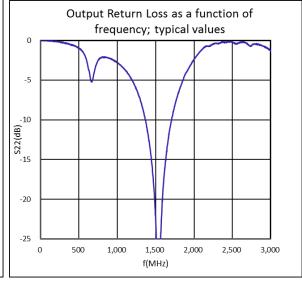


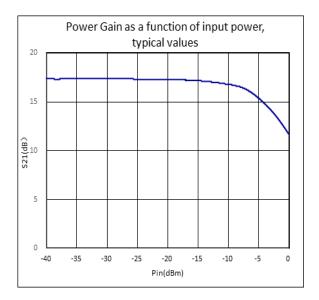


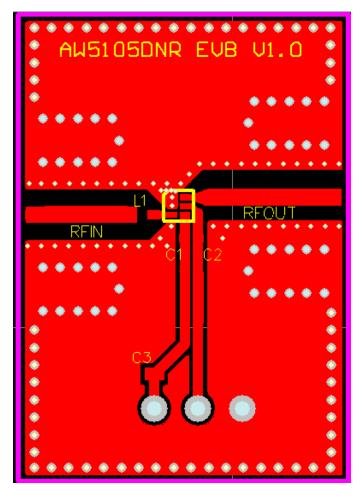









TA=25 °C, VCC=2.8 V, EN=2.8 V, Rs=Ro=50 ohm, for typical values (unless otherwise noted).



AW5105 APPLICATION BOARD

Figure 4 Drawing of Application Board

TEST CIRCUITS

Test DC Characteristics (Current&Power)

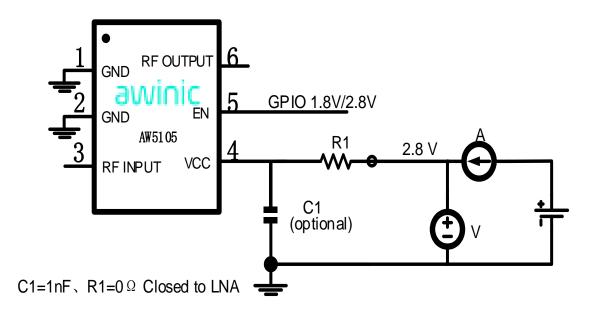


Figure5 Circuit for DC test

Test S-parameter

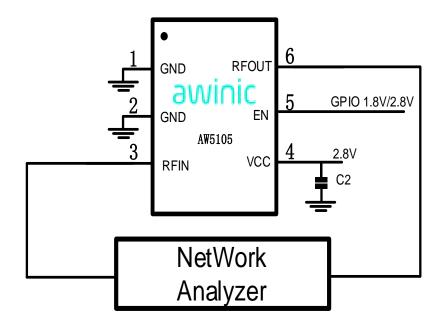
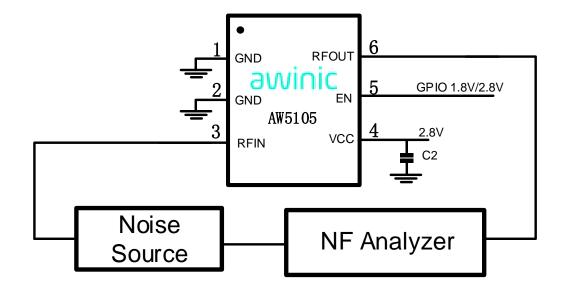



Figure 6 Circuit for S Parameter test

Test Noise-Figure

Figure7 Circuit for Noise Figure test

Test IIP3

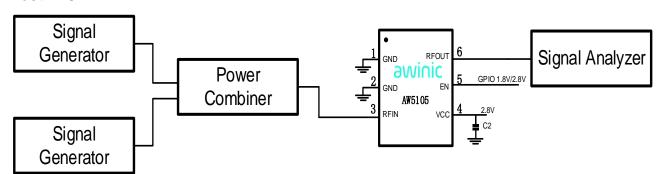


Figure8 Circuit for intermodulation distortion test

APPLICATION INFORMATIONS

Choice of components

Take Figure 1 for example:

The AW5105 includes an internal switch to turn off the entire chip: apply logic high to EN to turn on, and a logic low to shut down.

The output of AW5105 is internally matched to 50 ohm and a DC blocking capacitor is integrated on-chip, thus no external component is required at the output.

The AW5105 should be placed close to the GPS antenna. Use 50- ohm microstrip lines to connect RF INPUT and RF OUTPUT. Bypass capacitor should be located close to the device. For long Vcc lines, it may be necessary to add more decoupling capacitors. Proper grounding of the GND pins is very important.

CHOICE OF CAPACITOR

Part Number	Capacitance	Rated Voltage	Supplier	Size
Units	pF	V		
GRM155	1000	50	Murata	0402

PACKAGE INFORMATION

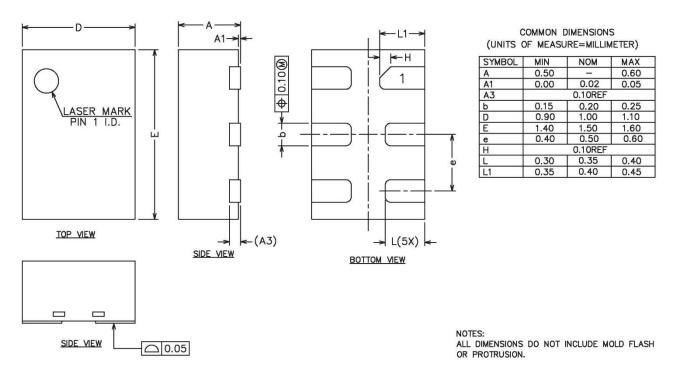
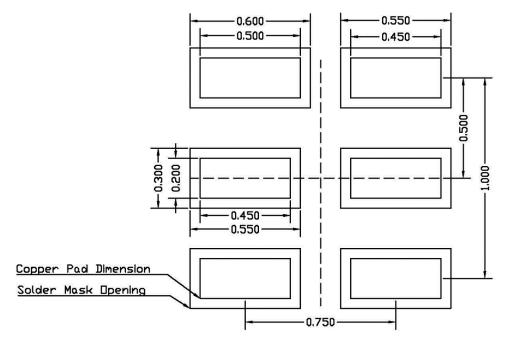
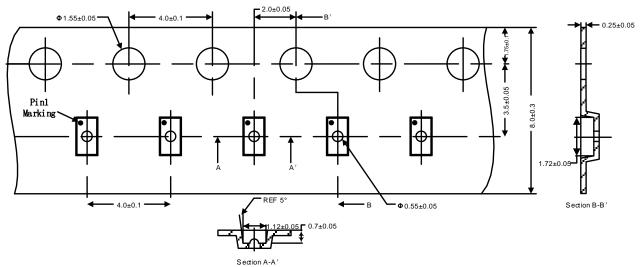



Figure 9 Package outline


LAND PATTERN

Dimension are all In millimeters

Figure 10 Land Pattern

TAPE REEL DESCRIPTION

- 1.10 procket hole pitch cumulative tolerance $\pm\,0.2$
- 2. The meander of the tape is assumed with 1mm or less every 100mm between 250mm
 3. MATERIAL: CONDUCTIVE POYSTYRENE
 4. ALL DIMS IN MM

- $5.\,\mathrm{Th}\,\mathrm{rer}$ must not be foreign body adhesion and the state of the surface must be excellent 6.17" PAPER-Reel, 125000 pockets(500m) 7.Surface resistance 1X10E11(max) OHMS/SQ

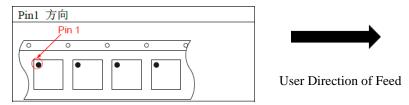
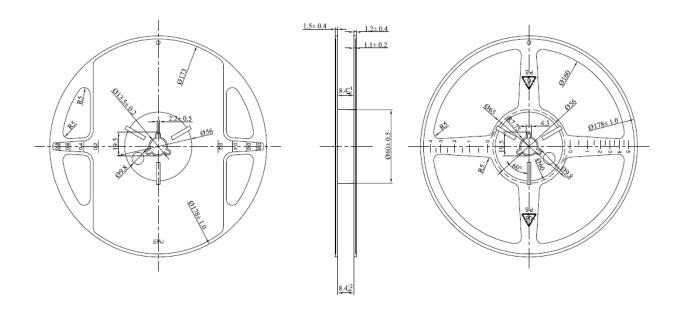



Figure 11 Tape Description

REEL DESCRIPTION

Figure 12 Reel Description

Note:

- 1. Material: polystyrene (black)
- 2. Planeness: max 3mm
- 3. Surface resistance: within 10E5~10E11 OHMS/SQ
- 4. All outstanding tolerance: ±0.25mm. 5. Dimensions are all in millimeters

REFLOW

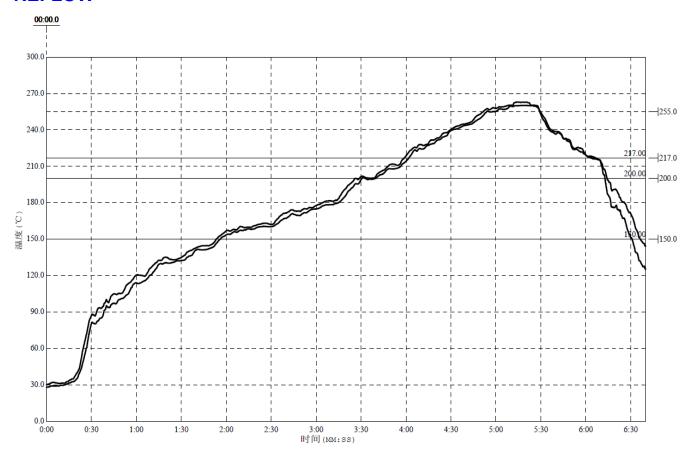


Figure 13 Package Reflow Oven Thermal Profile

Reflow Note	Spec	
Average ramp-up rate (217℃c to Peak)	Max. 3°C/sec	
Time of Preheat temp.(from 150°C to 200°C)	60-120sec	
Time to be maintained above 217℃	60-150sec	
Peak Temperature	>260℃	
Time within 5℃ of actual peak temp	20-40sec.	
Ramp-down rate	Max. 6℃/sec	
Time from 25°C to peak temp	Max. 8min.	

NOTE 1: All data are compared with the package-top temperature, measured on the package surface;

NOTE 2: AW5105DNR adopted the Pb-Free assembly.

REVISION HISTORY

Revision history

Document ID	Release date	Change notice	Supersedes
AW5105_V1.0	2018-01	Officially Released	
AW5105_V1.1	2018-03	Update marking in diagram	

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.