

SUPER-SEMI

SUPER-MOSFET

Super Junction Metal Oxide Semiconductor Field Effect Transistor

600V Super Junction Power MOSFET SS*47N60S

Rev. 1.3 Jun. 2019

www.supersemi.com.cn

March, 2016

SJ-FET

SSW47N60S/SSA47N60S **600V N-Channel MOSFET** Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance. This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion in switching mode operation for higher efficiency.

Features

- Multi-Epi process SJ-FET 650V @TJ = 150 °C
- Typ. RDS(on) = 60mΩ
- Ultra Low Gate Charge (typ. Qg = 64nC) • 100% avalanche tested

SSA47N60S SSW47N60S Go TO-247 TO-3P

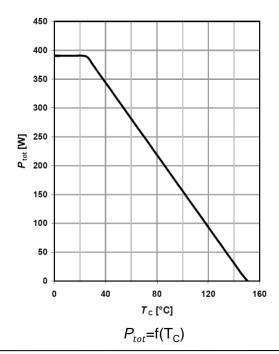
Absolute Maximum Ratings

Symbol	Parameter	SSW_A47N60S	Unit
V _{DSS}	Drain-Source Voltage	600	V
I _D	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)	47* 29*	А
I _{DM}	Drain Current - Pulsed (Note 1)	140	Α
V _{GSS}	Gate-Source voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	1135	mJ
I _{AR}	Repetitive Avalanche Current (Note 1)	9.3	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)	1.72	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	15	V/ns
dVds/dt	Drain Source voltage slope (Vds=480V)	50	V/ns
P _D	Power Dissipation (TC = 25°C)	391	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds	300	°C

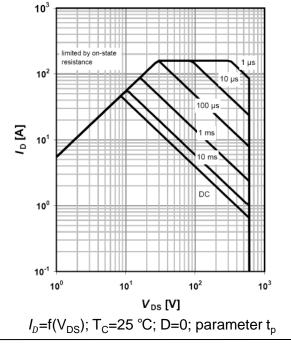
* Drain current limited by maximum junction temperature. Maximum duty cycle D=0.75.

Thermal Characteristics

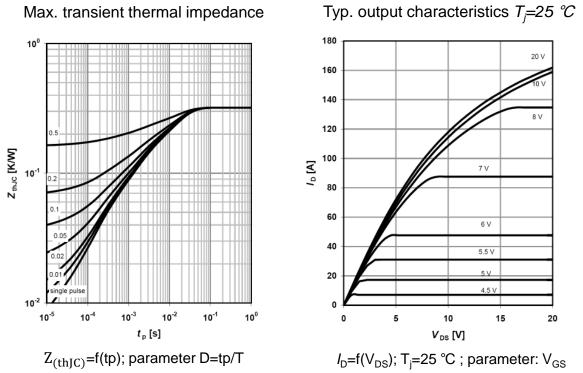
Symbol	Parameter	SSW_A47N60S	Unit
R _{θJC}	Thermal Resistance, Junction-to-Case	0.32	°C/W
R _{ecs}	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	62	°C/W



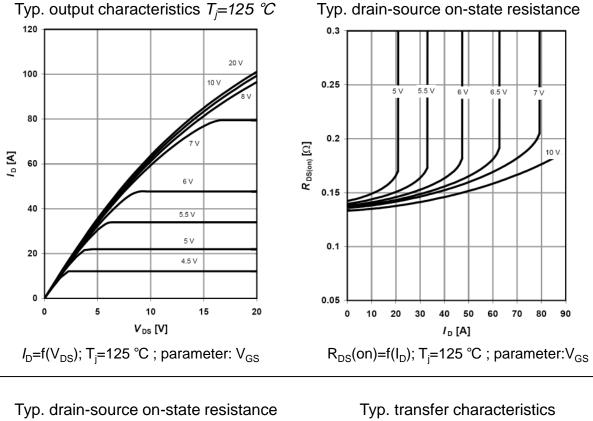
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characte	eristics	·				
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250µA, TJ = 25°C	600	-	-	V
		VGS = 0V, ID = 250µA, TJ = 150°C	-	650	-	V
∆BVdss/∆Tj	Breakdown Voltage Temperature Coefficient	ID = 250 μ A, Referenced to 25°C	-	0.6	-	V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 600V, VGS = 0V -TJ = 150°C	-	- 10	1 -	μA μA
IGSSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -30V, VDS = 0V	-	-	-100	nA
On Characte	eristics	·				
VGS(th)	Gate Threshold Voltage	$VDS = VGS$, $ID = 250\mu A$	2.5	-	4.5	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID = 23A	-	60	70	mΩ
gfs	Forward Transconductance	VDS = 40V, ID = 25A	-	35	-	S
Dynamic Ch	aracteristics					
Ciss	Input Capacitance	VDS = 25V, VGS = 0V,	-	3250	-	pF
Coss	Output Capacitance	f = 1.0MHz	-	910	-	pF
Crss	Reverse Transfer Capacitance		-	27	-	pF
Switching C	haracteristics					
td(on)	Turn-On Delay Time	VDD = 480V, ID = 23A	-	16	-	ns
tr	Turn-On Rise Time	$RG = 20\Omega$ (Note 4)	-	12	-	ns
td(off)	Turn-Off Delay Time		-	83	-	ns
tf	Turn-Off Fall Time		-	5	-	ns
Qg	Total Gate Charge	VDS = 480V, ID = 23A	-	64	-	nC
Qgs	Gate-Source Charge	VGS = 10V (Note 4)	-	19	-	nC
Qgd	Gate-Drain Charge		-	25.5	-	nC
Drain-Sourc	e Diode Characteristics and Maximum Ratir	ngs				
ls	Maximum Continuous Drain-Source Diode Fo	orward Current	-	-	47	А
Ism	Maximum Pulsed Drain-Source Diode Forwar	d Current	-	-	140	А
Vsd	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 23A	-	0.9	1.5	V
trr	Reverse Recovery Time	$V_{GS} = 0V, V_{R} = 400V,$	-	580	-	ns
Qrr	Reverse Recovery Charge	Is = 20A, dIF/dt =100A/µs	-	10.7	-	μC
Irrm	Peak Reverse Recovery Current		-	37	-	A

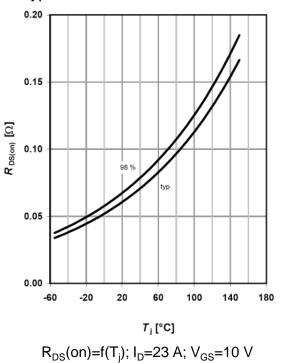

NOTES:

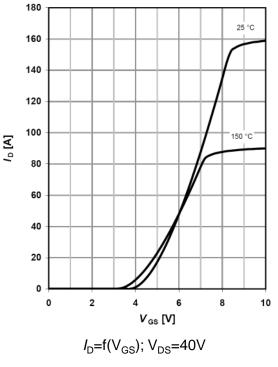
1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. I_{AS} =9.3A, VDD=50V, Starting TJ=25 °C 3. I_{SD} ≤ID, di/dt ≤ 200A/us, V_{DD} ≤ BV_{DSS} , Starting TJ = 25 °C 4. Essentially Independent of Operating Temperature Typical Characteristics



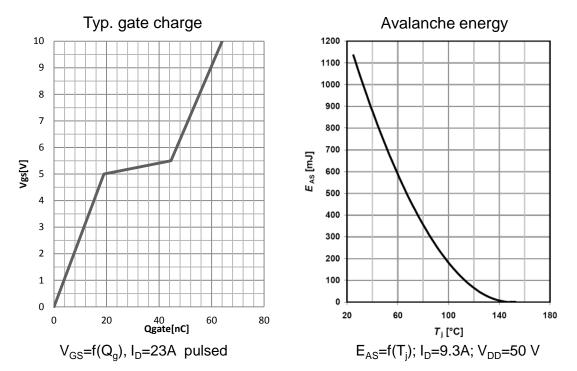
Power dissipation


Safe operating area TC=25 °C

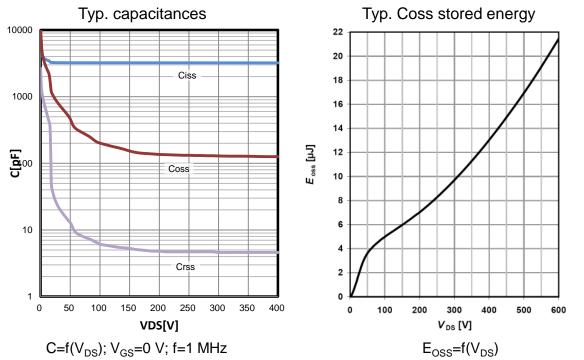

Max. transient thermal impedance



©2012 Super Semiconductor Corporation SSW47N60S/SSA47N60S Rev.1.3 www.supersemi.com.cn

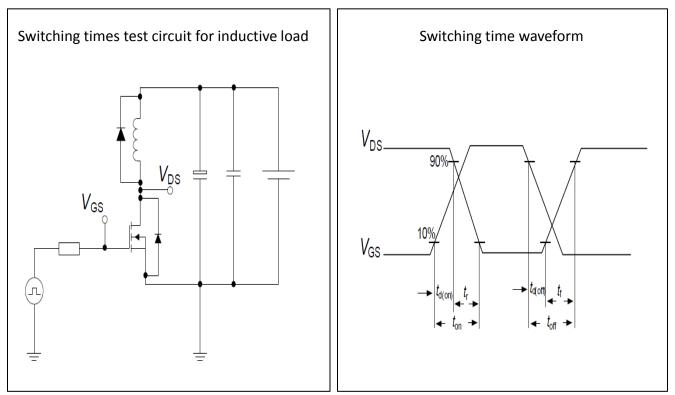


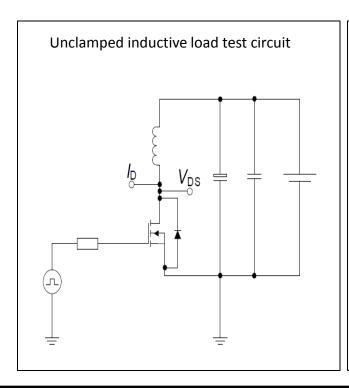


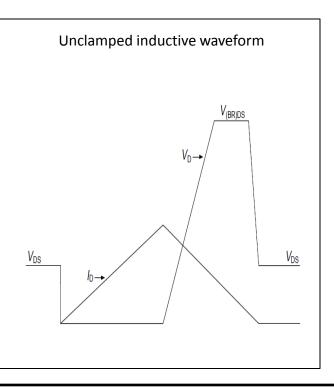

Forward characteristics of reverse diode

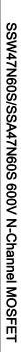
Drain-source breakdown voltage 10³ 680 660 10² 640 ∑ 620 (SSCI)^{NB} ∧ [€] 10¹ 125 °C 25 °C 580 10⁰ 560 10⁻¹ 540 0.5 1 1.5 60 -20 20 100 140 180 0 2 -60 V _{SD} [V] *Τ*_j [°C] $I_F = f(V_{SD})$; parameter: T_i $V_{BR(DSS)}=f(T_i); I_D=0.25mA$

©2012 Super Semiconductor Corporation SSW47N60S/SSA47N60S Rev.1.3 www.supersemi.com.cn

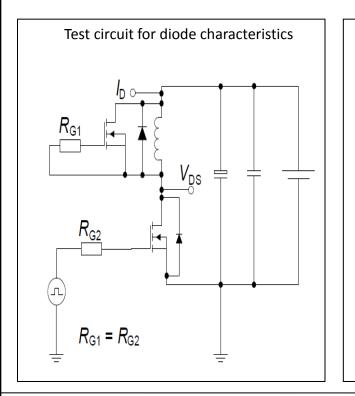

Typical Performance Characteristics

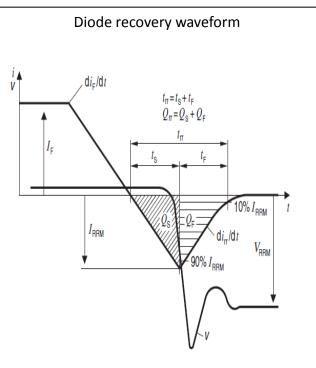



Test circuits

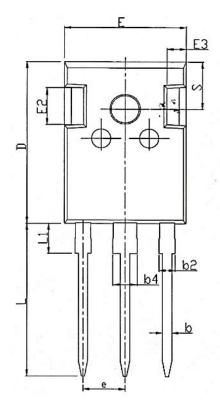

Switching times test circuit and waveform for inductive load

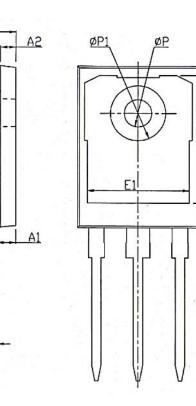
Unclamped inductive load test circuit and waveform





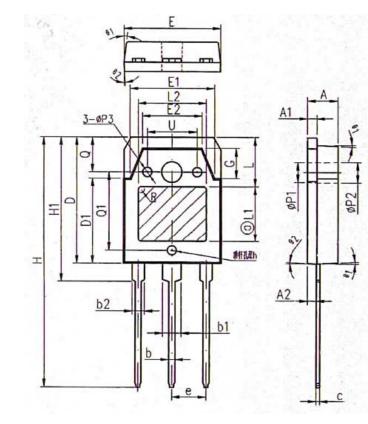
Test circuits

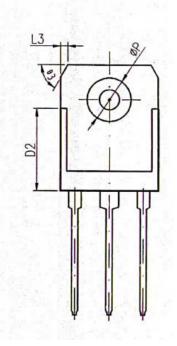

Test circuit and waveform for diode characteristics



Package Outline TO-247

D


A


C

COMMON DIMENSIONS				
SYMBOL	MM			
SIMBOL	MIN	NOM	MAX	
A	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16	1.21	1.26	
b2	1.96	2.01	2.06	
b4	2.96	3.01	3.06	
с	0.59	0.61	0.66	
D	20.90	21.00	21.10	
D1	16.25	16.55	16.85	
D2	1.05	1.20	1.35	
E	15.70	15.80	15.90	
E1	13.10	13.30	13.50	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
e		5.44BSC		
h	0.05	0.10	0.15	
L	19.80	19.92	20.10	
L1		•	4.30	
ΦP	3.50	3.60	3.70	
ΦΡ1			7.30	
ΦP2	2.40	2.50	2.60	
Q	5.60	5.80	6.00	
S		6.15BSC		
R		0.50REF		
Т	9.80 - 10.20			
T1	1.65REF			
T2	8.00REF			
T3	12.80REF			
U	6.00 - 6.40			
01	6°	7°	8°	
θ2	4°	5°	6°	
03	1°		1.5°	
04	14°	15°	16°	

4-01-	-	
	mm	
	-	

COMMON DIMENSIONS

COMMON DIMENSIONS					
SYMBOL	MM				
SIMBOL	MIN	NOM	MAX		
A	4.60	4.80	5.00		
A1	1.40	1.50	1.60		
A2	1.33	1.38	1.43		
b	0.80	1.00	1.20		
b1	2.80	3.00	3.20		
b2	1.80	2.00	2.20		
c	0.50	0.60	0.70		
D	19.75	19.90	20.05		
D1	13.70	13.90	14.10		
D2		12.90REF			
E	15.40	15.60	15.80		
E1	13.40	13.60	13.80		
E2	9.40	9.60	9.80		
е	5.45 TYP				
G	4.60	4.80	5.00		
H	40.30	40.50	40.70		
H1	23.20	23.40	23.60		
h	0.05	0.10	0.15		
L	7.40 TYP				
L1		9.00 TYP			
L2		11.00 TYP	•		
L3		1.00 REF			
ΦP	6.90	7.00	7.10		
ΦP1		3.20 REF			
ΦP2		3.50 REF			
ΦP3	1.40	1.50	1.60		
R	0.50 REF				
Q	5.00 REF				
Q1	12.56	12.76	12.96		
Ŭ	7.8	8	8.2		
θ1	5°	τ	9°		
θ2	1°	<u>3</u> °	5°		
θ3 60° REF					

DISCLAIMER

SUPER SEMICONDUCTOR reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, SUPER SEMICONDUCTOR does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, SUPER SEMICONDUCTOR hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling SUPER SEMICONDUCTOR products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify SUPER SEMICONDUCTOR for any damages arising or resulting from such use or sale.

INFORMATION

For further information on technology, delivery terms and conditions and prices, please contact SUPER SEMICONDUCTOR office or website (**www.supersemi.com.cn**).