Over-Voltage Protection Load Switch with Surge Protection

FEATURES

- Surge protection
 - IEC 61000-4-5: > 100V
- Integrated low R_{dson} nFET switch: typical 28mΩ
- 4.5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold
 - > AW32801: 5.95V
 - AW32805: 6.8V
 - AW32809: 9.98V
 - > AW32812: 14V
- OVP threshold adjustable range: 4V to 20V
- Input system ESD protection
 - IEC 61000-4-2 Contact discharge: ±8kV
 - > IEC 61000-4-2 Air gap discharge: ±15kV
- Input maximum voltage rating: 29V_{DC}
- Fast turn-off response: typical 125ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)
- 1.34mm × 1.78mm WLCSP-12 package

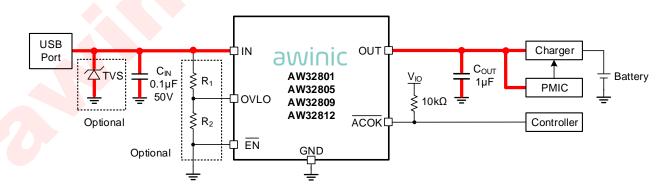
APPLICATIONS

- Smartphones
- Tablets
- 5V to 20V Charging Ports

TYPICAL APPLICATION CIRCUIT

GENERAL DESCRIPTION

The AW328XX family OVP load switch features surge protection, an internal clamp circuit protects the device from surge voltages up to 100V.


The AW328XX features an ultra-low $28m\Omega$ (typ.) R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $29V_{Dc}$.

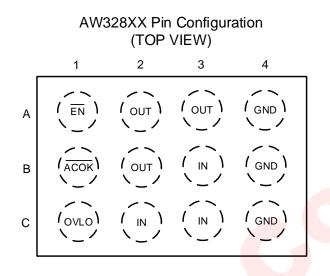
The default OVP threshold is 5.95V (AW32801), 6.8V (AW32805), 9.98V (AW32809) and 14V (AW32812), the OVP threshold can be adjusted from 4V to 20V through external OVLO pin.

The device features an open-drain output \overline{ACOK} , when $V_{IN}_{UVLO} < V_{IN} < V_{IN}_{OVLO}$ and the switch is on, \overline{ACOK} will be driven low to indicate a good power input, otherwise it is high impedance.

This device features over-temperature protection that prevents itself from thermal damaging.

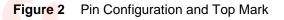
The AW328XX is available in a RoHS compliant 12-bump 1.34mm × 1.78mm WLCSP.

Note: R₁ and R₂ are used for OVP threshold adjustment, to use default OVP threshold, connect OVLO to ground.

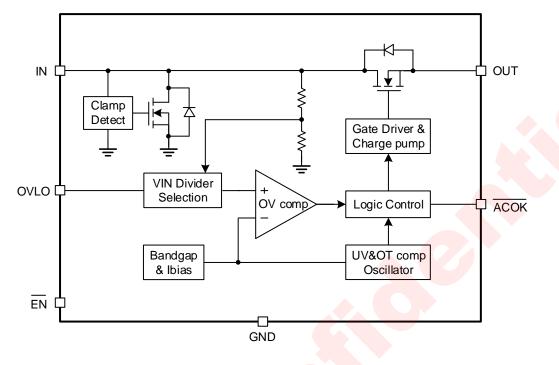

All trademarks are the property of their respective owners.

DEVICE COMPARISON TABLE

awinic

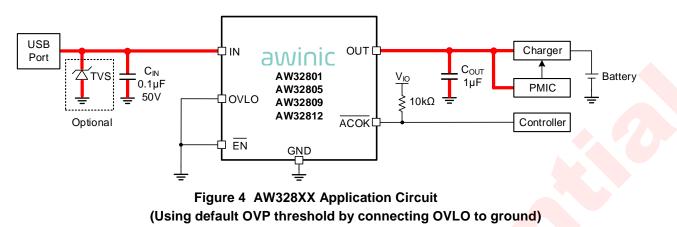

Device		V _{IN_OVLO}	(V)			
Device	Condition	Min.	Min. Typ. Max		hysteresis (mV)	
AW32805	V _{IN} rising	6.66	6.80	6.94	150	
AW32809	V _{IN} rising	9.78	9.98	10.18	210	
AW32812	V _{IN} rising	13.7	14.0	14.3	300	
AW32801	V _{IN} rising	5.83	5.95	6.07	100	

PIN CONFIGURATION AND TOP MARK


²⁸XX – AW32801/AW32805/AW32809/AW32812 YYYY – Production Tracking Code

PIN DEFINITION

PIN	NAME	DESCRIPTION
A1	EN	Enable pin, active low
B1	ACOK	Power good flag, active-low, open-drain
C1	OVLO	OVP threshold adjustment pin
C2, C3, B3	IN	Switch input and device power supply
A2, A3, B2	OUT	Switch output
A4, B4, C4	GND	Device ground


FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUITS

awinia

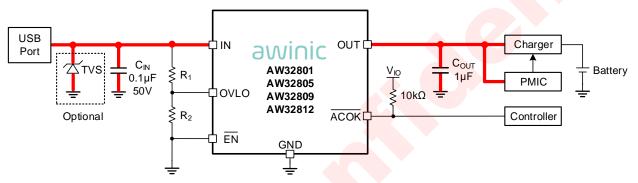
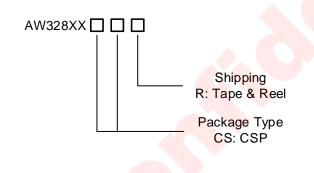


Figure 5 AW328XX Application Circuit (Using external OVP threshold by connecting OVLO to R_1 and R_2)


Notice for Typical Application Circuits:

- 1. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 2. If R_1 and R_2 are used to adjust the OVP threshold, in order to speed up the OVP response, $R_1 + R_2 < 100 k\Omega$ is recommended. It is better to use 1% precision resistors to improve the OVP threshold precision.
- 3. If ACOK is not used, it can be left floating, or short to GND.
- 4. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only AW328XX is used, the rated voltage of C_{IN} should be 50V.
- 5. Cout = 1μ F is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher.
- 6. If the input of AW328XX is required to pass surge voltage greater than 100V, external TVS is needed, the maximum clamping voltage of the TVS should be below 42V.

ORDERING INFORMATION

awinic

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW32801CSR	-40°C~85°C	WLCSP 1.34×1.78-12B	2801	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW32805CSR	-40°C~85°C	WLCSP 1.34×1.78-12B	2805	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW32809CSR	-40°C~85°C	WLCSP 1.34×1.78-12B	2809	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW32812CSR	-40°C~85°C	WLCSP 1.34×1.78-12B	2812	MSL1	ROH <mark>S+</mark> HF	3000 units/ Tape and Reel

ABSOLUTE MAXIMUM RATINGS(NOTE1)

PARAMETER	RANGE	
Supply Voltage Rar	nge V _{IN}	-0.3V to 29V
	OVLO	-0.3V to 29V
Input Voltage Range	ĒN	-0.3V to 6V
	ACOK	-0.3V to 6V
Output Voltage Range	OUT	See ^(NOTE 2)
Maximum Input Peak Pulse Voltage V _{IN_PI} 100 times)	u∟ (20µs pulse width, repeat	42V
Maximum Continuous Current From	n IN to OUT Isw ^(NOTE 3)	4.5A
Peak Current From IN to OU	JT I _{PEAK} (10ms)	8A
Maximum Continuous Forward Current Thi	1.5A	
Junction-to-ambient Thermal Re	esistance $\theta_{JA}^{(NOTE 4)}$	85°C/W
Operating Free-air Tempe	erature Range	-40°C to 85°C
Maximum Junction Temp	erature T _{JMAX}	165°C
Storage Temperatur	e T _{STG}	-65°C to 150°C
Lead Temperature (Solderir	ng 10 Secon <mark>ds)</mark>	260°C
	ESD	
IEC61000-4-2 System ESD on IN (NOTE 5)	Contact Discharge	±8kV
TECOTODO-4-2 System ESD on IN (19-26)	Air Gap Discharge	±15kV
Human Body Model (All pins, per MIL-STE	D-883J Method 3015.9) (NOTE 6)	±4kV
Charged Device Model (All pins, per JE	±1.5kV	
Machine Model (All pins, per JEDE	±400V	
	Latch-Up	
Test Condition: JEDEC STANDARD N	+IT: 800mA -IT: -800mA	

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: -0.3V to 29V or V_{IN} + 0.3V, whichever is smaller.

NOTE3: Limited by thermal design.

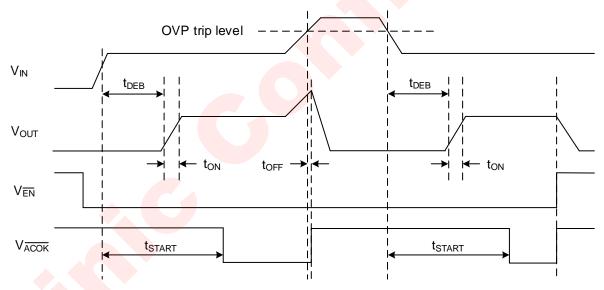
NOTE4: Thermal resistance from junction to ambient is highly dependent on PCB layout.

NOTE5: Test is under $C_{IN} = 1\mu F$.

NOTE6: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin.

ELECTRICAL CHARACTERISTICS

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1µF, I_{IN} ≤ 4.5A and T_A = 25°C.

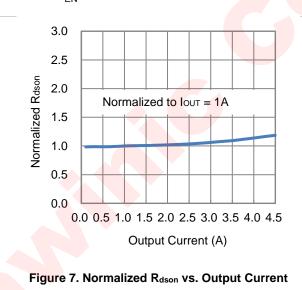

	PARAMETER	TEST CON	DITION	MIN	ТҮР	МАХ	UNIT	
VIN_CLAMP	Input Clamp Voltage	I _{IN} = 10mA			30.3		V	
V _{IN}	Input Voltage Range			2.5		28	V	
Rdson	Switch On Resistance	$V_{IN} = 5V, \ I_{OUT} = 1A, \ T_A = 25^{\circ}C$			28	37	mΩ	
lα	Input Quiescent Current	VIN = 5V, IOUT	- = 0A		65	100	μA	
I _{IN_OVLO}	Input Current at Over-voltage Condition	$V_{OVLO} = 3V,$ 0V	$V_{IN} = 5V, V_{OUT} =$		69	110	μA	
$V_{\text{OVLO}_{\text{TH}}}$	OVLO Set Threshold	2.5V < V _{IN} < 2	20V	1.16	1.20	1.24	V	
Vovlo_rng	OVP Threshold Adjustable Range	2.5V < V _{IN} < 2	20V	4		20	V	
	External OVLO Select	VIN Rising		0.3	0.42	0.50	V	
Vovlo_sel	Threshold	Hysteresis			0.1			
Iovlo	OVLO Pin Leakage Current	Vovlo = Vovlo	р_тн	-0.1		0.1	μA	
COUT	Output Load Capacitance					100	μF	
Protection	I							
	Default OVP Trip Level	414/20205	V _{IN} Rising	6.66	6.80	6.94	-	
		AW32805	V _{IN} Falling	6.51	6.65			
		414/22800	V _{IN} Rising	9.78	9.98	10.18		
		AW32809	V _{IN} Falling	9.57	9.77		v	
V _{IN_OVLO}		AW32812	V _{IN} Rising	13.7	14.0	14.3		
		AVV 32012	V _{IN} Falling	13.4	13.7			
		AW32801	V _{IN} Rising	5.83	5.95	6.07	1	
		VIN Falling		5.73	5.85		1	
Maximum		vel V _{IN} Rising V V _{IN} Falling			2.25	2.40	V	
	UVLO Trip Level				2.10	2.20		
TSDN	Shutdown Temperature				130		°C	
Tsdn_hys	Shutdown Temperature Hysteresis				20		°C	
Digital Log	gical Interface	-						
Vol	ACOK Output Low Voltage	Low Voltage Isink = 1mA				0.4	V	
ILEAK_ACOK	ACOK Leakage Current	$V_{IO} = 5V, \overline{ACOK}$ De-asserted		-0.5		0.5	μA	
VIH	EN Input High Voltage			1.2			V	
VIL	EN Input Low Voltage					0.5	V	
$I_{\text{LEAK}_{\overline{\text{EN}}}}$ $\overline{\text{EN}}$ Leakage Current $V_{\overline{\text{EN}}} = 5V$			-1		10	μA		

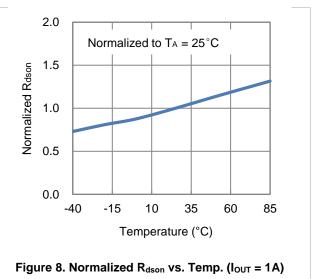
ELECTRICAL CHARACTERISTICS (CONTINUED)

 $T_A = -40^{\circ}C$ to 85°C unless otherwise noted. Typical values are guaranteed for $V_{IN} = 5V$, $C_{IN} = 0.1\mu$ F, $I_{IN} \le 4.5A$ and $T_A = 25^{\circ}C$.

	PARAMETER	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Timing Ch	Timing Characteristics (Figure 6)					
tdeb	Debounce Time	From $V_{IN} > V_{IN_UVLO}$ to 10% V_{OUT} , \overline{EN} Low		15		ms
t stat	Start-up Time	From $V_{IN} > V_{IN_UVLO}$ to \overline{ACOK} low, \overline{EN} Low		30		ms
ton	Switch Turn-on Time	$\label{eq:RL} \begin{array}{l} R_L = 100\Omega, \ C_L = 22\mu F, \ V_{OUT} \\ from \ 10\% \ V_{IN} \ to \ 90\% \ V_{IN} \end{array}$		1		ms
toff	Switch Turn-off Time	$\label{eq:RL} \begin{array}{l} R_L = 100\Omega, C_L = 0 \mu F, V_{IN} > \\ V_{IN_OVLO} \text{ to } V_{OUT} \text{ Stop Rising} \end{array}$		125		ns

TIMING DIAGRAM

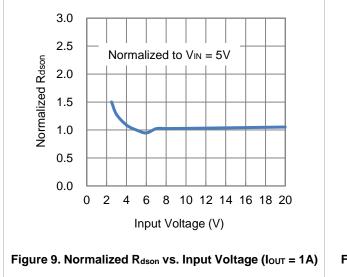


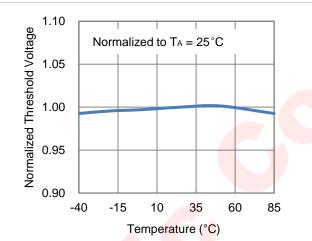

TYPICAL CHARACTERISTICS

INDEX	FIG No.
Normalized Rdson vs. Output Current	FIGURE 7
Normalized R_{dson} vs. Temp. ($I_{OUT} = 1A$)	FIGURE 8
Normalized R_{dson} vs. Input Voltage (Iout = 1A)	FIGURE 9
Input Supply Current vs. Supply Voltage	FIGURE 10
Normalized Internal OVP Threshold vs. Temp.	FIGURE 11
Normalized External OVLO Set OVP Threshold vs. Temp.	FIGURE 12
Normalized Debounce Time vs. Temp.	FIGURE 13
Over-Voltage Response (AW32805)	FIGURE 14
Power-up (C _{OUT} = 1µF, 100mA load)	FIGURE 15
Power-up (C _{OUT} = 100µF, 100mA load)	FIGURE 16
108V Surge Without Device	FIGURE 17
108V Surge With Device (AW32805)	FIGURE 18

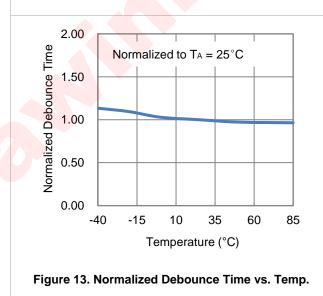
Table 1 TABLE OF FIGURES

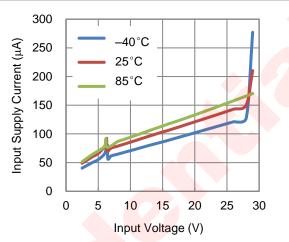
 $V_{IN} = 5V$, $V_{\overline{EN}} = 0V$, $V_{OVLO} = 0V$, $C_{IN} = 0.1\mu$ F, $C_{OUT} = 1\mu$ F, and $T_A = 25^{\circ}$ C unless otherwise specified.

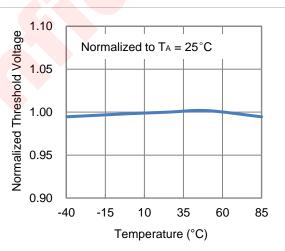
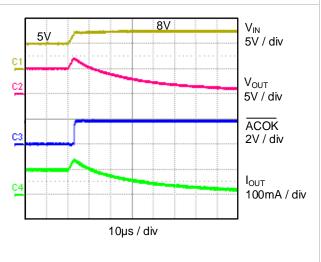


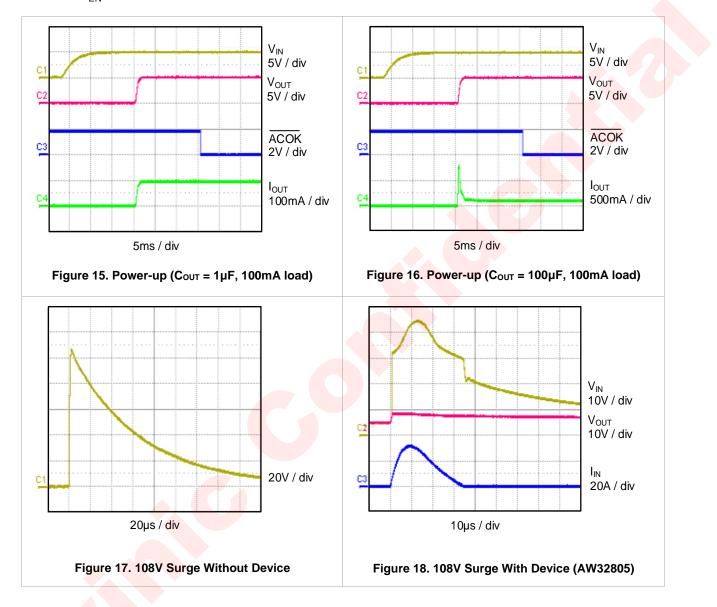


TYPICAL CHARACTERISTICS (CONTINUED)


awinic


 $V_{\text{IN}} = 5V, \ V_{\overline{\text{EN}}} = 0V, \ V_{\text{OVLO}} = 0V, \ C_{\text{IN}} = 0.1 \mu\text{F}, \ C_{\text{OUT}} = 1 \mu\text{F}, \ \text{and} \ T_{\text{A}} = 25^{\circ}\text{C} \ \text{ unless otherwise specified}.$


Figure 12. Normalized External OVLO Set OVP Threshold vs. Temp.

TYPICAL CHARACTERISTICS (CONTINUED)

 $V_{IN} = 5V, \ V_{\overline{EN}} = 0V, \ V_{OVLO} = 0V, \ C_{IN} = 0.1 \mu F, \ C_{OUT} = 1 \mu F, \ and \ T_A = 25^{\circ}C \ unless otherwise specified.$

DETAILED FUNCTIONAL DESCRIPTION

Device Operation

If the AW328XX is enabled and the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. $\overline{\text{ACOK}}$ will be driven low about 30ms after V_{IN} valid, indicating the switch is on with a good power input. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 125ns. If $\overline{\text{EN}}$ is pulled high, or input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Surge Protection

The AW328XX integrates a clamp circuit to suppress input surge voltage. For surge voltages between V_{IN_OVLO} and V_{IN_CLAMP} , the switch will be turned off but the clamp circuit will not work. For surge voltages greater than V_{IN_CLAMP} , the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground. The device can suppress surge voltages up to 100V.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 125ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

OVP Threshold Adjustment

If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

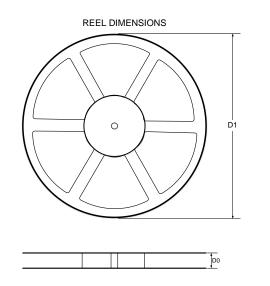
$$V_{\text{IN}_{\text{OVLO}}} = \frac{R_1 + R_2}{R_2} V_{\text{OVLO}_{\text{TH}}}$$

The adjustment range is 4V to 20V. When the OVLO pin voltage V_{OVLO} exceeds V_{OVLO_SEL}(0.42V typical), V_{OVLO} is compared with the reference voltage V_{OVLO_TH} (1.2V typical) to judge whether input supply is over-voltage. For example, if we select R₁ = 51k Ω and R₂ = 12.4k Ω , then the new OVP threshold calculated from the above formula is 6.14V.

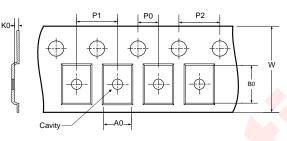
ACOK Output

The device features an open-drain output \overline{ACOK} , it should be connected to the system I/O rail through a pull-up resistor. If the device is enabled and $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$, \overline{ACOK} will be driven low indicating the switch is on with a good power input. If OVP, UVLO, or OT occurs, or \overline{EN} is pulled high, the switch will be turned off and \overline{ACOK} will be pulled high.

USB On-The-Go (OTG) Operation

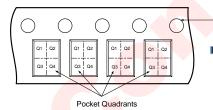

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When $V_{IN} > V_{IN_UVLO}$, internal charge pump begins to open the load switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

PCB LAYOUT CONSIDERATION


To make full use of the performance of AW328XX, the guidelines below should be followed.

- 1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW328XX) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW328XX) and close to OUT pin.
- 2. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.
- 3. If R1 and R2 are used, route OVLO line on PCB as short as possible to reduce parasitic capacitance.
- 4. The power trace from USB connector to AW328XX may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.
- 5. Use rounded corners on the power trace from USB connector to AW328XX to decrease EMI coupling.

TAPE AND REEL INFORMATION

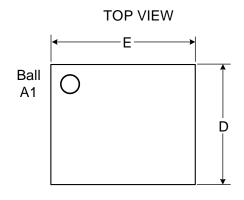


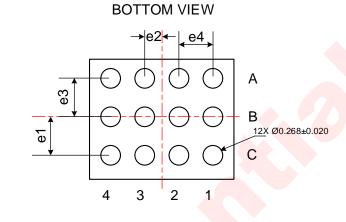
TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole

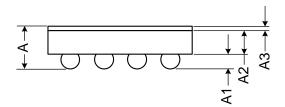
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Sprocket Holes


User Direction of Feed

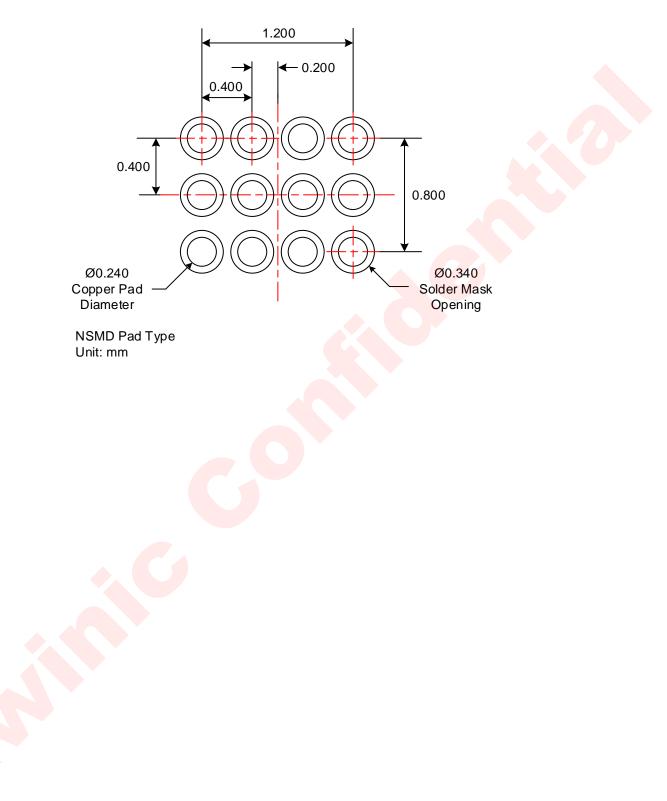

All Dimensions are normal

Device	Package(mm)	Pins	Quantity Per Reel	D1: Reel Diameter (mm)	D0: Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
AW328XXCSR	WLCSP 1.34x1.78	12	3000	178.00	9.00	1.46	1.90	0.81	2.00	4.00	4.00	8.00	Q2


PACKAGE DESCRIPTION

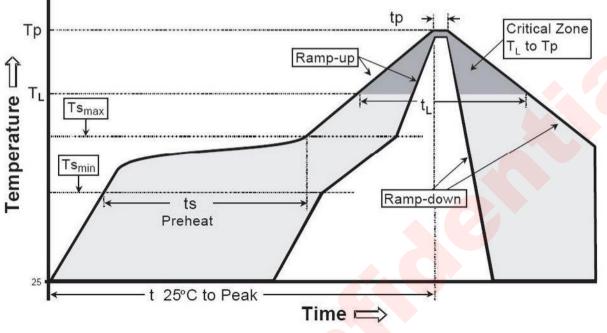
awinic

SIDE VIEW



Symbol	NOM	Tolerance
А	0.575	±0.055
A1	0.195	±0.020
A2	0.340	±0.025
A3	0.040	±0.010
D	1.340	±0.025
E	1.780	±0.025
e1	0.400	NA
e2	0.200	NA
e3	0.400	NA
e4	0.400	NA

Unit: mm


LAND PATTERN DATA

awinic

awinic

REFLOW

Figure 19	Package Reflow Standard Profile
-----------	---------------------------------

Reflow Note	Spec
Average ramp-up rate (217°C to peak)	Max. 3°C /sec
Time of Preheat temp. (from 150 <mark>°C</mark> to 200°C)	60-120sec
Time to be maintained above 217°C	60-150sec
Peak Temperature	250-260°C
Time within 5°C o <mark>f actual p</mark> eak temp	20-40sec
Ramp-down rate	Max. 4°C /sec
Time from 25°C to peak temp	Max. 8min

NOTE 1: All data are compared with the package-top temperature, measured on the package surface; NOTE 2: AW328XX adopted the Pb-Free assembly.

REVISION HISTORY

Version	Date	Change Record		
V0.9	November 2016	Datasheet v0.9 released.		
V1.0	October 2016	Datasheet v1.0 released.		
V1.1	February 2018	 Datasheet template changed. Input voltage range modified. Notice for typical application circuits added. V_{IN_PUL}, IPEAK, IDIODE added in absolute maximum ratings table PCB layout consideration added. Land pattern data added. Reflow information added. 		
V1.2	June 2018	 Typical application circuit modified. Notice for typical application circuits #6 added. Package information in ordering information modified. Tape and reel information modified. Package description modified. Reflow curve and spec modified. 		

awinic

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.