Pin Arrangement

Function Table

Inputs				Outputs	
Clear	Clock	J	K	Q	\bar{Q}
L	X	X	X	L	H
H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H		
H	H	X	X	Qo	\bar{Q}_{0}

H；high level，L；low level，X；irrelevant，\downarrow ；transition from high to low level，
Q_{0} ；level of Q before the indicated steady－state input conditions were established．
\bar{Q}_{0} ；complement of \bar{Q}_{0} or level of Q before the indicated steady－state input conditions were established．
Toggle；each output changes to the complement of its previous level on each active transition indicated by \downarrow ．

Block Diagram (1/2)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	7	V
Input voltage	V_{IN}	7	V
Power dissipation	P_{T}	400	mW
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.
Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply voltage	$\mathrm{V}_{\text {cc }}$	4.75	5.00	5.25	V
Output current	IOH	-	-	-400	$\mu \mathrm{A}$
	loL	-	-	8	mA
Operating temperature	Topr	-20	25	75	${ }^{\circ} \mathrm{C}$
Clock frequency	$\mathrm{f}_{\text {clock }}$	0	-	30	MHz
Pulse width	t_{w} (Clock High)	20	-	-	ns
	$\mathrm{t}_{\mathrm{w} \text { (Clear Low) }}$	25	-	-	
Setup time	$\mathrm{t}_{\text {su (}}$ (H" Data)	20 \downarrow	-	-	ns
	$\mathrm{t}_{\text {su ("L" Data) }}$	20 \downarrow	-	-	
Hold time	$t_{\text {h }}$	0 \downarrow	-	-	ns

Note: \downarrow; The arrow indicates the falling edge.

Electrical Characteristics

$\left(\mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	min.	typ.*	max.	Unit		Condition	
Input voltage	V_{IH}	2.0	-	-	V			
	VIL	-	-	0.8	V			
Output voltage	V_{OH}	2.7	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$		
	$\mathrm{V}_{\text {OL }}$	-	-	0.5	V	$\mathrm{loL}=8 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	
		-	-	0.4		$\mathrm{loL}=4 \mathrm{~mA}$		
Input current	I_{H}	-	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$		
		-	-	60				
		-	-	80				
	IIL	-	-	-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$		
		-	-	-0.8				
		-	-	-0.8				
	1	-	-	0.1	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V}$		
		-	-	0.3				
		-	-	0.4				
Short-circuit output current	los	-20	-	-100	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		
Supply current**	ICC	-	4	6	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		
Input clamp voltage	V_{IK}	-	-	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$		

Notes: * $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
** With all outputs open, I_{Cc} is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At time of measurement, the clock input is founded.

Switching Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Inputs	Outputs	min.	typ.	max.	Unit	Condition
Maximum clock frequency	$\mathrm{f}_{\text {max }}$			30	45	-	MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
Propagation delay time	tplh	Clear Clock	Q, $\overline{\mathrm{Q}}$	-	15	20	ns	
	tphL			-	15	20	ns	

Timing Definition

Testing Method

Test Circuit

1. $f_{\text {max }}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}},($ Clock $\rightarrow \mathrm{Q}, \overline{\mathrm{Q}})$

Notes: 1. Test is put into the each flip-flop.
2. C_{L} includes probe and jig capacitance.
3. All diodes are 1S2074(H).
2. $\mathrm{t}_{\text {PHL }}(\mathrm{Clear} \rightarrow \mathrm{Q}), \mathrm{t}_{\text {PLH }}(\mathrm{Clear} \rightarrow \overline{\mathrm{Q}})$

Notes: 1. Test is put into the each flip-flop.
2. C_{L} includes probe and jig capacitance.
3. All diodes are $1 \mathrm{~S} 2074(\mathrm{H})$.

Waveforms 1

Note: Clock input pulse; $\mathrm{t}_{\mathrm{TLH}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{THL}} \leq 6 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%$ and for $\mathrm{f}_{\max }$, $\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{TH}} \leq 2.5 \mathrm{~ns}$

Waveforms 2

Note: Crear and clock input pulse; $\mathrm{t}_{\mathrm{TLH}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{THL}} \leq 6 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$,

DIP14

DIMENSIONS ARE IN INCHES
dimensions in（ for heference omit

