LINEAR INTEGRATED CIRCUIT

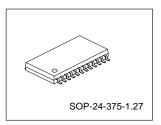
STEPPER MOTOR DRIVER

DESCRIPTION

The L6219 is a bipolar monolithic integrated circuits intended to control and drive both winding of a bipolar stepper motor or bidirectionally control two DC motors.

The L6219 with a few external components form a complete control and drive circuit for LS-TTL or microprocessor controlled stepper motor system. The power stage is a dual full bridge capable of sustaining 46V and including four diodes for current recirculation.

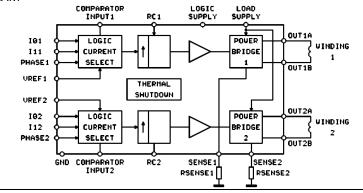
A cross conduction protection is provided to avoid simultaneous cross conduction during switching current direction.


An internal pulse-width-modulation (PWM) controls the output current to 750mA with peak start-up current up to 1A.

Wide range of current control from 750mA (each bridge) is permitted by means of two logic inputs and an external voltage reference. A phase input to each bridge determines the load current direction. A thermal protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.

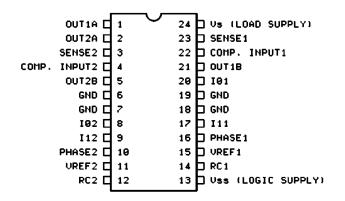
FEATURES

- $\diamond \qquad \text{Able to drive both windings of bipolar stepper motor} \\$
- Output current up to 750mA each winding
- ♦ Wide voltage range 10V to 46V
- ♦ Half-step, full-step and micro-stepping mode
- ♦ Built-in protection diodes


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package			
L6219	SOP-24-375-1.27			


- Internal PWM current control
- Low output saturation voltage
- Designed for unstabilized motor Supply voltage
- ♦ Internal thermal shutdown

YWYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

PIN CONFIGURATION

PIN FUNCTIONS

PDIP & SO	Name	Function
1;2	OUTPUT A	See pins 5;21
3;23	SENSE RESISTOR	Connection to Lower Emitters of Output Stage for Insertion of Current Sense Resistor
4;22	COMPARATOR INPUT	Input connected to the comparators. The voltage across the sense resistor is feedback to this input throught the low pass filter RC CC. The higher power transistors are disabled when the sense voltage exceeds the reference voltage of the selected comparator. When this occurs the current decays for a time set by $R_T C_T$ (toff = 1.1 $R_T C_T$). See fig. 1.
5;21	OUTPUT B	Output Connection. The output stage is a "H" bridge formed by four transistors and four diodes suitable for switching applications.
6;19	GROUND	See pins 7;18
7;18	GROUND	Ground Connection. With pins 6 and 19 also conducts heat from die to printed circuit copper.
8;20	INPUT 0	See INPUT 1 (pins 9;17)
9;17	INPUT 1	These pins and pins 8;20 (INPUT 0) are logic inputs which select the outputs of the comparators to set the current level. Current also depends on the sensing resistor and reference voltage. See Funcional Description.
10;16	PHASE	This TTL-compatible logic inputs sets the direction of current flow through the load. A high level causes current to flow from OUTPUT A (source) to OUTPUT B (sink). A schmitt trigger on this input provides good noise immunity and a delay circuit prevents output stage short circuits during switching.
11;15	REFERENCE VOLTAGE	A voltage applied to this pin sets the reference voltage of the comparators, this determining the output current (also thus depending on R_s and the two inputs INPUT 0 and INPUT 1).
12;14	RC	A parallel RC network connected to this pin sets the OFF time of the higher power transistors. The pulse generator is a monostable triggered by the output of the comparators ($t_{off} = 1.1 R_T C_T$).
13	Vss - LOGIC SUPPLY	Supply Voltage Input for Logic Circuitry
24	Vs - LOAD SUPPLY	Supply Voltage Input for the Output Stages.

Note:

ESD on GND, Vs, Vss, OUT 1A and OUT 2A is guaranteed up to 1.5KV (Human Body Model, 1500 Ω , 100pF).

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage	50	V	
lo	Output Current (peak)	±1	А	
lo	Output Current (continuous)	±0.75	А	
Vss	Logic Supply Voltage	7	V	
Vin	Logic Input Voltage Range	-0.3 to +7	V	
Vsense	Sense Output Voltage	1.5	V	
TJ	Junction Temperature	+150	°C	
Top	Operating Temperature Range	-20 to +85	°C	
Tstg	Storage Temperature Range	-55 to +150	°C	

THERMAL DATA

Symbol	Description		PDIP	SO	Unit
Rthj-case	Thermal Resistance Junction-case	Max.	14	18	°C/W
Rthj-amb	Thermal Resistance Junction-ambient	Max.	60 (*)	75 (*)	°C/W

(*) With minimized copper area.

ELECTRICAL CHARACTERISTICS

(Tj = 25° C, Vs = 46V, Vss = 4.75V to 5.25V, VREF = 5V; unless otherwise specified) See fig. 1.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
OUTPUT DRIVERS (OUTA or OUTB)								
Vs	Motor Supply Range		10		46	V		
ICEX	Output Leakage Current	VOUT = Vs VOUT = 0	-	<1 <-1	50 -50	μΑ μΑ		
VCE(sat)	Output Saturation Voltage	Sink Driver, IOUT = +500mA Sink Driver, IOUT = +750mA Source Driver, IOUT = -500mA Source Driver, IOUT = -750mA	- - -	0.3 0.7 1.1 1.3	0.6 1 1.4 1.6	V V V V		
IR	Clamp Diode Leakage Current	VR = 50V	-	<1	50	μA		
Vf	Clamp Diode Forward Voltage	Sink Diode Source Diode IF =750mA		1 1	1.5 1.5	V V		
IS(on)	Driver Supply Current	Both Bridges ON, No Load	-	8	15	mA		
IS(off)	Driver Supply Current	Both Bridges OFF	-	6	10	mA		

YW YOUWANG ELECTRONICS CO.LTD 3

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
CONTROL L	.OGIC					
VIN(H)	Input Voltage	All Inputs	2.4	-	-	V
VIN(L)	Input Voltage	All Inputs	-	-	0.8	V
lin(h)	Input Current	VIN = 2.4V	-	<1	20	μA
lin(L)	Input Current	VIN = 0.84V	-	-3	-200	μA
Vref	Reference Voltage	Operating	1.5	-	7.5	V
ISS(ON)	Total Logic Supply Current	lo = l1 = 0.8V, No Load	-	64	74	mA
ISS(OFF)	Total Logic Supply Current	lo = l1 = 2.4V, No Load	-	10	14	mA
COMPARAT	ORS					
Vref /	Current Limit Threshold (at trip	lo = l1 = 0.8V	9.5	10	10.5	-
Vsense	point	lo = 2.4V, l1 = 0.8V	13.5	15	16.5	-
		lo = 0.8V, l1 = 2.4V	25.5	30	34.5	-
toff	Cut off Time	Rt = 56KΩ Ct = 820pF	-	50		μs
td	Turn Off Delay		-	1		μs
PROTECTIC	DN					
TJ	Thermal Shutdown Temperature	•	-	170	-	°C

TYPICAL APPLICATION CIRCUIT

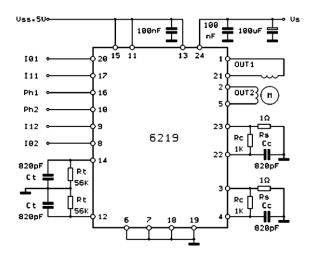
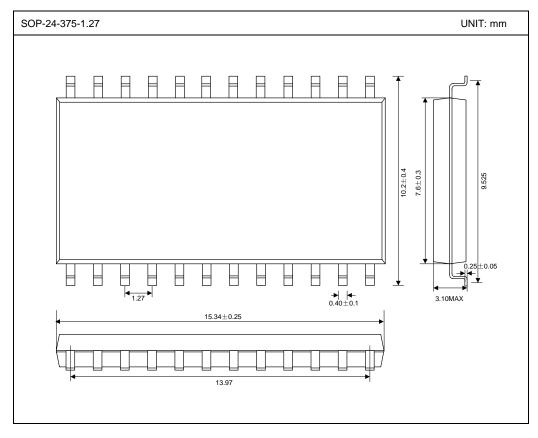



Figure 1: Typical Application Circuit. (Pin out referred to DIP24 package)

YWYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

PACKAGE OUTLINE

YWYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

ELECTROSTATIC DISCHARGE CAUTION

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage handing to prevent electrostatic damage to the device.

NOTICE

HANGZHOU YOUWANG ELECTRONICS CO.LTD assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HANGZHOU YOUWANG ELECTRONICS CO.LTD's products described or contained herein. HANGZHOU YOUWANG ELECTRONICS CO.LTD's products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

YWYOUWANG ELECTRONICS CO.LTD