2．6 Watt Mono Filter－Free Class－D Audio Power Amplifier

Features

\square Efficiency With an $8-\Omega$ Speaker：

$$
88 \% \text { at } 400 \mathrm{~mW}
$$

80% at 100 mW
－ 3.8 mA Quiescent Current
－$\quad 0.4 \mu \mathrm{~A}$ Shutdown Current
\square Optimized PWM Output Stage Eliminates LC Output Filter
\square Internally Generated $250-\mathrm{kHz}$ Switching Frequency Eliminates Capacitor and Resistor
\square Improved PSRR（ -75 dB ）and Wide Supply Voltage（2．5 V to 5.5 V ）Eliminates Need for a Voltage Regulator
－Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
I Improved CMRR Eliminates Two Input Coupling Capacitors
－MSOP8，SOP8，DFN8 package

General Description

The BL6306 is a 2.6 W high efficiency filter－free class－D audio power amplifier that requires only three external components．

Features like 88% efficiency，-75 dB PSRR，and improved RF－rectification immunity make the BL6306 ideal for cellular handsets．In cellular handsets，the earpiece，speaker phone，and melody ringer can each be driven by the BL6306．

Applications

\square Mobile phone，PDA，MID
\square MP3／4，PMP
－Portable electronic devices

Order Information

Part Number	Package	Shipping
BL6306MM	MSOP8	3000 pcs／Tape \＆Reel
BL6306SO	SOP8	2500 pcs／Tape \＆Reel
BL6306DN	DFN8	3000 pcs／Tape \＆Reel

Pin Diagrams

DFN8 PACKAGE （TOP VIEW）

SOP8／MSOP8 PACKAGE （TOP VIEW）

Pin Description

Pin \＃	Name	Description
1	SDB	Shutdown terminal（low active）
2	NC	NC（No internal connection）
3	IN +	Positive differential input
4	IN－	Negative differential input
5	VO +	Positive BTL output
6	VDD	Power Supply
7	PGND	Power Ground
8	VO－	Negative BTL output

Function Block Diagram

Notes：Total Voltage Gain $=A v 1 \times A v 2=2 \times \frac{150 k}{R_{I}}$
Figure 1．Function Block Diagram

BL6306

Application Circuit

Figure 2．BL6306 Application Schematic With Differential Input

Figure 3．BL6306 Application Schematic With Differential Input and Input Capacitors

Figure 4．BL6306 Application Schematic With Single－Ended Input

Absolute Maximum Ratings

Supply Voltage	-0.3 V to 6 V
Input Voltage	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．Operating
Rating indicate conditions for which the device is functional，but do not guarantee specific performance limits．

Electrical Characteristics

The following specifications apply for the circuit shown in Figure 5.
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．

Symbol	Parameter	Conditions	Spec			Units
			Min．	Typ．	Max．	
$\mathrm{I}_{\text {SD }}$	Shutdown Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SDB }}=0 \mathrm{~V}$ ，No Load		0.4	2	uA
I_{Q}	Quiescent Current	$\mathrm{V}_{\text {DD }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ ，No Load		2.2	3.2	mA
		$\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ ，No Load		2.6		
		$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ ，No Load		3.8	8	
$\left\|V_{O S}\right\|$	Output Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=2 \mathrm{~V} / \mathrm{V}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$		2	25	mV
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V		－75		dB
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{DD}} / 2 \text { to } 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{DD}} / 2 \text { to } \mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V} \end{aligned}$		－68		dB
$\mathrm{F}_{\text {SW }}$	Modulation frequency	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V	200	250	300	kHz
A_{V}	Voltage gain	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V	$\frac{270 \mathrm{k}}{\mathrm{R}_{\mathrm{I}}}$	$\frac{300 \mathrm{k}}{\mathrm{R}_{\mathrm{I}}}$	$\frac{330 k}{R_{\text {I }}}$	V／V
$\mathrm{R}_{\text {SDB }}$	Resistance from SDB to GND			300		$\mathrm{k} \Omega$
Z_{I}	Input impedance		135	150	165	k Ω
T_{WU}	Wake－up time from shutdown	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		32		mS
$\mathrm{r}_{\mathrm{DS}(\text {（n）}}$	Drain－Source resistance（on－state）	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		700		$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		500		
		$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		400		
$\mathrm{V}_{\text {SDIH }}$	Shutdown Voltage Input High		1.3			V
$\mathrm{V}_{\text {SDIL }}$	Shutdown Voltage Input Low				0.4	V

Operating Characteristics

－ $\mathbf{V}_{\mathbf{D D}}=\mathbf{5 V}, \mathrm{R}_{\mathrm{I}}=150 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．

Symbol	Parameter	Conditions	Spec			Units
			Min．	Typ．	Max．	
P_{O}	Output Power	THD $+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		2.60		W
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		2.10		
		THD $+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.60		
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.30		
THD +N	Total Harmonic Distortion＋Noise	$\mathrm{Po}=1.0 \mathrm{Wrms}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.21		\％
SNR	Signal－to－Noise ratio	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Po}=1.0 \mathrm{Wrms}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		91		dB

－ $\mathbf{V}_{\mathbf{D D}}=3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{I}}=150 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．

Symbol	Parameter	Conditions		Spec			Units
				Min．	Typ．	Max．	
P_{O}	Output Power	$\mathrm{THD}+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=$			1.35		W
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega$			1.08		
		THD $+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8$			0.85		
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$			0.69		
THD＋N	Total Harmonic Distortion＋Noise	$\mathrm{Po}=0.5 \mathrm{Wrms}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$			0.21		\％
$\mathrm{K}_{\text {SVR }}$	Supply ripple rejection ratio	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ ，input ac－grounded with $\mathrm{C}_{\mathrm{I}}=2 \mathrm{uF}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{~V}$（Ripple）$=200 \mathrm{mV}_{\text {PP }}$			－65		dB
V_{n}	Output voltage noise	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ ，input ac－grounded with $\mathrm{C}_{\mathrm{I}}=2 \mathrm{uF}, \mathrm{f}=20 \sim 20 \mathrm{kHz}$	No weighting		100		$u V_{\text {RMS }}$
			A weighting		75		
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=1 \mathrm{~V}_{\mathrm{PP}}, \mathrm{f}=217 \mathrm{~Hz}$			－70		dB

－ $\mathbf{V}_{\mathbf{D D}}=\mathbf{2 . 5 V}, \mathrm{R}_{\mathrm{I}}=150 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．

Symbol	Parameter	Conditions	Spec			Units
			Min．	Typ．	Max．	
P_{O}	Output Power	THD $+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		0.60		W
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega$		0.51		
		THD $+\mathrm{N}=10 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.40		
		THD $+\mathrm{N}=1 \%, \mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.33		
THD＋N	Total Harmonic Distortion＋Noise	$\mathrm{Po}=0.2 \mathrm{Wrms}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		0.21		\％

Test Circuit

Figure 5．BL6306 test set up circuit

Figure 6． $30-\mathrm{kHz}$ LPF for BL6306 test
Notes： $1>$ ． C_{S} should be placed as close as possible to VDD／GND pad of the device
$2>$ ．Ci should be shorted for any Common－Mode input voltage measurement
$3>$ ．A 33 uH inductor should be used in series with R_{L} for efficiency measurement
$4>$ ．The 30 kHz LPF（shown in figure 5 ）is required even if the analyzer has an internal LPF

Component Recommended

Due to the weak noise immunity of the single－ended input application，the differential input application should be used whenever possible．The typical component values are listed in the table：

R_{I}	C_{I}	C_{S}
150 k	3.3 nF	2 uF

（1） C_{I} should have a tolerance of $\pm 10 \%$ or better to reduce impedance mismatch．
（2）Use 1% tolerance resistors or better to keep the performance optimized，and place the R_{I} close to the device to limit noise injection on the high－impedance nodes．

Input Resistors（ \mathbf{R}_{I} ）\＆Capacitors（ \mathbf{C}_{I} ）

The input resistors $\left(\mathrm{R}_{\mathrm{I}}\right)$ set the total voltage gain of the amplifier according to Eq1

$$
\text { Gain }=\frac{2 \times 150 k \Omega}{R_{I}}\left(\frac{V}{V}\right) \quad E q 1
$$

The input resistor matching directly affects the CMRR，PSRR，and the second harmonic distortion cancellation．

If a differential signal source is used，and the signal is biased from $0.5 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DD}}-0.8 \mathrm{~V}$（shown in Figure2），the input capacitor $\left(\mathrm{C}_{\mathrm{I}}\right)$ is not required．

If the input signal is not biased within the recommended common－mode input range in differential input application（shown in Figure3），or in a single－ended input application（shown in Figure4），the input coupling capacitors are required．

If the input coupling capacitors are used，the R_{I} and C_{I} form a high－pass filter（HPF）．The corner frequency（ f_{c} ）of the HPF can be calculated by $E q 2$

$$
f_{C}=\frac{1}{2 \pi \cdot R_{I} \cdot C_{I}}(H z) \quad E q 2
$$

Decoupling Capacitor（ C_{s} ）

A good low equivalent－series－resistance（ESR）ceramic capacitor（ C_{S} ），used as power supply decoupling capacitor $\left(\mathrm{C}_{\mathrm{S}}\right)$ ，is required for high power supply rejection（PSRR），high efficiency and low total harmonic distortion（THD）． C_{S} is $2 \mu \mathrm{~F}$ ，placed as close as possible to the device VDD pin．

BL6306

Package Dimensions

SOP8

MSOP8

DFN8

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	0.70	0.75	0.80
A 1	-	0.02	0.05
b	0.25	0.30	0.35
c	0.18	0.20	0.25
D	2.90	3.00	3.10
D 2	2.50 REF		
e	0.65 BSC		
Nd	1.95 BSC		
E	2.90	3.00	
E 2	1.55 REF		
L	0.30	0.40	0.50
h	0.20	0.25	0.30

