承認書

SPECIFICATION FOR APPROVA

CUSTOMER:		
CUSTOMER P/N:		
CUSTOMER PART NO:		
DESCRIPTION:	SMD INDUCTOR	
PRODUCTS NO:	BCIH11740HC-R15M	
FIRST DATE:	2019-10-23	BC REV: X1
DATE:	2019-10-23	

PURCHASER CONFIRMED				
APPROVAL BY	CHECK BY	DRAWN BY		

REMARK		

PROVIDER ENGINEER DEPT.				
APPROVAL BY CHECK BY DRAWN BY				
Ouyang weijun	Xuqiuyue	chenlinli		

CHENG 誠陽實業有限公司

TAIPEI OFF ICE TAIWAN CHENG YANG COMPONENT CORP

2F-1, NO. 176, Chine-Yi Road., Zhonghe District, New Taipei City, TAIWAN(R.O.C)

新北市中和區建一路176號2樓之一

POSTAL CODE: 23500

TEL NO.:+886-2-8228-0930 FAX NO.:+886-2-8228-0929 E-mail:h21803@ms29.hinet.net

寶誠電子有限公司

CHINA FACTORYZHUHAI BAO CHENG ELECTRONICSCO.,LTD

Guan Tang Industrial Park, Tang Jia Wan Town, Zhuhai City, Guangdong Province, CHINA

中國廣東省珠海市塘家灣鎮官塘工業區

POSTAL CODE: 519085

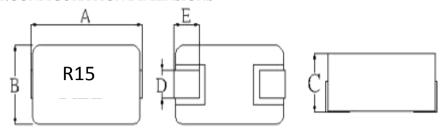
TEL NO:86-756-3383187 FAX NO:86-756-3380704 E-mail: baocheng@baocheng.biz

CHENG 昆山誠陽電子有限公司

CHINA FACTORYKUNSHAN CHENG YANG ELECTRONICSCO.,LTDP

江蘇省昆山市高科技工業園區強安路35號

POSTAL CODE: 215300


TEL NO:86-512-57823500 FAX NO:86-512-57823503 E-mail: kscy@taiwan-chengyang.com.tw

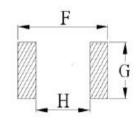
SPECIFICATION FOR APPROVAL

DATE: 2019-10-23

		B111E: 2013 10 20
CUSTOMER:	CUSTOMER PART NO:	FIRST DATE:
		2019-10-23
DESCRIPTION:	PRODUCTS NO:	BC REV:
SMD INDUCTOR	BCIH11740HC-R15M	X1

1.CONFIGURATION DIMENSIONS

DIMENSIONS (UNIT:mm)


A: 10.50 ±0.8 B: 6.90 ±0.5

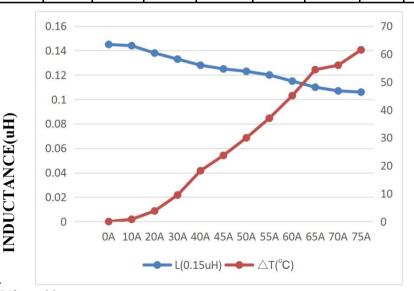
C: 4.00 Max

D: 3.00 ±0.5 E: 2.00 ±0.5

Marking: 喷印黑色

2.RECOMMEND LAND PATTERN DIMENSIONS

F: 12.50


G: 3.50

H: 6.50

3.ELECTRICAL CHARACTER

Part Number	Part Number Inductance		ductance (uH) R_{dc} (m Ω)		(Irms)(A) Heat Rating Current		(Isat)(A) Saturation Current	
	200k	Hz/0.25	v/0A.	±5%		Typical	ı	Typical
BCIH11740HC-R15M	0.15	±	20%	0.68	40.00	∆T≦40°C	70.00	∆L≦30%

Adc	0A	10A	20A	30A	40A	45A	50A	55A	60A	65A	70A	75A
L(0.15uH)	0.145	0.144	0.138	0.133	0.128	0.125	0.123	0.120	0.115	0.110	0.107	0.106
$\triangle T(^{\circ}\mathbb{C})$	0.00	0.80	3.80	9.50	18.20	23.70	30.00	37.00	45.10	54.40	56.00	61.50

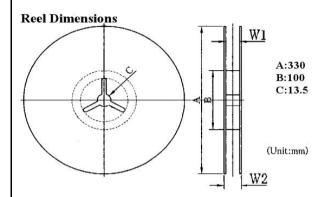
- (1) Tolerance of Inductance: M=±20%.
- (2) All test data is referenced to 25°C ambient.
- (3) Inductance is measured 200kHz/0.25v/0A .25 $^{\circ}\text{C}\,$ ambient.

DC CURRENT (AMPS)

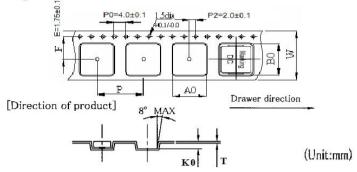
- (4) Operating Temperature Range -40°C to +125°C.
- (5) DC current (Irms) (A) that will cause an Approxim $\triangle T \le 40^{\circ}$ C
- (6) DC current (Isat) (A) that will cause L0 to drop approximate $\triangle L \le 30\%$
- (7) The part Temperature (ambient + temp rise) should not exceed 125°C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature Part temperature should be verified in the end application.

*Irms : Heat Rating Current DC Amps.*Isat : Saturation Current DC Amps.

FEMPERATURE (°C)


SPECIFICATION FOR APPROVAL

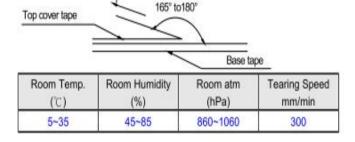
DATE: 2019-10-23


CUSTOMER:	CUSTOMER PART NO:	FIRST DATE:
		2019-10-23
DESCRIPTION:	PRODUCTS NO:	BC REV:
SMD INDUCTOR	BCIH11740HC-R15M	X1

4.PACKAGING INFORMATION

(1) Tape Dimension / Packaging Quantity

Tape Dimensions



DIMENSIONS (UNIT:mm)

A: 330.0 ±2.00 B: 100.0 ±0.50 C: 13.5 ±0.50 W1: 24.80 ±0.30 W2: 29.00 ±0.50 Q'TY: 1,000 PCS DIMENSIONS (UNIT:mm)

W: 24.00 ± 0.30 A0: 7.60 ± 0.10 B0: 12.00 ± 0.10 K0: 5.40 ± 0.10 P: 12.00 ± 0.10 F: 11.50 ± 0.10 T: 0.40 ± 0.05

(2) Tearing Off Force

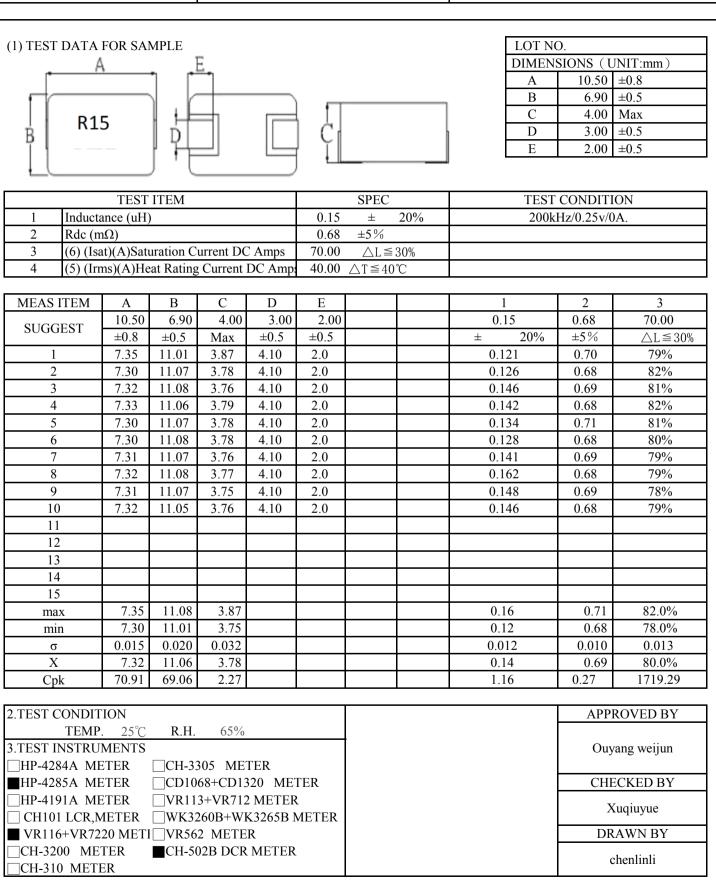
The force tearing off cover 10 to 130 grams (0.1N to 1.3N) in the arrow direction under the following conditions.

Storage conditions/Note things

- (1) Storage temperature and humidity conditions:
 - 1. Product packing with Carrier tape: +5°C ~+40°C and less than 60% RH.
 - 2. Product alone: -20° C $\sim +60^{\circ}$ C and less than 60% RH.
- (2) Products should be used within 6 months.
- (3) The packaging material should be kept where no chlorine or sulfur exists in the air.
- (4) Do not touch the electrodes (soldering terminals) with fingers as this may lead to deterioration of solder ability
- (5) The use of tweezers or vacuum pick-ups is strongly recommended for individual components.
- (6) Bulk handling should ensure that abrasion and mechanical shock are minimized.

SAMPLE ACKNOWLEDGE CHANGE RESUME

DATE: 2019-10-23


CUSTOMER:	CUSTOMER PART NO:	FIRST DATE:
		2019-10-23
DESCRIPTION:	PRODUCTS NO:	BC REV:
SMD INDUCTOR	BCIH11740HC-R15M	X1

REV		Change content	Change reason	Modify	Date
KE V		Change Content	Change Feason	MOUILY	Date
X1	00	首次	首次送样	chenlinli	2019-10-23

TEST DATA

DATE: 2019-10-23

		B111E. 2017 10 25
CUSTOMER:	CUSTOMER PART NO:	FIRST DATE:
		2019-10-23
DESCRIPTION:	PRODUCTS NO:	BC REV:
SMD INDUCTOR	BCIH11740HC-R15M	X1

■GENERAL CHARA	CTERISTICS	page. 1
Operation Temperature	-40°C to +125°C (Includes temperature when the co	il is heated)
External Appearance	On visual inspection, the coil has no external defects	S.
Solder Ability Test	More than 90% of terminal electrode should be covered at large 1 After fluxing, component shall be dipped in a dipped in a melted. Solder:bath at $235^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5 ± 0.5 senonds	Preheating Dipping Natural cooling
Heat endurance of Solderin	1.Components should have not evidence of electrica 2.Inductance: within±10% of initial value. 3.Impedance: within±10% of initial value. Preheat:150±5°C 60seconds. Solder temperature: 250±5°C. Flux: rosin. Dip time:10±0.5seconds.	Preheating Dipping Natural cooling
Terminal Strength	After soldering of X,Y withstanding at below condit off. (Refer to figure at below)	ions .The terminal should not Peel 5N:6
Insulating Resistance	Over $100M\Omega$ at $100V$ D.C. between coil and core.	
Dielectric Strength	No dielectric breakdown at 30V D.C. for 1 minute b	etween coil and core.
VibrationTest	Inductance deviation within +10% after vibration for orientations at sweep vibration(10-~55-~10HZ)with	
Drop test	Inductance deviation within +10% after being dropp shock Attitude upon a rubber block method shock to orientations	· · · · · · · · · · · · · · · · · · ·

S Application Notice/Handling

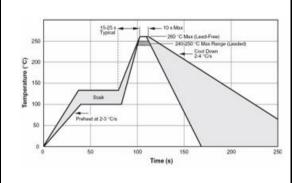
- 1. Storage Conditions
- 1. Storage Conditions

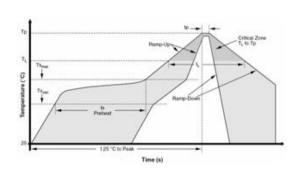
To maintain the solder ability of terminal electrodes:

- (1) Temperature and humidity conditions: less than 40°C and 70% RH.
- (2) Products should be used within 6 months.
- (3) The packaging material should be kept where no chlorine or sulfur exists in the air.
- Handling
- (1) Do not touch the electrodes(soldering terminals) with fingers as this may lead to deterioration of solderability.
- (2) The use of tweezers or vacuum pick-ups is strongly recommended for individual components.
- (3) Bulk handling should ensure that abrasion and mechanical shock are minimized.

■GENERAL CHARACTE	ERISTICS	page. 2
TEST	Required Characteristics	Test Method/Condition
High Temperature StorageTest Reference documents: MIL-STD-202G Method108A	 No case deformation or change in appearance △L/L≤10% △Q/Q≤30% △DCR/DCR≤10% 	High temperature 25°C 1H 1H 96H Test Time Temperature: 125°C±2°C Time: 96±2 hours. Tested not less than 1 hour, nor more than 2 hours at room.
Low Temperature Storage Test Reference documents: IEC 68-2-1A 6.1 6.2	 No case deformation or change in appearance ΔL/L≤10% ΔQ/Q≤30% ΔDCR/DCR≤10% 	Tested not less than 1 hour, nor more than 2 hours at room.
Humidity Test Reference documents: MIL-STD-202G Method103B	 No case deformation or change in appearance ΔL/L≤10% ΔQ/Q≤30% ΔDCR/DCR≤10% 	1. Dry oven at a temperature of 40°C±2°C for 96hours 2. Measurements At the end of this period 3. Exposure: Temperature: 40°C±2°C. Humidity:93±2hoyrs. 4. Tested while the chamber. 5. Tested not less than 1 hour. Nor more than 2 hours at room temperature.
Thermal Shock Test Reference documents: MIL-STD-202G Method107G	 No case deformation or change in appearance ΔL/L≤10% ΔQ/Q≤30% ΔDCR/DCR≤10% 	First-40°C for 30 Minutes, last 125°C for 30 Minutes as 1 cycle. Go through 20 cycles.

■Application Notice/Handling


- (1) Temperature and humidity conditions: less than 40°C and 70% RH.
- (2) Products should be used within 6 months.
- (3) The packaging material should be kept where no chlorine or sulfur exists in the air.
- (4) Do not touch the electrodes (soldering terminals) with fingers as this may lead to deterioration of solder ability
- (5) The use of tweezers or vacuum pick-ups is strongly recommended for individual components.
- (6) Bulk handling should ensure that abrasion and mechanical shock are minimized.


■THE CONDITION OF REFLOW(RECOMMENDATION)

page. 3

TYPICAL WAVE SOLDER PROFILE FOR LEAD -FREE THROUGH-HOLE PACKAGES

TYPICAL IR REFLOW PROFILE FOR LEADED AND LEAD -FREE SURFACE MOUNT PACKAGES

IPC/JEDEC J-STD-020C, Figure 5-1

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.	3 °C/second max.	
Preheat ± Temperature Min (Ts _{min}) ± Temperature Max (Ts _{max}) ± Time (ts _{min} to ts _{max})	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-180 seconds	
Time maintained above: ± Temperature (T _L) ± Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds	
Peak/Classification Temperature (Tp)	See Table 4.1	See Table 4.2	
Time within 5 °C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds	
Ramp-Down Rate	6 °C/second max.	6 °C/second max.	
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.	

Table 4. Classification Reflow Profiles (per IPC/JEDEC J-STD-020C, Table 5.2)

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Package Thickness	Volume mm ³ <350	Volume mm³ ≥350
<2.5 mm	240 +0/-5 °C	225 +0/-5 °C
≥2.5 mm	225 +0/-5 °C	225 +0/-5 °C

Table 5. SnPb Eutectic Process - Package Peak Reflow Temperatures (per IPC/JEDEC J-STD-020C, Table 4.1)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 + 0 °C *	260 + 0 °C *	260 + 0 °C *
1.6 mm - 2.5 mm	260 + 0 °C *	250 + 0 °C *	245 + 0 °C *
≥2.5 mm	250 + 0 °C *	245 + 0 °C *	245 + 0 °C *

^{*} Tolerance: Process compatibility is up to and including the stated classification temperature (this means Peak reflow temperature + 0 °C. For example 260 °C + 0 °C) at the rated MSL level.

Table 6. Pb-free Process - Package Classification Reflow Temperatures (per IPC/JEDEC J-STD-020C, Table 4.2)

Note 1: The profiling tolerance is + 0 °C, -X °C (based on machine variation capability) whatever is required to control the profile process but at no time will it exceed -5 °C. Process compatibility at the peak reflow profile temperatures as defined in Table 4.2.

Note 2: Package volume excludes external terminals (balls, bumps, lands, leads) and/or nonintegral heat sinks.

Note 3: The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of

SMD packages may still exist.

Note 4: Components intended for use in a "lead-free" assembly process shall be evaluated using the "lead-free" classification temperatures and profiles defined in Tables 4.1, 4.2 and 5.2 whether or not lead free.