

P-Channel Enhancement Mode MOSFET

1. Gate 2. Source 3. Drain TO-236 Plastic Package

Absolute Maximum Ratings

		I	I	I
Parameter		Symbol	Value	Unit
Drain-Source Voltage		-V _{DS}	30	V
Gate-Source Voltage		V_{GS}	± 12	V
Drain Current	$T_A = 25$ °C $T_A = 70$ °C	-I _D	4 3.2	А
Peak Drain Current 1)		-I _{DM}	27	Α
Power Dissipation 2)	$T_A = 25$ °C $T_A = 70$ °C	P_{D}	1.4 0.9	W
Junction and Storage Temperature Rang		T_J, T_stg	- 55 to + 150	°C

¹⁾ Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C. Ratings are based on low frequency and duty cycles to keep initial T_j = 25°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Maximum Thermal Resistance from Juntion to Ambient at t ≤10s ¹⁾ at steady-state ^{1) 2)}	$R_{ heta JA}$	90 125	°C/W

¹⁾ The value of R_{BJA} is measured with the device mounted on 1in²FR-4 board with 2 oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

 $^{^{2)}}$ The power dissipation P_D is based on T_{J(MAX)} = 150°C.using≤ 10 s Junction to ambient thermal resistance.

 $^{^{2)}}$ The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

Characteristics at $T_j = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $-I_D$ = 250 μ A	-BV _{DSS}	30	-	-	V
Gate-Source Threshold Voltage at $V_{DS} = V_{GS}$, $I_D = 250 \text{ uA}$	-V _{GSth}	0.5	-	1.3	V
Drain-Source Leakage Current at $-V_{DS}$ = 30 V at $-V_{DS}$ = 30 V, T_j = 55°C	-I _{DSS}	1 1	- -	1 5	μΑ
Gate Leakage Current at $V_{GS} = \pm 12 \text{ V}$	I _{GSS}	-	-	± 100	nA
On state drain current at -V _{GS} = 10 V,V _{DS} = 5 V	-I _{D(ON)}	27	-	-	Α
Drain-Source On-State Resistance at $-V_{GS} = 10 \text{ V}$, $-I_D = 4 \text{ A}$ at $-V_{GS} = 4.5 \text{ V}$, $-I_D = 3.7 \text{ A}$ at $-V_{GS} = 2.5 \text{ V}$, $-I_D = 2 \text{ A}$	R _{DS(on)}		- - -	50 60 85	mΩ
Forward Transconductance at $-V_{DS} = 5 \text{ V}$, $-I_D = 4 \text{ A}$	g _{FS}	-	17	-	S
Diode Forward Voltage at $I_S = 1 \text{ A}, V_{GS} = 0 \text{ V}$	-V _{SD}	0.7	-	1	٧
Maximun Body-Diode Continuous Current	-I _S	-	-	2	Α
Pulsed Body-Diode Current 1)	-I _{SM}	-	-	27	Α
Input Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz	C _{iss}	-	645	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz	C _{oss}	-	80	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 15 \text{ V}$ f = 1 MHz	C_{rss}	-	55	-	pF
Turn-On Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{on}	-	6.5	-	ns
Turn-On Rise Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _r	-	3.5	-	ns
Turn-Off Delay Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{off}	-	41	-	ns
Turn-Off Fall Time at -V _{GS} = 10 V, -V _{DS} = 15 V, R _L = 3.75 Ω ,R _G = 3 Ω	t _{off}	-	9	-	ns

 $^{^{1)}}$ The power dissipation P_D is based on $T_{J(MAX)}$ = 150°C.using \leq 10 s Junction to ambient thermal resistance.



