

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Surface Mount Ceramic Capacitor Products

Table of Contents

How to	Order	Automotive MLCC	
Part Num	ber Explanation1	General Specifications	5
		Capacitance Range	5
COG (NI	P0) Dielectric		
General S	Specifications3	APS for COTS+ High Reliability Applications	
Specifica	tions and Test Methods4	General Specifications	5
Capacita	nce Range5	Capacitance Range	5
U Diele	etric	MLCC with FLEXITERM®	
	wave COG (NPO) Capacitors (RoHS)	General Specifications	
	al Information		
•	itance Range	Capacitance Range	6
	wave COG (NPO) Capacitors (Sn/Pb) al Information10		
	itance Range	I EEXIGAI E MEO OMPS	
	wave Automotive COG (NP0) Capacitors (RoHS)	General Specifications and Capacitance Range	6
	200 Qualified Ultra Low ESR		
	Kits	Capacitor Array	_
- · · · ·		Capacitor Array (IPC)	
X8R/X8	L Dielectric	Automotive Capacitor Array (IPC)	
	Specifications15	Part & Pad Layout Dimensions	7
	tions and Test Methods17		
·		Low inductance Capacitors	_
X7R Die	electric	Introduction	
General S	Specifications18	LICC (Low Inductance Chip Capacitors)	
Specifica	tions and Test Methods19	IDC (InterDigitated Capacitors)	
Capacita	nce Range20	LGA Low Inductance Capacitors	8
		High Temperature MLCCs	
X7S Die	electric	AT Series – 200°C & 250°C Rated	Q
	Specifications22		
•	tions and Test Methods23	HIGH VOITAGE IVII C. C.DIDS	
Capacita	nce Range24	For 600V to 5000V Applications	q
		Tin/Lead Termination "B" - 600V to 5000V Applications	
X5R Die		FLEXITERM® - 600V to 5000V Applications	
	Specifications	For 600V to 3000V Automotive Applications - AFC-0200	
	tions and Test Methods		
Capacitai	nce Range27	MIL-PRF-55681/Chips	
VEV Dia	Jactic	CDR01 thru CDR06	10
Y5V Die		CDR31 thru CDR35	10
	Specifications		
•	tions and Test Methods	MILLI. Menical Annilcations	
Сараспа	nce Range31	MM Series	11
	Gold Termination — AU Series	Packaging of Chip Components	11
	Specifications32		
Capacita	nce Range33		
MLCC T	in/Lead Termination "B" (LD Series)	Paper Carrier Configuration	12
	D) – General Specifications39	Basic Capacitor Formulas	12
•	Specifications and Test Methods40	Duoio oupuoitoi i orinialao	
	Capacitance Range41	General Description	
X8R	General Specifications		12
	Specifications and Test Methods		
X7R	Capacitance Range		
Λ/Π	Specifications and Test Methods		
	Capacitance Range		
X5R	General Specifications		

How to Order

Part Number Explanation

Commercial Surface Mount Chips

EXAMPLE: 08055A101JAT2A

0805	5	Α	101	J*	Α	Т	2	A **
	T	T	T	T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Tolerance	Failure	Terminations	Packaging	Special
(L" x W")	4 = 4V	A = NPO(COG	, ,	$B = \pm .10 pF$	Rate	T = Plated Ni	<u>Available</u>	Code
0101*	6 = 6.3V	C = X7R	No. of Zeros	$C = \pm .25 pF$	A = N/A	and Sn	2 = 7" Reel	A = Std
0201	Z = 10V	D = X5R	Examples:	$D = \pm .50 pF$	4 = Automotive	7 = Gold Plated	4 = 13" Reel	K = 30K (0603 2mm pitch)
0402	Y = 16V	F = X8R	100 = 10 pF	F = ±1%		U = Conductive	U = 4mm TR	22K (0805/1206
0603	3 = 25V	G = Y5V	101 = 100 pF	(≥ 10 pF)		Expoxy for	(01005)	<0.030"/ 0.76mm)
0805	D = 35V	U = U Series	102 = 1000 pF	G = ±2%		Hybrid		H = 18K (0603/0805/1206
1206	5 = 50V	W = X6S	223 = 22000 pF	(≥ 10 pF)		Applications	Contoot	<0.037" / 0.94mm)
1210	1 = 100V	Z = X7S	224 = 220000 pF	$J = \pm 5\%$		Z = FLEXITERM®	_ Contact	J = 15K (0805/1206
1812	2 = 200V		105 = 1µF	$K = \pm 10\%$		*X = FLEXITERM®	Factory For	<0.050" / 1.27mm)
1825	7 = 500V		106 = 10μF	$M = \pm 20\%$		with 5% min	Multiples	1 = 12K (0805/1206
2220			107 = 100μF	Z = +80%,		lead (X7R &	•	<0.055 / 1.4mm)
2225		Factory for	For values below	-20%		X8R only)		**Non std options upon
	Special	Voltages	10 pF, use "R"	P = +100%				approval from the factory
*EIA 01005	F = 63V	9 = 300V	in place of	-0%		Contact		
	* = 75V	X = 350V	Decimal point, e.g.,			Factory For		
	E = 150V	8 = 400V	9.1 pF = 9R1.			= Pd/Ag Term		
		5 450V			1 .	- ru/Ay lelili		
	V = 250V							

^{*} B, C & D tolerance for ≤10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips

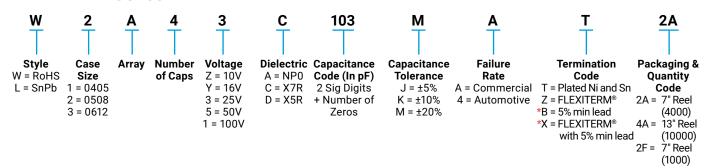
EXAMPLE: 1808AA271KA11A

1808	Α	Α	271	K	Α	<u>T</u>	2	Α
\top	T	T		T	T	T	T	T
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging/	Special
Style	C = 600V/630V	Coefficient	Code	Tolerance	Rate	1 = Pd/Ag	Marking	Code
0805	A = 1000V	A = COG	(2 significant digits	COG: $J = \pm 5\%$	A=Not	T = Plated Ni	2 = 7" Reel	A = Standard
1206	S = 1500V	C = X7R	+ no. of zeros)	$K = \pm 10\%$	Applicable	and Sn	4 = 13" Reel	
1210	G = 2000V		Examples: 10 pF = 100	$M = \pm 20\%$		B = 5% Min Pb		
1808	W = 2500V		10 pF = 100 100 pF = 101	$X7R: K = \pm 10\%$		Z = FLEXITERM®		
1812	H = 3000V		P	$M = \pm 20\%$		*X = FLEXITERM®		
1825	J = 4000V		1,000 pF = 102	Z = +80%,		with 5% min		
2220	K = 5000V		2,000 pF = 223 0,000 pF = 224	-20%		lead (X7R		
2225		22	0,000 pr = 224 1 μF = 105			only)		
3640			ι μτ = 105					

 ${\tt NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.} \\ {\tt For Tin/Lead Terminations, please refer to LD Series} \\$

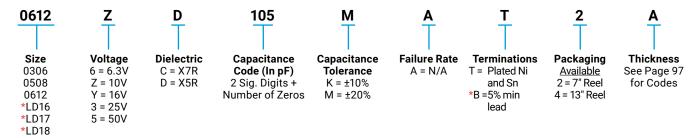
Not RoHS Compliant

For RoHS compliant products, please select correct termination style.


How to Order

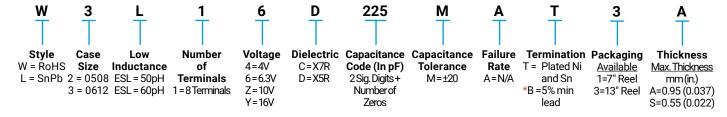
Part Number Explanation

Capacitor Array


EXAMPLE: W2A43C103MAT2A

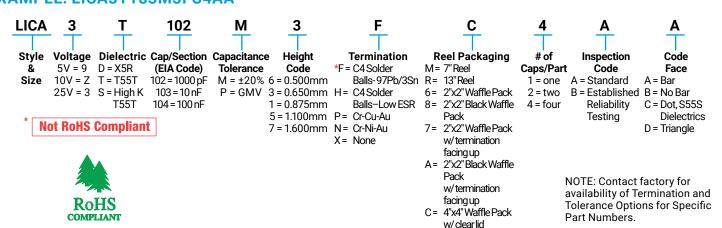
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Low Inductance Capacitors (LICC)


EXAMPLE: 0612ZD105MAT2A

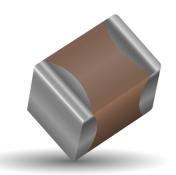
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Interdigitated Capacitors (IDC)


EXAMPLE: W3L16D225MAT3A

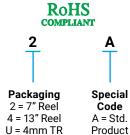
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

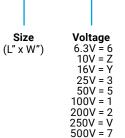
Low Inductance Decoupling Capacitor Arrays (LICA)


EXAMPLE: LICA3T183M3FC4AA

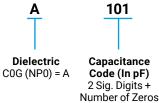
COG (NPO) Dielectric

General Specifications





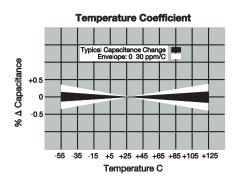
COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

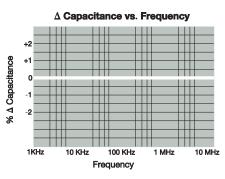

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \text{ppm/}^{\circ}\text{C}$ which is less than $\pm 0.3\%$ C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NP0) ceramics is negligible at less than $\pm 0.05\%$ versus up to $\pm 2\%$ for films. Typical capacitance change with life is less than $\pm 0.1\%$ for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

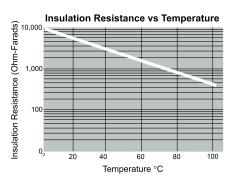
PART NUMBER (see page 4 for complete part number explanation)

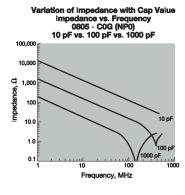
0805

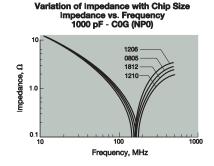
Capacitance Tolerance
B = $\pm .10 \text{ pF} (<10 \text{ pF})$ C = $\pm .25 \text{ pF} (<10 \text{ pF})$ D = $\pm .50 \text{ pF} (<10 \text{ pF})$ F = $\pm 1\% (\ge 10 \text{ pF})$ G = $\pm 2\% (\ge 10 \text{ pF})$ J = $\pm 5\%$ K = $\pm 10\%$

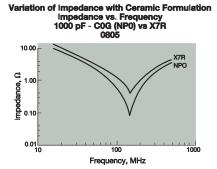

Failure
Rate
A = Not
Applicable


Contact
Factory For
1 = Pd/Ag Term
7 = Gold Plated
NOT ROHS
COMPLIANT


2 = 7" Reel 4 = 13" Reel A U = 4mm TR P (01005)


Contact Factory For Multiples


NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



COG (NP0) Dielectric

Parame	ter/Test	NP0 Specification Limits	Measuring (Conditions	
Operating Tem	perature Range	-55°C to +125°C	Temperature C		
•	itance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0\	r cap > 1000 pF	
Insulation	Resistance	100,000MΩ or 1000MΩ - μ F, whichever is less	Charge device with rated @ room tem		
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V	ischarge current limited (max) 1 150% of rated voltage	
	Appearance	No defects		_	
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Deflectio Test Time: 3		
Flexure	Q	Meets Initial Values (As Above)	V		
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 mm		
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sol ± 0.5 se		
	Appearance	No defects, <25% leaching of either end terminal			
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic	solder at 260°C for	
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at	room temperature	
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	for 24 ± 2hours before measuring electrical properties.		
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes	
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes	
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes	
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes	
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor		
	Appearance	No visual defects	24 110013 81 1001	ii terriperature	
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice		
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set at for 1000 hou Remove from test cha	rs (+48, -0).	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours	
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects			
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% ±	
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidir (+48, -0) with rated	l voltage applied.	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 ho		
	Dielectric Strength	Meets Initial Values (As Above)			

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SI	ZE	0101*		0201		0402	!			0603						0805						1206)		
Sold	ering	Reflow O	nly	Reflow Only	F	eflow/W	/ave		R	eflow/W	ave				Ref	low/Wav	e				R	teflow/W	/ave		
Pack	aging	All Pape	r	All Paper		All Pap	er			All Pape	er				Paper	/Embos	sed				Par	per/Emb	ossed		
(L) Length	mm	0.40 ± 0.0	02	0.60 ± 0.09		1.00 ± 0.	10		1	1.60 ± 0.	15				2.0	01 ± 0.20						3.20 ± 0.	.20		
(E) Ecrigin	(in.) mm	(0.016 ± 0.0 0.20 ± 0.0		0.024 ± 0.00 0.30 ± 0.09		.040 ± 0. 0.50 ± 0.				063 ± 0. 0.81 ± 0.	_					79 ± 0.00 25 ± 0.20						.126 ± 0.			
W) Width	(in.)	(0.008 ± 0.0		0.30 ± 0.09 0.011 ± 0.00	- 1	.020 ± 0.				032 ± 0.						19 ± 0.00						.063 ± 0.			
(t) Terminal	mm	0.10 ± 0.0	04	0.15 ± 0.05		0.25 ± 0.			(0.35 ± 0.	15				0.5	50 ± 0.25						0.50 ± 0.	.25		
(t) Terrimian	(in.) WVDC	(0.004 ± 0.0		0.006 ± 0.00 25 50		.010 ± 0.	.006)	16	(0.	014 ± 0. 50	006) 100	200	16	25	(0.02	20 ± 0.01 100	200	250	16	25	50	.020 ± 0.	200	250	500
Сар	0.5	10		A A	_	C	C	G	G	G	G	200	J	J	J	J	J	200	J	J	J	J	J	200	J
(pF)	1.0	В		A A		С	С	G	G	G	G		J	J	J	J	J		J	J	J	J	J		J
	1.2 1.5	B B		A A	C	C	C	G G	G	G G	G G		J	J	J	J	J		J	J	J	J	J		J
	1.8	В		A A		С	С	G	G	G	G		J	J	J	J	J		J	J	J	J	J		J
	2.2 2.7	B B		A A		C	C	G	G	G	G G		J	J	J	J	J		J	J	J	J	J		J
	3.3	В		A A	С	С	С	G	G	G	G		J	J	J	J	J		J	J	J	J	J		J
	3.9 4.7	B B		A A		C	C	G	G	G	G G		J	J	J	J	J		J	J	J	J	J		J
	5.6	В		A A		C	С	G	G	G	G		J	J	J	J	J		J	J	J	J	J		J
	6.8 8.2	B B		A A		C	C	G	G	G G	G G		J	J	J	J	J		J	J	J	J	J		J
	10	В		A A	_	C	С	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J	J	J
	12 15	B B		A A	C	C	C	G G	G G	G G	G G	G G	J	J	J	J	J	N	J	J	J	J	J	J	J J
	18	В		A A		C	C	G	G	G	G	G	J	J	J	J	J	N N	J	J	J	J	J	J	J
	22	В		A A	С	С	С	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J	J	J
	27 33	B B		A A		C	C	G	G	G	G	G	J	J	J	J	J	N N	J	J	J	J	J	J	J
	39	В		A A	С	С	С	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J	J	J
	47 56	B B		A A		C	C	G	G	G	G G	G	J	J	J	J	J	N N	J	J	J	J	J	J	J
	68	В		A A	С	С	С	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J		J
	100	B B		A A		C	C	G	G	G	G	G	J	J	J	J	J	N N	J	J	J	J	J		J
	120				c	c	C	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J		J
	150 180		_		C	C	C	G	G	G	G G	G	J	J	J	J	J	N N	J	J	J	J	J		J
	220				c	c	C	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J		M
	270 330				C	С	C	G	G	G	G G		J	J	J	J	J	N N	J	J	J	J	J		M M
	390				C	C	C	G	G	G	G		J	J	J	J	J	I N	J	J	J	J	J		M
	470				С	С	С	G	G	G	G		J	J	J	J	J		J	J	J	J	J		М
	560 680				C	C	C	G	G	G G	G G		J	J	J	J	J		J	J	J	J	J		M P
	820				С	С	С	G	G	G	G	_	J	J	J	J	J		J	J	J	J	М		
	1000 1200				С	С	С	G G	G	G	G		J	J	J	J	J		J	J	J	J	Q Q		
	1500							G	G	G			J	J	J	J			J	J	J	М	Q		
	1800 2200							G G	G G	G G			J N	J N	J N	N N			J	J	M M	M P	Q Q		
	2700							G	G	G			N	N	N	N			J	J	М	Р	Q		
	3300 3900							G G	G	G G			P P	N P	N P	N N			J	J	M M	P P	Q		
	4700						<u> </u>	G	G	G			Р	Р	Р	N			J	J	М	Р			
	5600 6800												P P	P P	P P				J M	J M	M M	P P			
	8200		•	1			W						Р	Р	Р				М	М	М	Р			
Cap (µF)	0.010 0.012		~			$\overline{}$	\neg <	T					P P	P P	P P				Р	Р	Р	Р			
(P1)	0.015	$oxed{oxed}$	(>			ノ、	↓ T_					Р	Р	Р										
	0.018 0.022		_		_								P P	P P	P P										
	0.027			Ī.	-			_	L				Ĺ		Ĺ										
	0.033 0.039		ı	, 1	`t	1	i																		
	0.039						L	L	L				L	L	L						L				
	0.068																								
	0.082 0.1																								
W\	/DC	16		25 50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
	ZE	0101*		0201		0402				0603						0805	l					1206			
Letter	Α	В	С	E			J		K		М	1	١		Р	Q		Х		Υ		Z			
Max.	0.33		0.56	0.71	0.9		0.94		1.02		1.27	1.4			.52	1.7		2.29		2.54		.79			
Thickness	(0.013)	(0.009)	0.022)	(0.028)	(0.0	35)	(0.037))	(0.040)	(0.050)	(0.0	5 5)	(0.0	060)	(0.07	70)	(0.090)	(0	.100)	(0.	110)			
			ΡΔ	APER											FMR	OSSE	D						l		

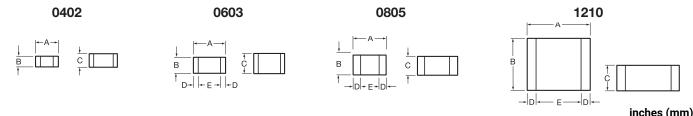
COG (NP0) Dielectric

Capacitance Range

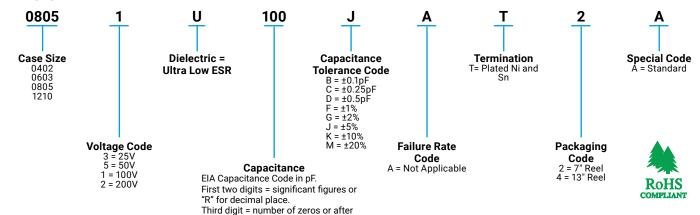
PREFERRED SIZES ARE SHADED

									П											
									Ш				Ш			Ш			Ш	
SIZ				1210					1812				1825			2220			2225	
Solde				Reflow Only					Reflow Only			_	Reflow Only			Reflow Onl			eflow Only	
Packa	ging mm			per/Embos 3.20 ± 0.20					4.50 ± 0.30				4.50 ± 0.30			5.70 ± 0.40			.72 ± 0.25	
(L) Length	(in.)		(0	.126 ± 0.00	08)			(0.177 ± 0.01	2)		(0	0.177 ± 0.01	2)	(0	0.225 ± 0.01	16)	(0.:	225 ± 0.010	0)
W) Width	mm (in.)			2.50 ± 0.20 0.098 ± 0.00				((3.20 ± 0.20 0.126 ± 0.00				6.40 ± 0.40 0.252 ± 0.01			5.00 ± 0.40 0.197 ± 0.01			.35 ± 0.25 250 ± 0.010	
(t) Terminal	mm			0.50 ± 0.25					0.61 ± 0.36				0.61 ± 0.36			0.64 ± 0.39			.64 ± 0.39	
(t) reminal	(in.) WVDC	25	50	100 ± 0.01	200	500	25	50	0.024 ± 0.01	4) 200	500	50	0.024 ± 0.01	200	50	0.025 ± 0.01	15)	50	025 ± 0.01	5) 200
Сар	0.5	23	30	100	200	300	23	30	100	200	300	30	100	200	30	100	200	30	100	200
(pF)	1.0																			
	1.2 1.5																			
	1.8																			
	2.2																	*	≪W.	-
	2.7 3.3															<u> </u>) T
	3.9																	7)		1
	4.7 5.6							-	-			-				<u> </u>		+	-	
	6.8																	t		
	8.2																			
	10 12					J														
	15					J														
	18					J .														
	22 27					J														
	33					J														
	39					J														
	47 56					J														
	68					J														
	82					J														
	100 120					J														
	150					J		<u> </u>				ļ								
	180 220					J														
	270					J														
	330					J														
	390 470					M M														
	560	J	J	J	J	М														
	680 820	J	J	J	K	P P														
	1000	J	J	J P	K P	P	K	K	N	N	М	M	M	М				М	M	P
	1200	Р	Р	Р	Р	Р	K	К	N	N	М	М	М	М				М	М	Р
	1500 1800	P P	P P	P P	P P	P P	K K	K	N N	N N	M	M M	M M	M M				M M	M M	P P
	2200	P	P	P	P	N N	K	K	N	N	P	X	X	М				М	М	P
	2700	P	P	P	P		K	K	N	P	Q	X	X	М			.,	M	М	P
	3300 3900	P P	P P	P P	Р		K K	K K	N N	P P	Q Q	X X	X	X X			X	M M	M M	P P
	4700	Р	Р	Р			K	К	N	Р	Υ	Х	Х	Х	X	Х	Х	М	М	Р
	5600 6800	P P	P P	P P			K K	K K	P Q	P Q	Y	X X	X X	X X	X X	X X	X X	M M	M M	P P
	8200	P	P				K	M	Q	Q		X	X	X	X	X	X	M	M	P
Cap	0.010	N	N				K	М	Q	Q		X	X	Х	X	X	X	М	М	Р
(pF)	0.012 0.015	N	N				K P	M P	Q Q			X X	X X	X X	X X	X X	X X	M M	M M	P Y
	0.018						Р	Р	Q			Х	Х	Х	Х	Х	X	М	М	Υ
	0.022 0.027						P	P	Q			X	X	X	X	X		M P	Y	Y
	0.027						Q Q	Q	X			X	X	Υ	X	X		X	Y	Y
	0.039						Х	х	X			х			Y			X	Y	Y
	0.047 0.068						Z Z	Z	X			Х			Y Z			X	Z Z	
	0.082						Z	Z	Y						Z			Х	Z	
	0.1						Z	Z	Z						Z			Z	Z	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
	SIZE			1210					1812				1825			2220			2225	
Letter	А	В		С	Е	G		J	K	М		N	Р	Q	-	Х	Υ	Z		
Letter Max. Thickness	0.33 (0.013)	0.22 (0.009		0.56 0.022)	0.71 (0.028)	0.90 (0.03		J 0.94 0.037)	1.02 (0.040)	1.27 (0.05		N 1.40 (0.055)	P 1.52 (0.060)	1.7 (0.07	8	X 2.29 0.090)	Y 2.54 (0.100)	2.7 (0.1	9	

RF/Microwave C0G (NP0) Capacitors (RoHS)



GENERAL INFORMATION


"U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

DIMENSIONS: INCHES (MILLIMETERS)

					mones (mm)
Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.022 (0.55mm) max	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91mm) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.040±0.005 (1.02±0.127)	0.020±0.010 (0.51±0.255)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.050±0.005 (1.27±0.127)	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 30 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

"R" significant figures.

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 13
0603 - See Performance Curve, page 13
0805 - See Performance Curve, page 13
1210 - See Performance Curve, page 13

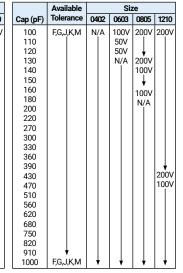
Marking:


Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

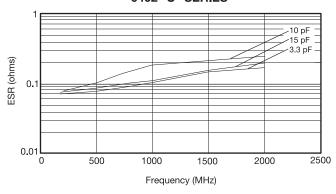
Meets or exceeds the requirements of MIL-C-55681

RF/Microwave C0G (NP0) Capacitors (RoHS)

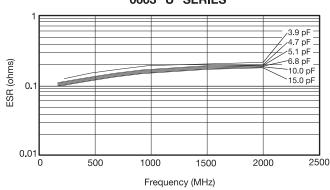

CAPACITANCE RANGE

Cap	Available		Si	ze	
(pF)	Tolerance	0402	0603	0805	1210
0.2	B,C	100V	N/A	N/A	N/A
0.3					
0.4	♦				
0.5	B,C				
0.6	B,C,D				
0.7					
0.8					
0.9	B,C,D	↓	↓	↓	↓

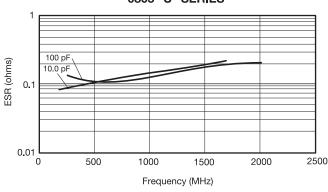
	Available	Size							
Cap (pF)	Tolerance	0402	0603	0805	1210				
1.0	B,C,D	100V	200V	200V	200V				
1.1									
1.2									
1.3									
1.4									
1.5									
1.6									
1.7									
1.8									
1.9									
2.0									
2.1									
2.2									
2.4									
2.7									
3.0									
3.3									
3.6									
3.9									
4.3									
4.7									
5.1									
5.6	*								
6.2	B,C,D								
6.8	B,C,J,K,M	*	*	♦	*				

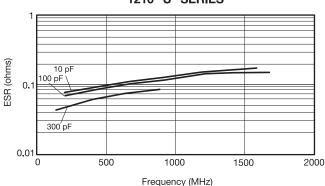

	Available		SIZ	ze	
Cap (pF)	Tolerance	0402	0603	0805	1210
7.5	B,C,J,K,M	100V	200V	200V	200V
8.2	↓				
9.1	B,C,J,K,M	↓			
10	F,G,J,K,M	100V			
11		50V			
12		l I			
13					
15			♦		
18			200V		
20			100V		
22					
24					
27		.			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56 68					
75					
75 82					
91	↓	↓	↓	l ↓	↓
71		_ •			

Avoilable



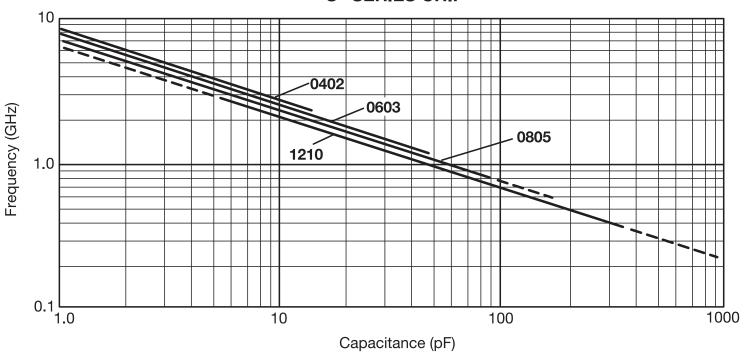
ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

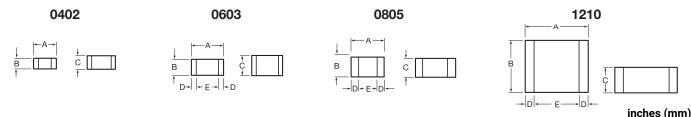
TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES


ESR Measured on the Boonton 34A

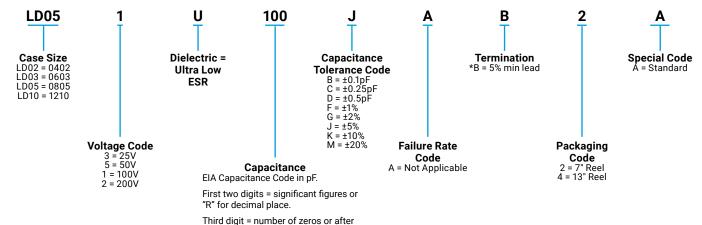
RF/Microwave C0G (NP0) Capacitors

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

RF/Microwave COG (NP0) Capacitors (Sn/Pb)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

DIMENSIONS: INCHES (MILLIMETERS)

Size	Α	В	С	D	E Ì
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.022 (0.55mm) max	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91mm) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.040±0.005 (1.02±0.127)	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.050±0.005 (1.27±0.127)	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

Not RoHS Compliant

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz

Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Size 0805 - 1.6 pF to 160 pF @ 1 MHz

Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12} \Omega$ min. @ 25° C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

Working Voltage Size 0402 - 50, 25 WVDC 0603 - 200, 100, 50 WVDC

- 200, 100 WVDC

"R" significant figures

1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 16

0603 - See Performance Curve, page 16

0805 - See Performance Curve, page 16

1210 - See Performance Curve, page 16

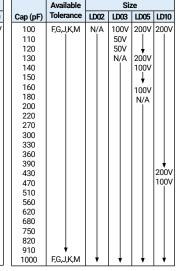
Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

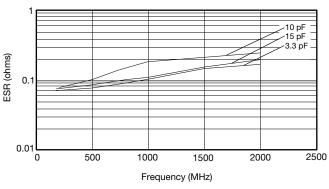
Meets or exceeds the requirements of MIL-C-55681

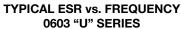
RF/Microwave C0G (NP0) Capacitors (Sn/Pb)

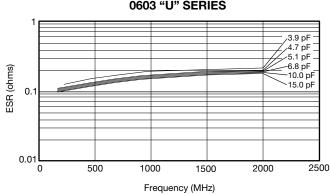


CAPACITANCE RANGE

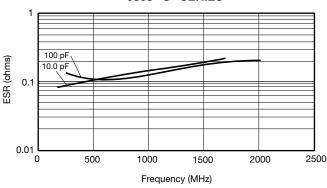
	Available	Size						
Cap (pF)	Tolerance	LD02	LD03	LD05	LD10			
0.2	B,C	50V	N/A	N/A	N/A			
0.3								
0.4	+							
0.5	B,C							
0.6	B,C,D							
0.7								
0.8	♦							
0.9	B,C,D	↓	↓	↓	↓			

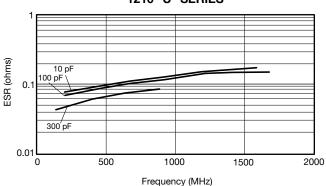

	Available	Size						
Cap (pF)	Tolerance	LD02	LD03	LD05	LD10			
1.0	B,C,D	50V	200V	200V	200V			
1.1								
1.2								
1.3								
1.4								
1.5								
1.6								
1.7								
1.8								
1.9								
2.0								
2.1								
2.2								
2.4								
2.7								
3.0								
3.3								
3.6								
3.9								
4.3								
4.7								
5.1								
5.6	DOD							
6.2	B,C,D]			
6.8	B,C,J,K,M	_ *	_ *	_ •	_ ▼			


	Available		ze		
Cap (pF)	Tolerance	LD02	LD03	LD05	LD10
7.5	B,C,J,K,M	50V	200V	200V	200\
8.2	↓				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			+		
18			200V		
20			100V		
22					
24		ΙI			
27		F0\/			
30		50V N/A			
33		IN/A			
36					
39					
43					
47					
51					
56					
68					
75					
82					
91	_ ▼			_ *	_ ▼



ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES

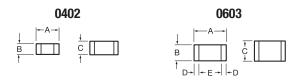


TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

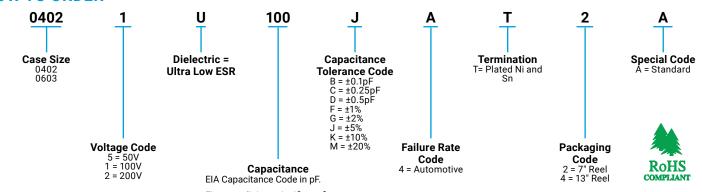
ESR Measured on the Boonton 34A

RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)



AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION


Automotive "U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

DIMENSIONS: INCHES (MILLIMETERS)

Size	A B C		С	D	E
0402	1.00±0.1 (0.039±0.004)	0.50±0.1 (0.020±0.004)	0.60 max (0.024)	N/A	N/A
0603	1.52±0.25 (0.060±0.010)	0.76±0.25 (0.030±0.010)	0.91 max (0.036)	0.25±0.13 (0.010±0.005)	0.76 min (0.030)

HOW TO ORDER

First two digits = significant figures or "R" for decimal place.

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 - 50, 25 WVDC 0603 - 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

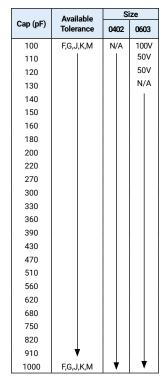
Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve 0603 - See Performance Curve

Automotive Specifications

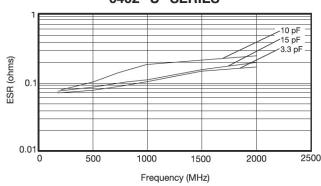
Meets or exceeds the requirements of AEC Q200

RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

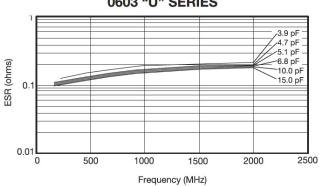

AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE

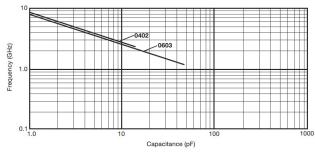
	Available	Si	ize
Cap (pF)	Tolerance	0402	0603
0.2	B,C	100V	N/A
0.3			
0.4	♦		
0.5	B,C		
0.6	B,C,D		
0.7			
0.8	♦		
0.9	B,C,D		_ ▼ _


	Available	Size		
Cap (pF)	Tolerance	0402	0603	
1.0	B,C,D	100V	200V	
1.1				
1.2				
1.3				
1.4				
1.5				
1.6				
1.7				
1.8				
1.9				
2.0				
2.1				
2.2				
2.4				
2.7				
3.0				
3.3				
3.6				
3.9				
4.3				
4.7				
5.1				
5.6	*			
6.2	B,C,D			
6.8	B,C,J,K,M	♦	♦	

	Available	Size	
Cap (pF)	Tolerance	0402	0603
7.5	B,C,J,K,M	100V	200V
8.2	♦		
9.1	B,C,J,K,M		
10	F,G,J,K,M		
11			
12			
13			
15			▼
18			200V
20			100V
22			
24			
27		♦	
30		50V	
33		N/A	
36			
39			
43			
47			
51			
56			
68			
75			
82			
01	▼	₩	▼



ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

"U" SERIES KITS

0402

	Kit 5000 UZ							
Cap. Value pF	Value Tolerance		Tolerance					
0.5		4.7						
1.0		5.6	B (±0.1pF)					
1.5		6.8	В (±0.1рг)					
1.8	D (10.1=F)	8.2						
2.2	B (±0.1pF)	10.0						
2.4		12.0	(±5%)					
3.0		15.0	(±3%)					
3.6								

^{***25} each of 15 values

0603

	Kit 4000 UZ									
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance							
1.0		6.8								
1.2		7.5	B (±0.1pF)							
1.5		8.2								
1.8		10.0								
2.0		12.0								
2.4	D (10.1=F)	15.0								
2.7	B (±0.1pF)	18.0								
3.0		22.0	J (±5%)							
3.3		27.0								
3.9		33.0								
4.7		39.0								
5.6	(04	47.0								

^{***25} each of 24 values

0805

	Kit 3000 UZ								
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance						
1.0		15.0							
1.5		18.0							
2.2		22.0							
2.4		24.0							
2.7		27.0							
3.0		33.0							
3.3	B (±0.1pF)	36.0							
3.9		39.0	J (±5%)						
4.7		47.0							
5.6		56.0							
7.5		68.0							
8.2		82.0							
9.1		100.0							
10.0	J (±5%)	130.0							
12.0	3 (±3%)	160.0							

^{***25} each of 30 values

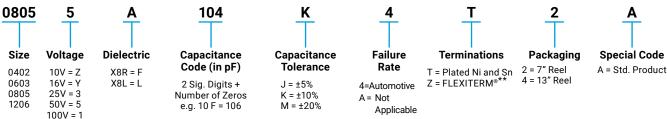
1210

	Kit 3500 UZ								
Cap. Value pF	Value Tolerance		Tolerance						
2.2		36.0							
2.7		39.0							
4.7		47.0							
5.1	B (±0.1pF)	51.0							
6.8		56.0							
8.2		68.0							
9.1		82.0							
10.0		100.0	J (±5%)						
13.0		120.0							
15.0		130.0							
18.0	J (±5%)	240.0							
20.0	3 (±3%)	300.0							
24.0		390.0							
27.0		470.0							
30.0		680.0							

^{***25} each of 30 values

X8R/X8L Dielectric

General Specifications


AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150° C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

X8F	1						X	8	

	Size		0603		0805		1206	
	Soldering		Reflow/Wave		Reflow/Wave		Reflow/Wave	
		WVDC	25V	50V	25V	50V	25V	50V
271	Cap	270	G	G				
331	(pF)	330	G	G	J	J		
471		470	G	G	J	J		
681		680	G	G	J	J		
102		1000	G	G	J	J	J	J
152		1500	G	G	J	J	J	J
222		2200	G	G	J	J	J	J
332		3300	G	G	J	J	J	J
472		4700	G	G	J	J	J	J
682		6800	G	G	J	J	J	J
103	Сар	0.01	G	G	J	J	J	J
153	(µF)	0.015	G	G	J	J	J	J
223		0.022	G	G	J	J	J	J
333		0.033	G	G	J	J	J	J
473		0.047	G	G	J	J	J	J
683		0.068	G		N	N	М	М
104		0.1			N	N	М	М
154		0.15			N	N	М	М
224		0.22			N		М	М
334		0.33					М	М
474		0.47					М	
684		0.68						
105		1						
155		1.5						
225		2.2						
		WVDC	25V	50V	25V	50V	25V	50V
	SIZE		06	03	08	05	1206	

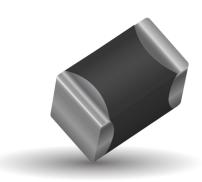
Size		0603	0805	1206	1210
Solderin	g	Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagir	ng	All Paper	Paper//Embossed	Paper/Embossed	Paper/Embossed
(L) Length	mm	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
(L) Lengui	(in)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
(W) Width	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
(VV) VVIGITI	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
(t) Tompinal	mm	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
(t) Terminal	(in)	(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

								8L							
	Size			0603			0805			12	06			1210	
	Solderin	g	Ref	flow/W			flow/W			Reflow	/Wave		Ref	low/W	ave
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
271	Cap	270	G	G											
331	(pF)	330	G	G	G	J	J	J							
471		470	G	G	G	J	J	J							
681		680	G	G	G	J	J	J							
102		1000	G	G	G	J	J	J		J	J				
152		1500	G	G	G	J	J	J		J	J	J			
182		1800	G	G	G	J	J	J		J	J	J			
222		2200	G	G	G	J	J	J		J	J	J			
272		2700	G	G	G	J	J	J		J	J	J			
332		3300	G	G	G	J	J	J		J	J	J			
392		3900	G	G	G	J	J	J		J	J	J			
472		4700	G	G	G	J	J	J		J	J	J			
562		5600	G	G	G	J	J	J		J	J	J			
682		6800	G	G	G	J	J	J		J	J	J			
822		8200	G	G	G	J	J	J		J	J	J			
103	Cap	0.01	G	G	G	J	J	J		J	J	J			
123		0.012	G	G		J	J	J		J	J	J			
153		0.015	G	G		J	J	J		J	J	J			
183		0.018	G G	G		J	J	J		J	J	J			
223		0.022 0.027	G	G		J	J	J		J	J	J			
			G	G		J	J	J		J	J	J			
333		0.033	G	G		J	J	N		J	J	J			-
473		0.039	G	G		J	J	N		J	J	J			
563		0.047	G	G		J	J	N		J	J	J			
683		0.068	G	G		J	J	N		J	J	J			
823		0.082	G	G		J	J	N		J	J	J			
104	<u> </u>	0.002	G	G		J	J	N		J	J	M			
124		0.12	- 0	- 0		J	N	-14		J	J	M			
154		0.15				J	N		J	J	J	Q			
184		0.18				N	N		J	J	J	à			
224		0.22				N	N		J	J	J	Q			
274		0.27				N			J	М	М	Q			
334		0.33				N	İ		J	М	М	Q			
394		0.39				N			М	М	Р	Q			
474		0.47				N			М	М	Р	Q			
684		0.68				N			М	М	Р	Q			
824		0.82				N			М	М	Р	Q			
105		1				N			М	М	Р	Q			
155		1.5							М	М					
225		2.2							М	М				Z	Z
475														Z	
106													Z		
		NVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE			0603			0805			12	06			1210	

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.9	0.94	1.02	1.27	1.4	1.52	1.78	2.29	2.54	2.79
Thickness	(-0.013)	(-0.022)	(-0.028)	(-0.035)	(-0.037)	(-0.04)	(-0.05)	(-0.055)	(-0.06)	(-0.07)	(-0.09)	(-0.1)	(-0.11)
			PAPER						EMBO:	SSED			

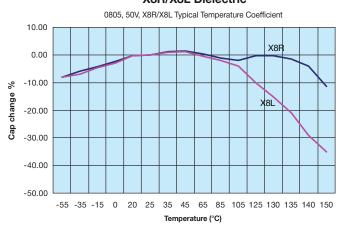
= AEC-Q200 Qualified

X8R/X8L Dielectric


General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- All market sectors with a 150°C requirement
- Automotive on engine applications
- · Oil exploration applications
- · Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
- Water pump
- Hybrid commercial applications
- Emergency circuits
- Sensors
- Temperature regulation


ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- · Low ESR / ESL compared to other technologies
- · Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- · Samples
- · Technical Articles
- Application Engineering
- · Application Support

X8R/X8L Dielectric

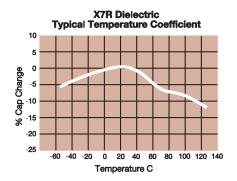
X8R/X8L Dielectric

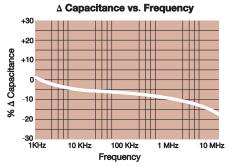
Parame	ter/Test	X8R/X8L Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freg.: 1.0 k	·U¬ ± 100/
Dissipation	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) h 150% of rated voltage
	Appearance	No defects	Deflection	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	-
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic so ± 0.5 se	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%	Dip device in eutection	c solder at 260°C for
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)		room temperature for
	Insulation Resistance	Meets Initial Values (As Above)	properties.	J
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after oom temperature
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 i	rated voltage (≤ 10V) in
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	test chamber set for 1000 hou	urs (+48, -0)
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)	, , , , , , , , , , , , , , , , , , , ,	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity	y for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	meası	ıring

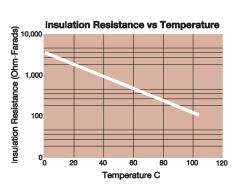
General Specifications

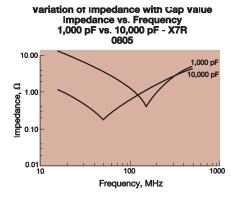
X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

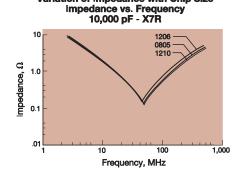
Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

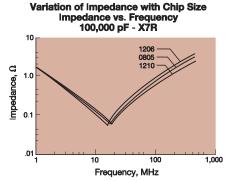

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance


due to applied voltages are acceptable.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


0805	<u>5</u>	<u>c</u>	103	<u>M</u>	<u>A</u>	<u>T</u>	<u>2</u>	<u>A</u>
Size (L" x W")	Voltage 4V = 4	Dielectric X7R = C	Capacitance Code (In pF)	Capacitance Tolerance	Failure Rate	Terminations T = Plated Ni and Sn	Packaging 2 = 7" Reel	Special Code
, ,	6.3V = 6 10V = Z		2 Sig. Digits +	$J = \pm 5\%$ *	A = Not	Z= FLEXITERM®**	4 = 13" Reel	A = Std. Product
	16V = Z 16V = Y		Number of Zeros	K = ±10% M = ± 20%	Applicable	*Optional termination	Contact	Product
	25V = 3					**See FLEXITERM®	Factory For Multiples	
	50V = 5			*≤1µF only,		X7R section	Multiples	
	100V = 1		(contact factory for	or			
	200V = 2 500V = 7			additional values	5			


Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



Variation of Impedance with Chip Size

Specifications and Test Methods

	ter/Test	X7R Specification Limits		Conditions	
	perature Range	-55°C to +125°C	Temperature	Cycle Chamber	
•	on Factor	Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Voltage: 1.	kHz ± 10% 0Vrms ± .2V 0.5Vrm @ 120Hz	
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less		th rated voltage for oom temp/humidity	
Dielectric	Strength	No breakdown or visual defects	seconds, w/charge and to 50 m Note: Charge device wi	% of rated voltage for 1-5 discharge current limited nA (max) th 150% of rated voltage / devices.	
	Appearance	No defects			
Resistance to	Capacitance Variation	≤ ±12%		on: 2mm	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	Test Time:	30 seconds	
	Insulation Resistance	≥ Initial Value x 0.3			
Solder	rability	≥ 95% of each terminal should be covered with fresh solder		ic solder at 230 ± 5°C i.5 seconds	
	Appearance	No defects, <25% leaching of either end terminal	_		
	Capacitance Variation	≤ ±7.5%			
Resistance to	Dissipation Factor	Meets Initial Values (As Above)		solder at 260°C for 60 m temperature for 24 ±	
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuri	ng electrical properties.	
	Dielectric Strength	Meets Initial Values (As Above)			
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes	
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes	
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes	
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes	
	Dielectric Strength	Meets Initial Values (As Above)		nd measure after 24 ± 2 m temperature	
	Appearance	No visual defects	_		
	Capacitance Variation	≤ ±12.5%	test chamber set at 125	rated voltage (≤ 10V) in 5°C ± 2°C for 1000 hours	
	Dissipation Factor	≤ Initial Value x 2.0 (See Above)		8, -0)	
Load Life	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	but there are exceptions		
	Dielectric Strength	Meets Initial Values (As Above)	but there are exceptions (please contact further details on exceptions) Remove from test chamber and stabilize temperature for 24 ± 2 hours before mea		
	Appearance	No visual defects			
	Capacitance Variation	≤ ±12.5%	5% relative humidity for	set at 85°C ± 2°C/ 85% ± 1000 hours (+48, -0) with	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	rated volta	age applied.	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature and humidi	er and stabilize at room ty for 24 ± 2 hours before	
	Dielectric Strength	Meets Initial Values (As Above)	ineas	suring.	

Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE		0101*			020	1				0402	2					(603	3						0	805								12	06			
S	Soldering	g	Reflow Only		Re	flow (Only			Ref	low/V	/ave					Refl	ow/W	lave						Reflo	w/Wa	ve						R	eflow	/Wav	e		
P	ackagin	ıq	Paper/Embossed		4	II Pap	er			Α	II Pap	er					A	l Pap	er					P	aper/	Embos	sed						Pap	er/En	nboss	sed		
		mm	0.40 ± 0.02		0.	50 ± 0	0.09			1.0	00 ± 0	.10		T			1.6	0 ± 0.	.15						2.01	± 0.2	0							3.20 ±	0.20			
(L) Le	engtn	(in.)	(0.016 ± 0.0008)		(0.0	24 ± 0	0.004)			(0.0	40 ± 0	.004)					(0.06	3 ± 0.	.006)					((0.079	± 0.0	(80			İ			(0	.126 ±	0.00	8)		
140 140	r 141	mm	0.20 ± 0.02		0.:	30 ± 0	0.09			0.	50 ± 0	.10					8.0	1 ± 0.	.15						1.25	± 0.2	0							1.60 ±	0.20			
W) Wi	iatn	(in.)	(0.008 ± 0.0008)		(0.0)	11 ± 0	0.004)			(0.0	20 ± 0	.004)					(0.03	2 ± 0.	.006)					((0.049	± 0.0	(80						(0	.063 ±	0.00	8)		
(4) T-	!!	mm	0.10± 0.04		0.	15 ± 0	0.05			0.:	25 ± 0	.15		Т			0.3	5 ± 0.	.15						0.50	± 0.2	5							0.50 ±	0.25			
(t) Tel	rminal	(in.)	(0.004 ± 0.0016)		(0.0	06 ± 0	0.002)			(0.0)	10 ± 0	.006)					(0.01	4 ± 0.	.006)					((0.020	± 0.0	10)						(0	.020 ±	0.01	0)		
	WVDC		16	63	10	16	25	50	63	10	16	25	50	63	10	16	25	50	100	200	250	63	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
Сар	100	101	В	Α	Α	Α	Α	Α			С	С	С					G	G	G																		
(pF)	150	151	В	Α	Α	Α	Α	Α			С	С	С					G	G	G																		
	220	221	В	Α	Α	Α	Α	Α			С	С	С					G	G	G		Е	Е	Е	Е	Е	Е	Е				\perp		\perp		\perp		
	330	331	В	Α	Α	Α	Α	Α			С	С	С					G	G	G			J	J	J	J	J	J				\perp		\perp				K
	470	471	В	Α	Α	Α	Α	Α			С	С	С			1_	1_	G	G	G			J	J	J	J	J	J				oxdot		\perp		$oldsymbol{oldsymbol{\perp}}$	<u> </u>	K
	680	681	В	Α	Α	Α	Α				С	С	С					G	G	G			J	J	J	J	J	J				$oxed{oxed}$		$oxed{oxed}$		<u> </u>		K
	1000	102	В	Α	Α	Α	Α			С	С	С	С					G	G	G	G		J	J	J	J	J	J	J								J	K
	1500	152	В	Α	Α	Α	Α			С	С	С	С					G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	М
	2200	222	В	Α	Α	Α	Α			С	С	С	С			1_		G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	М
	3300	332		Α	Α	Α	Α			С	С	С	С		_	╄	\bot	G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	М
	4700	472		Α	Α	Α	Α			С	С	С	С		_	_	_	G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	М
	6800	682		Α	Α	Α	Α			С	С	С	С		_	_		G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	Р
Cap	0.01	103		Α	Α	Α	Α			С	С	С	С		_	╄	G	G	G	J	G		J	J	J	J	J	J	J		J	J	J	J	J	J	J	Р
(µF)	0.015	153		-	_	┞	-			С	С	С	С		+-	╄	G	-	G	J			J	J	J	J	J	J	N		J	J	J	J	J	М	J	Q
	0.022	223		-	-	-	-	_		С	С	С	С		+-	+-	G	_	G		-		J	J	J	J	J	N	N	_	J	J	J	J	J	М	J	Q
	0.033	333		_	-	-	-			С	С	С	С		+-		G	G	J		-		J	J	J	J	N	N	N	_	J	J	J	J	J	М	J	Q
	0.047	473		-	-	-	-			С	С	С	С	-	+	G	G	G	J		-		J	J	J	J	N	N	N		J	J	J	J	J	М	М	\vdash
	0.068	683		-	\vdash	₩	-	-		С	С	C	С			G	G	-	J	_		-	J	J	J	J	N	N		-	J	J	J	J	J	P	M P	-
	0.1	104 154		-	₩	₩	₩	-		С	С	С	С		G	G	G	G	J		-		J	J	J	J	N N	N	-	-	J	J	J	J		P		\vdash
	0.15	224			-	₩	-			С	С			G	_	_	G	+-					J	J	N	N N	N		-		J	J	J	J	Q	Q	Q	\vdash
-	0.22	334		-	1	\vdash	+	-		C	C	С		J	J	J	J	J		\vdash	-	-	N	J	N	N	N	-	1	-	J	J	J	J P	Q	Q	Ų	\vdash
-	0.33	474		\vdash	\vdash	\vdash	+	\vdash	С	С		\vdash	+	J	J	J	J	J		\vdash	\vdash	\vdash	N	N	N	N	N	-	\vdash		M	M	M	-	0	_	+-	$\vdash\vdash\vdash$
-	0.47	684		\vdash	+	+	+	\vdash	U	-		\vdash	+	J	J	J	1	J		\vdash	\vdash	\vdash	N	N	N	IN	IN		+	\vdash	M	M	IVI	-	Q	+-	+-	$\vdash\vdash$
-	1.0	105		\vdash	\vdash	\vdash	+	\vdash	С		\vdash	\vdash	+	J	J	J	J	J		\vdash	\vdash	\vdash	N	N	N	N	-	\vdash	\vdash	\vdash	M	M	М	Q	Q	_	+-	$\vdash\vdash\vdash$
_	2.2	225		\vdash	+	\vdash	+		U		\vdash	\vdash	+	J	J	-	1	J		\vdash	\vdash	\vdash	P	P	P	D**		\vdash	+	\vdash	Q	Q	Q	Q		_	+-	$\vdash\vdash\vdash$
	4.7	475		1	\vdash	\vdash	+	-			<u> </u>	\vdash	+	J	J	J		\vdash	1	1		-	P	P	P	<u> </u>		1	1		Q	Q	Q		Q.	•	+-	\vdash
<u> </u>	10	106		\vdash	1	\vdash	+	\vdash			\vdash	\vdash	+			+	+	\vdash	+	\vdash	+	Р	Р	P			1	\vdash	1	1	Q	Q	X	-		+-	+-	\vdash
	22	226		 	\vdash	\vdash	+	-			\vdash	 	+	+	+	+	+	+	1	1	-					1	1	\vdash	1	Χ	Q	0	^	1	+	+-	+-	\vdash
<u> </u>	47	476		 	+	\vdash	+	<u> </u>		<u> </u>	\vdash	 	+	+	+	+	+	+	 	\vdash	<u> </u>	-	<u> </u>	<u> </u>	1	\vdash	\vdash	\vdash	1	^				+	+	+-	+-	\vdash
-	100	107		\vdash	+	\vdash	+	\vdash		\vdash	\vdash	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	 	\vdash	\vdash	+	\vdash		\vdash	1		+	+	\vdash	+	+	+-	+-	\vdash
	WVDC	107	16	6.3	10	16	25	50	6.3	10	16	25	50	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
	SIZE		0101*	 	_	020					0402		, 55	+	1.0	1 .0		0603		,		 	1 .5	, .5	_	805		,	,					12		1 200	1 200	
	SIZE		0101			020					U4U	_		1			,	,003							U	003					_	_		12	00	_		

Letter	А	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAF	PER						EMBO	SSED			

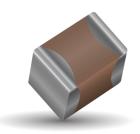
NOTE: Contact factory for non-specified capacitance values

^{*}EIA 01005

^{**}Contact Factory for Specifications

Capacitance Range

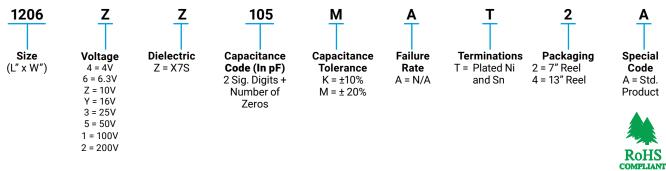
PREFERRED SIZES ARE SHADED


31	IZE					1210)					18	312				1825				2220				2225	
Sold	dering				Re	flow (Only					Reflo	w Onl	у		Re	flow 0	nly		Re	flow 0	nly		Re	flow Or	nly
Pack	kaging				Pape	r/Emh	ossec					All Em	bosse	ed		All F	Embos	ssed		All I	Embos	sed		All F	Embos	sed
		mm			_ '	3.30 ± 0							± 0.30				50 ± 0.				70 ± 0.				72 ± 0.2	
(L) Length		(in.)			(0.1	30± 0.	016)				(0.177	± 0.01	2)		(0.1	77 ± 0.	012)			24 ± 0.0			(0.2	25 ± 0.0	10)
W) Width		mm			2.	.50 ± 0	.30					3.20	± 0.20			6.	40 ± 0.	40		5.	00 ± 0.4	40		6.	35 ± 0.2	25
vv) vviutii		(in.)				98 ± 0					(0.126		8)		<u> </u>	52 ± 0.				97 ± 0.0				50 ± 0.0	,
(t) Terminal		mm				.50 ± 0							± 0.36			ł	61 ± 0.				64 ± 0.3				64 ± 0.3	
(t) reminal		(in.)				20 ± 0						0.024	_	<u> </u>		,	24 ± 0.			<u> </u>	25 ± 0.0	<u> </u>			25 ± 0.0	-
-		WVDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
	100	101																		_	ı	١ -	>	-		_
(pF)	150	151																		_		-[_				
	220	221								-	-						-			<u> </u>	~ ())	ÎT -
	330 470	331 471																			(_ `	7 1		J -	
	680	681								1	+									\vdash			+			-
	1000	102								<u> </u>	+						 			<u> </u>			T t			-
	1500	152	J	J	J	J	J	J	М												ı	ı			1 1	_
	2200	222	J	J	J	J	J	J	M																	
	3300	332	J	J	J	J	J	J	М		 															
	4700	472	J	J	J	J	J	J	М																	
6	6800	682	J	J	J	J	J	J	М																	
Сар	0.01	103	J	J	J	J	J	J	М		K	K	K	K	K	М	М	М		Х	Х	Х	Х	М	Р	Р
	0.015	153	J	J	J	J	J	J	Р		K	K	K	K	М	М	М	М		Х	Х	Х	Х	М	Р	Р
0	0.022	223	J	J	J	J	J	J	Q		K	K	K	K	Р	М	М	М		Х	Х	Х	Х	М	Р	Р
0	0.033	333	J	J	J	J	J	J	Q		K	K	K	K	Х	М	М	М		Х	Х	Х	Х	М	Р	Р
0	0.047	473	J	J	J	J	J	J	Q		K	K	K	K	Х	М	М	М		Х	Х	Х	Х	М	Р	Р
0	0.058	683	J	J	J	J	J	М	Q		K	K	K	K	Х	М	М	М		Х	Х	Х	Х	М	Р	Р
	0.1	104	J	J	J	J	J	М	Х		K	K	K	K	Х	М	М	М		Х	Х	Х	Х	М	Р	Р
	0.15	154	J	J	J	J	М	Z			K	K	K	Р	Z	М	М	М		Х	Х	Х	Х	М	Р	Х
	0.22	224	J	J	J	J	Р	Z		_	K	K	K	Р	Z	М	М	М		Х	Х	Х	Х	М	Р	Х
	0.33	334	J	J	J	J	Q				K	K	М	Х	Z	М	М			Х	Х	Х	Х	М	Р	Х
	0.47	474	М	М	M	М	Q			-	K	K	Р	Х	Z	М	М			X	X	Х	Х	М	Р	X
	0.68	684	M	M	Р	X	X				M	M	Q	_		M	Р			X	X			М	P	X
	1.0	105 155	N N	N N	P Z	X Z	Z			-	M Z	M Z	X Z	Z		M Q	Р			X	X			M M	P X	X Z
	2.2	225	X	X	Z	Z	Z			-	Z	Z	Z			Q	-			X	X	-		M	X	Z
	3.3	335	X	X	Z	Z	Z			<u> </u>	Z	Z	Z							X	Z			IVI	^	
	4.7	475	Z	^ 	Z	Z	Z				Z	Z								Z	Z				\vdash	
	10	106	Z	Z	Z	Z				Z										Z	Z				\vdash	
	22	226	Z	Z	Z														Z						\vdash	
	47	476	Z																						\vdash	
	100	107																								
W۱	VDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
SI	IZE					1210						18	12				1825				2220				2225	
Letter	r [A		В	С		Е	G		J	K		м	N	Р		Q	X		Υ	Z					
Max. Thicknes		0.33		0.22	0.56		.71 028)	0.90		.94 037)	1.02		27	1.40 (0.055)	1.5		1.78 0.070)	2.29		2.54 (.100)	2.79 (0.110	1)				

NOTE: Contact factory for non-specified capacitance values

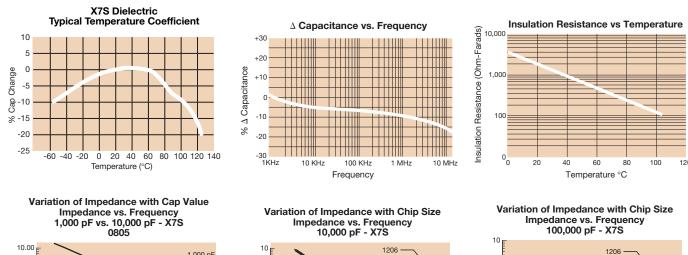
EMBOSSED

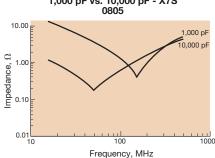
General Specifications

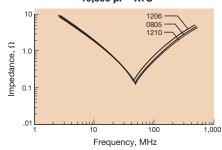

GENERAL DESCRIPTION

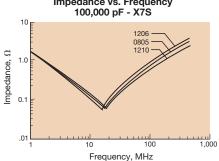
X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitance s within $\pm 22\%$ from -55° C to $\pm 125^{\circ}$ C. This capacitance change is non-linear.

Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.


X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)




NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	eitance	Within specified tolerance		
Dissipati	on Factor	≤ 5.0% for ≥ 100V DC rating ≤ 5.0% for ≥ 25V DC rating ≤ 10.0% for ≥ 10V DC rating ≤ 10.0% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflection	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%	Dia davia in autoria	d - - + 06000 f - 60
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after oom temperature
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 i	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	_	
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
riumuity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

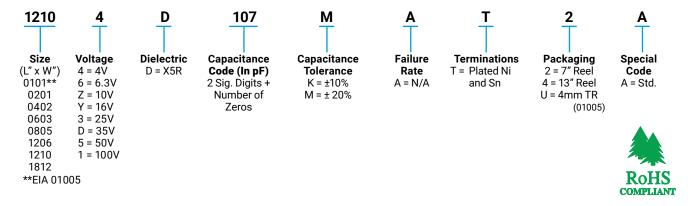
Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0402		0603		0805		1206		121	0													
Solder	ing	Reflow/Wav	е	Reflow/Wav	e Re	eflow/Wave	Re	flow/Wa	ave	Reflow	Only													
Packag	jing	All Paper		All Paper		er/Embossed		er/Embo		Paper/Em														
(L) Length	mm (in)	1.00 ±		1.60 ± 0.15		2.01 ± 0.20		.20 ± 0.2		3.20 ±														
	(in.) mm	(0.040 ± 0. 0.50 ±		0.063 ± 0.00 0.81 ± 0.15		079 ± 0.008) .25 ± 0.20		26 ± 0.0		(0.126 ± 2.50 ±														
W) Width	(in.)	(0.020 ± 0.		$(0.032 \pm 0.00$		049 ± 0.008)		0.0 ± 0.0		(0.098 ±														
(t)	mm	0.25 ±		0.35 ± 0.15		0.50 ± 0.25		.50 ± 0.2		0.50 ±														
Terminal	(in.)	(0.010 ± 0.	.006)	(0.014 ± 0.00	6) (0.	020 ± 0.010)		20 ± 0.0		(0.020 ±														
Сар	WVDC 100	6.3		6.3		4	10	50	100	6.3														
(pF)	150							l	_	· 💉														
()	220							_L		\sim	>													
	330						~		_	,)	ÎT													
	470 680									1	•													
	1000						+		$\overline{}$		_													
	1500								a t	*														
	2200								, ,															
	3300																							
	4700 6800											ı												
Сар	0.010																							
(μF)	0.015																							
	0.022																							
	0.033	С																						
	0.047	С																						
	0.068	C C																						
	0.15	U																						
	0.22																							
	0.33			G																				
	0.47 0.68			G G																				
	1.0			G			+																	
	1.5			J		N																		
	2.2					N																		
	3.3					N			04															
	4.7 10					N	Q		Q*															
	22						+			Z														
	47									_														
	100																							
	WVDC	6.3		6.3		4	10	50	100	6.3														
	SIZE	0402		0603		0805		1206		121	0													
Letter	Α	С	Е	G	J	К	М		N	Р	Q		Х	X Y	Х У	Х У	XY	X Y Z	X Y Z	X Y Z	X Y Z	X Y Z	X Y Z	X Y Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27		.40	1.52	1.90		2.29				 				 			
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)		055)	(0.060)	(0.075)		(0.090)											
			PAPER							EMBC	SSED					-						-		

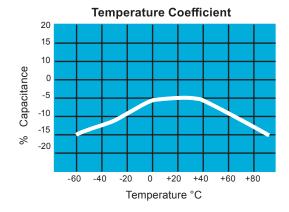
^{*}Contact Factory for Specifications

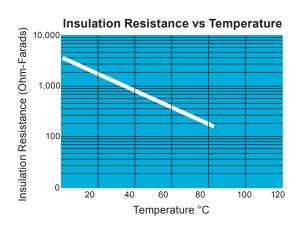
General Specifications



GENERAL DESCRIPTION

- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- · Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)



NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring Conditions	
Operating Tem	perature Range	-55°C to +85°C	Temperature Cycle Chaml	ber
Capac	itance	Within specified tolerance		
Dissipation	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 µF, 0.5Vrms @ ^	, 120Hz
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated voltage secs @ room temp/humic	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of rated 1-5 seconds, w/charge and discha limited to 50 mA (max)	arge current
	Appearance	No defects	Deflection: 2mm	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 30 seconds 7 1mm/sec	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V	
	Insulation Resistance	≥ Initial Value x 0.3	90 mm —	\rightarrow
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 0.5 seconds	± 5°C for 5.0
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic solder at 2 60seconds. Store at room tempera	ture for 24 ±
oolder riedt	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuring electrica	l properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3	minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp ≤ 3 mir	nutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2° 30 ± 3	minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 mir	nutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure a hours at room temperatu	
	Appearance	No visual defects	Charge device with 1.5X rated vol	tage in test
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ± 2°C for 10 (+48, -0).	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact factory for *optional	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	part numbers that are tested at < voltage.	1.3A Idleu
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chamber and s room temperature for 24 ± 2	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber set at 85°C ± 5% relative humidity for 1000 hor	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	with rated voltage applie	d.
riaillaity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabili temperature and humidity 24 ± 2 hours before measu	for
	Dielectric Strength	Meets Initial Values (As Above)	Z4 1 2 Hours before measu	y.

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size		010	01*			0201					04	02						0603							0805			
Soldering		Reflov	v Onlv		Re	flow C	nlv				Reflov	//Wav	——— е				Refl	ow/W	feve					Ref	low/W	feve		
Packaging		Paper/Er				II Pap						aper	-					II Pap						Pape	r/Emb	ossed		
/1 \ 1	mm	0.40	± 0.02		0.0	60 ± 0.	.09				1.00	± 0.15					1.6	50 ± 0.	.15					2.	01 ± 0.	20		
(L) Length	(in.)	(0.016 ±	0.0008)		(0.0	24 ± 0.	.004)			((0.040	± 0.00	6)				(0.06	53 ± 0.	.006)					(0.0)	79 ± 0.	(800.		
\A/\ \A/: - 4 -	mm	0.20 :	± 0.02		0.3	30 ± 0.	.09				0.50	± 0.15					0.0	31 ± 0.	.15					1.:	25 ± 0.	.20		
W) Width	(in.)	(0.008 ±	0.0008)			11 ± 0					0.020						(0.03	32 ± 0.	.006)						49 ± 0.			
(t) Terminal	mm	0.10 :			0.	15 ± 0	.05				0.25	± 0.15					0.3	35 ± 0.	.15					0.	50 ± 0.	.25		
(t) Terminal	(in.)	(0.004 ±	0.0016)		(0.0)	06 ± 0	.002)			((0.010	± 0.00	6)				(0.0)	14 ± 0.	.006)					(0.0)	20 ± 0.	.010)		
Voltage:		63	10	4	63	10	16	25	4	63	10	16	25	50	4	63	10	16	25	35	50	4	63	10	16	25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С														
1000	102	_	В				Α	Α						С														
1500	152	В	В		-		Α	Α					ļ	С											ļ			
2200	222	В	В		-	Α	Α	Α					-	С											ļ			
3300	332	В	В		-	Α	Α	Α						С											-			
4700	472	В	В		-	Α	Α	Α					С								G				-			 -
6800	682	B B	B B		-	Α	A	A		-			C						_	0	G				<u> </u>			-
Cap (μF) 0.01 0.015	103 150	В	В		-	Α	Α	Α					C						G G	G	G G				-			\vdash
0.013	223	В		_	Α	Α	Α	Α		-	-	С	C	_		_			G	G	G				-			N
0.022	333	В			А	A	A	A		-		C	U						G	G	G							N
0.033	473	В			Α	Α	Α	Α				C	С						G	G	G							N
0.068	689	В										C							G	-	G							N
0.000	104	В			Α	Α	Α	Α			С	C	С	С					G	G	G					N	N	N
0.15	154				-/-	- / (- / (- / (G						1	N	N	
0.22	224	В		Α	Α	Α				С	С	С	С	С				G	G							N	N	N
0.33	334																	G	G							N		
0.47	474	В		Α	Α				С	С	С	С	С	Е				G	J							N	Р	Р
0.68	684																	G								N		
1.0	105			Α	Α	С	С		С	С	С	С	С	Е	G	G	G	G	J	G	G				N	N	Р	Р
1.5	155																											
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	Р	Р	Р
3.3	335														J	J	J						N	N				
4.7	475								Е	E	Е	Е			J	J	J	G	G			N	Р	J	N	N	Р	Р
10	106								Е	E	Е				K	J	J	J				Р	Р	Р	Р	Р		<u> </u>
22	226							<u> </u>	Е	Е					K	K	K					Р	Р	Р	Р	Р		<u> </u>
47	476							<u> </u>		ļ	_				K	K						Р	Р	Р				Ь—
100	107		4.5									-		-						c=	F			4-		e=		-
Voltage:		63	10	4	63	10	16	25	4	6.3	10	16	25	50	4	63	10	16	25	35	50	4	63	10	16	25	35	50
Case Size		010	01*			0201					04	02						0603							0805			

Letter	Α	В	С	Е	G		K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAF	PER						EMBO	SSED			

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

Capacitance Range

PREFERRED SIZES ARE SHADED

Cas	e Size					1206							1210							1812			
	dering					ow/W						Re	flow 0	nly					Re	flow C			
	kaging				Paper			t					r/Emb							Embos			
(L) Len		mm			3.2	0 ± 0	.40					3.:	20 ± 0.	40					4.	50 ± 0	.30		
(L) Len	yuı	(in.)			(0.12								26 ± 0.							77 ± 0			
W) Wid	lth	mm				0 ± 0						2.	50 ± 0.	30						20 ± 0			
,		(in.)			(0.06								98 ± 0.							26 ± 0.			
(t) Term	inal	mm (in.)			(0.02	0 ± 0							50 ± 0. 20 ± 0.							61 ± 0 24 ± 0			
Vo	ltage:	()	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF)	100	101		0.0	10	10	20	00	00	-	0.0	10	10	20	00	00	-	0.0	10	10	20	00	- 00
Сир (р.)	150	151																					
	220	221																					
	330	331																					
	470	471																					†
	680	681																					†
	1000	102																					
	1500	152																					<u> </u>
	2200	222																					<u> </u>
	3300	332																					
	4700	472																					
	6800	682																					†
Cap (µF)	0.01	103																					†
	0.015	150																					
	0.022	223																					t
	0.033	333																					†
	0.047	473																					
	0.068	689																					†
	0.1	104																					†
	0.15	154																					
	0.22	224																					
	0.33	334																					
	0.47	474					Q	0							Χ	Χ							
	0.68	684																					
	1.0	105					Q	0	Q					Χ	Χ	Х							†
	1.5	155																					
	2.2	225			Q	Q	Q	Q	Q					Χ	Z	Z							
	3.3	335		Q	Q																		
	4.7	475	Χ	X	X	Χ	Χ	Χ	Χ			Z	Z	Z	Z	Z							
	10	106	Х	Х	Х	Х	Х	Х	Х		Χ	X	Z	Z	Z	Z					Z		
	22	226	Х	X	Х	Х	Х			Z	Z	Z	Z	Z			Z	Z	Z	Z			
	47	476	Х	Х	X	Х				Z	Z	Z	Z	Z									
	100	107	Χ	Х						Z	Z												
Vo	ltage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
	e Size			1206									1210							1812			
Lette	r	Α		В	С		Е		3	J		(М		N	Р		Q		Х	Υ		Z
May		0.00		D D			 0 71			0.04		00	1.07		140	1 7		1 70			0.54		2 70

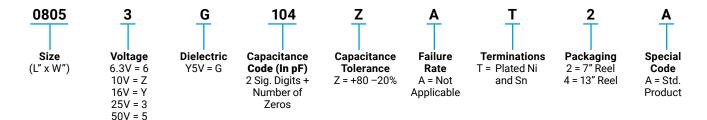
Letter	Α	В	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PA	PER						EMBO	SSED			

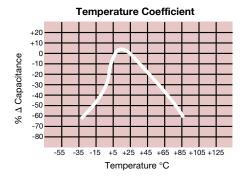
PAPER and EMBOSSED available for 01005

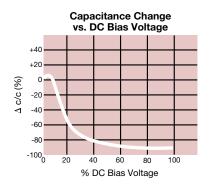
NOTE: Contact factory for non-specified capacitance values *EIA 01005

Y5V Dielectric

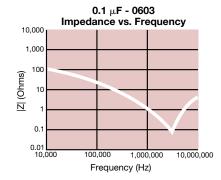
General Specifications

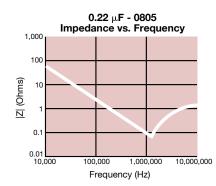

GENERAL DESCRIPTION

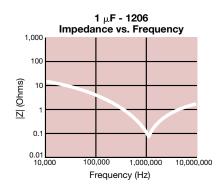

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% –82% capacitance change over the operating temperature range of -30° C to $+85^{\circ}$ C.


These characteristics make Y5V ideal for decoupling applications within limited temperature range.




PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)





Y5V Dielectric

Parame	ter/Test	Y5V Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-30°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating ≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflection	
Resistance to	Capacitance Variation	≤ ±30%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.1	90 1	mm —
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±20%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ±2 hours at ro	
	Appearance	No visual defects	_	
	Capacitance Variation	≤ ±30%	Charge device with twice chamber set a	ce rated voltage in test
Load Life	Dissipation Factor	≤ Initial Value x 1.5 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±30%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	d voltage applied.
numunty	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

Y5V Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		02	01		0402 Reflow/Wave All Paper					06	03			08	05			12	06			12	210	
Solderin	ng	Reflov	v Only		Ref	low/W	/ave		F	Reflow	/Wav	9	F	Reflov	//Wav	е	F	Reflow	Mfeve	Э	F	Reflow	v/Wave	e
Packagi	ng	All P	aper		Α	II Pap	er			All P	aper		Pa	per/E	mboss	ed	Pa	per/Er	nboss	sed	Pa	per/E	mboss	sed
(L) Length	mm	0.60 ±	0.09		1.0	00 ± 0.	.10			1.60 ±	0.15			2.01	± 0.20			3.20 ±	0.20			3.20	± 0.20	
(L) Length	(in.)	(0.024 ±	0.004)		(0.04	40 ± 0.	.004)		(0	0.063 ±	0.00	6)	(0	0.079	± 0.00	8)	(0).126 ±	0.00	8)	(0	.126	± 0.00	8)
W) Width	mm	0.30 ±				50 ± 0.				.81 ±					± 0.20				£ 0.20				± 0.20	
w) widti	(in.)	(0.011 ±				20 ± 0.			(0).032 ±		6)	· ·		± 0.00	8)		.063 ±			(0		± 0.00	8)
(t) Terminal	mm	0.15 ±				25 ± 0.				0.35					± 0.25			0.50					0.25	
(t) Terrimon	(in.)	(0.006 ±	,			10 ± 0.	,		\ ·	0.014 ±		-,			± 0.01	-,	(-	.020 ±		- /	, ·		± 0.01	-,
Con	WVDC 820	63	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Cap	1000																			į.	· >	' 	₹w	
(pF)	2200		A																	اسم			7	*
	4700		A	_															_		-			ŢT
Сар	0.010	Α																		_	$\overline{}$	سل		
(μF)	0.010	A	Α																		1	-		
(με)	0.022	A				С													_	1			1 .	, 1
	0.10	Α			С	C					G	G				К								
	0.22				C	C				G	G	G				I.V.								
	0.33									G														
	0.47					С				G	G												1	
	1.0			С	С				G	G	J			N	N	N		М	М	М				N
	2.2				C				J					N	N				К	Q				
	4.7		İ			i				i			N	N	N		İ	Р	Q			N	N	
	10.0												N	Р			Q	Q	Х		Х	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																						$oxed{oxed}$	
	WVDC	63	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE		02	UT		0402					06	03			80	05			12	06			12	210	

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Г	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
Ξ				PAPER						EMBO	SSED			

MLCC Gold Termination — AU Series

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

<u>AU03</u>	Y	G	104	<u>K</u>	<u>A</u>	7	2	<u>A</u>
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
AU02 - 0402	6.3V = 6	C0G (NP0) = A	Code (In pF)	Tolerance	Rate	G* =1.9 µ" to	2 = 7" Reel	Code
AU03 - 0603	10V = Z	X7R = C	2 Sig. Digits +	$B = \pm .10 pF (<10pF)$	A = Not	7.87 µ"	4 = 13" Reel	A = Std.
AU05 - 0805	16V = Y	X5R = D	Number of	$C = \pm .25 pF (<10pf)$	Applicable		U = 4mm TR	Product
AU06 - 1206	25V = 3		Zeros	$D = \pm .50 pF (< 10pF)$		7 = 100 u"	(01005)	
AU10 - 1210	35V = D			F = ±1% (≥ 10 pF)		minimum		
AU12 - 1812	50V = 5			G = ±2% (≥ 10 pF)			Contact	
AU13 - 1825	100V = 1			J = ±5% ` ′			Factory For	
AU14 - 2225	200V = 2			K = ±10%			Multiples*	
AU16 - 0306	500V = 7			$M = \pm 20\%$			wuitiples.	
AU17 - 0508								
AU18 - 0612								

^{*} Contact factory for availability.

MLCC Gold Termination - AU Series

Capacitance Range (NPO Dielectric)

PREFERRED SIZES ARE SHADED

SIZE	312		AU02			AU	03				AU05					AL	106		
Solderin	20		low/Epo			Reflow/	Epoxy/				flow/Epo					Reflow	/Epoxy/		
	•		/ire Bond			Wire E					Vire Bond						Bond*		
Packagi	ng mm		.00 ± 0.1			All P					er/Embo .01 ± 0.2					Paper/Ei	mbosse ± 0.20	a	
(L) Length	(in.)		0.00 ± 0.10 0.40 ± 0.00			(0.063 ±					0.2 ± 0.2						± 0.20 ± 0.008)		
W) Width	mm		.50 ± 0.1			0.81 ±					.25 ± 0.2						± 0.20		
vv) vvidin	(in.)	•	020 ± 0.0			(0.032 ±				,	0.0 ± 0.0					•	± 0.008)		
(t) Terminal	mm		.25 ± 0.1			0.35 ±					.50 ± 0.2						± 0.25		
(1) 1011111111	(in.) WVDC		010 ± 0.0	,	16	(0.014 ±		100	10		020 ± 0.0			10) OF		± 0.010)	200	I 1000
Cap	0.5	16 C	25 C	50 C	16 G	25 G	50 G	100 G	16 J	25 J	50 J	100 J	200 J	16 J	25 J	50 J	100 J	J	500 J
(pF)	1.0	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	C C	CC	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	1.8	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.7 3.3	C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	3.9	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	6.8	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10 12	C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	15	С	С	С	G	G	G	G	Ĵ	J	J	J	J	J	Ĵ	Ĵ	J	J	J
	18 22	С	0 0	C	G G	0 0	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	27	C C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	33	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C C	CO	C	G G	G G	G G	G G	J	J	J	J	J J	J	J	J	J	J	J
	56	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	120	С	С	С	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	150 180	C	C	C	G G	G G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	220	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	M
	270	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	330 390	C C	CC	C	G G	G G	G G	G	J	J	J	J	M M	J	J	J	J	J	M M
	470	Č	Ċ	Č	G	G	G		J	J	J	J	М	J	J	J	J	J	М
	560 680				G G	G G	G G		J	J	J	J	M M	J	J	J	J	J	M P
	820				G	G	G		J	J	J	J	M	J	J	J	J	M	P
	1000				G	G	G		J	J	J	J	М	J	J	J	J	Q	
	1200 1500								J	J	J			J	J	J	J M	Q Q	
	1800								J	J	J			J	J	М	М	~	
	2200 2700								J	J	N N			J	J	M M	P P		
	3300								J	J	IN			J	J	M	P		
	3900								J	J				J	J	М	Р		
	4700 5600								J	J				J	J	M	Р		
	6800													М	М				
	8200 0.010													M M	M				
	0.012			$\overline{}$			-W							IVI	IVI				
	0.015						/><	A											
	0.018 0.022			_			٦).	ļΤ											
	0.027		(_				_						<u></u>					
	0.033																		
	0.039 0.047				t														
	0.068		l	ı	' '		ı	. –											
	0.082 0.1																		
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE		AU02			AU					AU05					AU	106		

* Contact Factory

Letter	Α	С	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

PREFERRED SIZES ARE SHADED

SIZE				AU10					AU12				AU13			AU14	
Solderii	na			low/Epo					low/Epo				Reflow/Epoxy	/		Reflow/Epoxy	/
	•			/ire Bond					/ire Bond				Wire Bond*			Wire Bond*	
Packagi	ng mm			er/Embos .20 ± 0.2					Emboss .50 ± 0.3				4.50 ± 0.30			All Embossed 5.72 ± 0.25	
(L) Length	(in.)			.20 ± 0.2 126 ± 0.0					.50 ± 0.3 177 ± 0.0				4.50 ± 0.30 (0.177 ± 0.012	2)		5.72 ± 0.25 (0.225 ± 0.010)
	mm			.50 ± 0.2					.20 ± 0.2				6.40 ± 0.40	<i>,</i>		6.35 ± 0.25	<i>,</i>
W) Width	(in.)		(0.0	0.0 ± 0.0	08)			(0.1	126 ± 0.0	(800			(0.252 ± 0.016	b)	((0.250 ± 0.010)
(t) Terminal	mm			.50 ± 0.2					.61 ± 0.3				0.61 ± 0.36			0.64 ± 0.39	
(t) Terriniai	(in.)		(0.0	020 ± 0.0	10)			(0.0	0.024 ± 0.0	14)			(0.024 ± 0.014)	((0.025 ± 0.015	j)
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
Cap (pF)	0.5 1.0																
(pr)	1.2																
	1.5																
	1.8 2.2																-W-
	2.7														L	<	$\sum_{\mathbf{T}}$
	3.3																IJ Ų
	3.9 4.7																
	5.6															4.0	
	6.8														1		
	8.2 10					J											
	12					Ĵ											
	15					J											
	18 22					J											
	27					J											
	33					J											
	39 47					J											
	56					J											
	68 82					J											
	100					J											
	120					J											
	150 180					J											
	220					J											
	270					J											
	330 390					J M											
	470					М											
	560	J	J	J	J	М											
	680 820	J J	J	J	J	M M											
,	1000	J	J	J	J	М	K	K	K	K	М	М	М	М	М	М	Р
	1200	J	J	J	M	M	K	K	K	K	M	M	M	M	M	M	P P
,	1500 1800	J J	J	J	M	М	K K	K K	K	K K	M M	M M	M M	M M	M M	M M	P
	2200	J	J	J	Q		K	K	K	К	Р	М	М	М	М	М	Р
	2700 3300	J J	J	J	Q		K K	K K	K	P P	Q Q	M M	M M	M M	M M	M M	P P
	3900	J	J	M			K	K	K	P	Q	M	M	M	M	M	P
	4700	J	J	М			K	K	K	Р	Q	М	М	М	М	М	Р
	5600 6800	J J	J				K K	K K	M M	P X	Х	M M	M M	M M	M M	M M	P P
	8200	J	J				K	M	M	_ ^		M	M	141	M	M	P
	0.010	J	J				K	М	М			М	М		М	M	P
	0.012 0.015	J	J				K M	M M				M M	M M		M M	M M	P Y
	0.018						М	M				Р	M		М	М	Υ
	0.022						М	М				P			М	Y	Y
,	0.027 0.033						M	M M				P P			P P	Y	Υ
	0.033						M	M				Р			P		
	0.047						М	М				Р			Р		
	0.068 0.082						M M	M M							P Q		
	0.062						141	141							Q		
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
	SIZE			AU10					AU12				AU13			AU14	

* Contact Factory

			PAPER						EMB	DSSED			
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z

PREFERRED SIZES ARE SHADED

SIZE			AL	J02					AU03	3						AU0	5						AL	J06			
Solderin	g	F		/Epoxy Bond*	1/				ow/E _l ire Bo		′					ow/E	poxy ond*	'/					eflow Wire				
Packagii	ng		All F	aper				A	All Pap	er				F	ape	r/Em	boss	ed				Pa	per/E	mbos	sed		
(L) Length	mm		1.00	± 0.10				1.	60 ± 0).15					2.	01 ±	0.20						3.20	± 0.20)		
(L) Length	(in.)	((0.040	± 0.004	4)			(0.0	63 ± 0	.006)				(0.0	79 ±	0.008	3)				(0	.126	± 0.00	08)		
W) Width	mm			± 0.10					81 ± 0							25 ±							1.60				
	(in.)	((± 0.004	4)				32 ± 0)						0.008	3)				(0	.063				
(t) Terminal	mm (in.)	,,		± 0.15	~ \				35 ± 0							50 ±		. \				(0	0.50				
WVDC		10	16	± 0.006	50	(2)	10	16	14 ± 0		100	200	(2)	10	16		0.010)) 100	200	(2)	10	16	.020		, 	200	
WVDC	100	10	16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
Сар	150																										
(pF)	220				С				G																		
	330				С				G	G	G	G		-	J	J	1	J	J							$\vdash\vdash\vdash$	K
	470				C					G	G	G		J	J	J	J	J	J								K
	680				C					G	G	G		J	J	J	J	J	J								K
	1000				С					G	G	G		J	J	J	J	J	J							\vdash	K
	1500				C					G	G	U		J	J	J	J	J	J		J	J	J	J	J	J	M
	2200				C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	3300			С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700			C	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	6800		С	С	_					G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
	0.010		С					G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Cap	0.015		С						G	G				J	J	J	J	J	J		J	J	J	J	J	М	
(μF)	0.022	С	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С							G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047							G	G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.068							G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
	0.10						G	G	G	G				J	J	J	J				J	J	J	J	М	Р	
	0.15					G	G							J	J	J	N	N			J	J	J	J	Q		
	0.22					G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33													N	N	N	N	N			J	J	М	Р	Q		
	0.47													N	N	N	N	N			М	М	М	Р	Q		
	0.68													N	N	N					М	М	Q	Q	Q	\Box	
	1.0													N	N	N					М	M		Q	Q		
	1.5																				Р	Q	Q				
	2.2										_				_	P*		-			Q	Q	Q		-	\sqcup	
	3.3													-													
	4.7													P*							Q	Q					
	10			-		-			-		-	_		_	-	-		-	-	0+	Q*		-		-	$\vdash \vdash$	_
	22																			Q*							
	47 100																										
	WVDC	10	16	25	50	63	10	16	25	50	100	2M	6.3	10	16	25	50	100	200	63 10 16 25 50 100 200 500			500				
	SIZE	10	10	AU02		1	10	10	AU03		100	_2.0	1	10	10	AU0		100	_ 200	AU06							
	UIZE			,,,,,,,					,,,,,,,,	•						700											

^{*} Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

PREFERRED SIZES ARE SHADED

SIZE					AU10					AU	112		4	U13		AU14
Soldering					eflow/Ep Wire Bor					Reflow/ Wire E	/Epoxy/ Bond*			w/Epoxy/ e Bond*		ow/Epoxy/ re Bond*
Packaging	1			Par	er/Emb	osseU				All Emi	oossed		All Er	nbossed	All E	mbossed
421	mm				3.20 ± 0.	20				4.50 ±	£ 0.30		4.50) ± 0.30	5.7	'2 ± 0.25
(L) Length	(in.)			(0	.126 ± 0.	(800				(0.177 ±	£ 0.012)		(0.177	7 ± 0.012)	(0.22	25 ± 0.010)
W) Width	mm				2.50 ± 0.					3.20 ±) ± 0.40		35 ± 0.25
W) Width	(in.)				.098 ± 0. 0.50 ± 0.					(0.126 ±				2 ± 0.016)		0 ± 0.010)
(t) Terminal	mm (in.)									0.61 ±				1 ± 0.36		4 ± 0.39
	()			(0	.020 ± 0.	.010)				(0.024 ±	£ 0.014)		(0.024	1 ± 0.014)	(0.02	25 ± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	100												_	· -	TA IA	,
(pF)	150												<u> </u>		$\overline{}$	
	220 330											_~	$\overline{}$	_) 1 —
	470											())		/ <u>↓</u> 1
	680												<u> </u>			
	1000											\vdash		\smile		
	1500	J	J	J	J	J	J	М						t		
	2200	J	J	J	J	J	J	М					I	' ' '		
	3300	J	J	J	J	J	J	М								
	4700	J	J	J	J	J	J	М								
	6800	J	J	J	J	J	J	М								_
Сар	0.010 0.015	J	J	J	J	J	J	М	K	K	K	K	M	M	M	Р
(μ F)	0.015	J J	J	J J	J	J	J	P Q	K K	K K	K K	P P	M M	M M	M M	P P
	0.022	J	J	J	J	J	J	Q	K	K	K	X	M	M	M	P
	0.047	J	J	J	J	J	J	Q	K	K	K	Z	M	M	M	P
	0.068	J	J	J	J	J	M		K	K	K	Z	М	M	М	P
	0.10	J	J	J	J	J	М		К	К	К	Z	М	М	М	Р
	0.15	J	J	J	J	М	Z		K	K	Р		М	М	М	Р
	0.22	J	J	J	J	Р	Z		K	К	Р		М	М	М	Р
	0.33	J	J	J	J	Q			K	M	Х		М	M	М	P
	0.47	M	M	М	M	Q			K	P			M	M	M	Р
	0.68	M N	M N	Р	X	X Z			M M	Q X			M M	P P	M M	P P
	1.5	N N	N N	Z	Z	Z			Z	Z			M M	-	M	X
	2.2	X	X	Z	Z	Z			Z	Z			IVI		M	^
	3.3	X	X	Z	Z	-			Z							
	4.7	X	X	Z	Z				Z							
	10	Z	Z	Z												
	22															
	47															
	100	10			5.0	100	0.00	500		100	000	500		100		400
	WVDC			50	100	200	500	50	100	200	500	50	100	50	100	
	SIZE				AU10					AU	12		_ A	U13		AU14

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

PREFERRED SIZES ARE SHADED

SIZE	E			Αl	102					4	U0	3					Αl	105					ΑU	06					-	\U1	0				AU	12	
Solder	ring			flow /ire l					F	Reflo Wire		pox ond*					flow Vire						flow /ire l								pox ond*					Epox Bond	
Packag	ging		/	All P	аре	er				All	Pa	per			F	аре	er/E	mbo	sse	d	Р	аре	er/Er	nbo	sse	d		Pa	per/	Em	bos	sed		All	Eml	oss	ed
(L)	mm		1	: 00.	± 0.1	0				1.6	0 ± 0).15				2	2.01	± 0.2	0			3	.20 :	± 0.2	0				3.2	0 ± 0	0.20			4	.50 ±	0.30)
Length	(in.)		(0.	040 :	± 0.0	04)			(0.06	3 ± (0.006	5)			(0.	079	± 0.0	(80			(0.	126 :	± 0.0	(80			(0.12	6 ± (0.008	3)		(0.	177 ±	£ 0.01	2)
W)	mm		C	.50 :	± 0.1	0				0.8	1 ± ().15				1	1.25	± 0.2	0			1	.60 :	± 0.2	0				2.5	0 ± 0	0.20			3	.20 ±	0.20)
Width	(in.)		(0.	020 :	± 0.0	04)			(0.03	2 ± (0.006	5)			(0.	049	± 0.0	08)			(0.	063 :	± 0.0	08)			(0.09	8 ± (0.008	3)		(0.	126 ±	£ 0.00)8)
	mm	-														<u>`</u>					_	`												<u> </u>			
(t)	(in.)).25 :							5 ± (0.50						.50 :							0 ± 0						0.36	
Terminal	(111.)		(0.	010 :	± 0.0	106)			(0.01	4 ± (0.006	5)			(0.	020	± 0.0	10)			(0.	020 :	± 0.0	10)			(0.02	0 ± 0	0.010))		(0.	024 ±	£ 0.01	4)
WVD	С	4	63	10	16	25	50	4	63	10	16	25	35	50	63	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
Cap	100																																				П
(pF)	150																																				
	220					L			L			L									L								L				L			L	
	330						С																														П
	470						С																														
	680						С																														Ш
	1000						С																														
	1500						С																														
	2200						С																														Ш
	3300						С																														
	4700					С								G																							
	6800					С								G							Ш												<u> </u>			igsqcut	Н
Сар	0.010					С						_	_	G																							
(µF)	0.015 0.022					С						G	G	G																							
	0.022	Н			С	С						G	G	G						N													H			H	Н
	0.033				C		l					G	G	G						N																	
	0.047				C	С	1					G	G	G						N N																	
	0.008	Н	С		С	С		\vdash		_	\vdash	G		G				N		N	\vdash										\vdash		┢			\vdash	Н
	0.15		U		C							G		G				N	N	IN																	
	0.13		C*								G	G						N	N																		
	0.22	H	U								G	G						N			H					Q							\vdash			\vdash	Н
	0.47	C*									G							N						Q	Q	~											
	0.68										G							N															Х				
	1.0	П							G	G	G	J*			N		N	N		P*	H			Q	Q			П			Х	Х	Х			М	П
	1.5														N																						
	2.2	C*						G*	G*	J*	J*				N	N	N	N					Q	Q							Z	Х					
	3.3							J*	J*	J*	J*				N	N					Q	Q															П
	4.7							J*	J*	J*						N	N*	N*			Q	Q	Q	Q					L	Q	Z					L	
	10	Ш						K*							P*	P*	P*				Q	Q	Q	Q*					Х	Z	Z		L			Z	Ш
	22														P*						Q*	Q*	Q*					Z	Z	Z	Z						
	47																				Q*						_	Z*									
	100	Щ		_		_			-						-				-								Z*	Z*									
	WVDC	4	63	_		25	50	4	63				35	50	63	10		25	35	50	6.3	10			35	50	4	6.3			_	35	50	6.3		25	50
	SIZE			ΑL	102						\U0	3					Αl	105					AU	υ6					_ /	\U1	U				AU	12	

^{*} Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

= *Optional Specifications – Contact Factory

NOTE: Contact factory for non-specified capacitance values

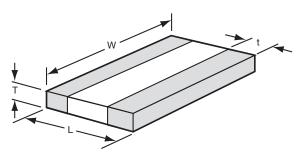
AU16/AU17/AU18

	ZE		(AU1 030	6)			(0	U17	3)			((AU1 061:	2)	
Pack	aging			nbos					boss					nboss		
Length	mm			31 ± 0					7 ± 0.					0 ± 0		
	(in.)			32 ± 0)	(0.05	0 ± 0. 0 ± 0.			<u> </u>		$\frac{3 \pm 0}{20 \pm 0}$	0.010)	
Width	(in.)			53 ± 0)		0.08).23).010)	
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	M		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	/N/			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				٧	٧	Α		
155	1.5						/N/					W	W			
225	2.2											Α	Α			
335	3.3											///				
475	4.7															
685	6.8															
106	10															

Solid = X7R

mm (in.)

AU16
(0306)


Code Thickness

A 0.56 (0.022)

	mm (in.)
	AU16
	(0508) Thickness
S	0.56 (0.022)
V	0.76 (0.030)
Α	1.02 (0.040)

	mm (in.)
	AU16
	(0612)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
Α	1.27 (0.050)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS MM (IN.)

	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS MM (IN.)

	A	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

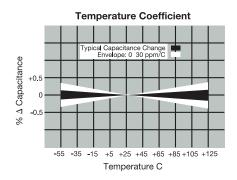
MLCC Tin/Lead Termination "B" (LD Series)

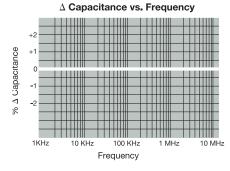
COG (NPO) - General Specifications

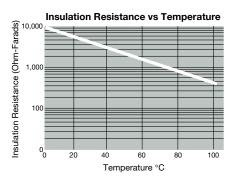
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

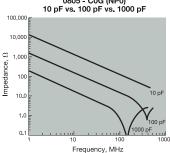
PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

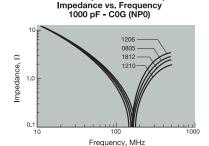

LD05	5	<u>A</u>	101	J	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable 4 = Automotive	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

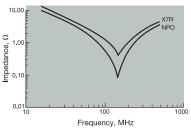

 $M = \pm 20\%$


*LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options


NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.




Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - COG (NP0) 10 pF vs. 100 pF vs. 1000 pF

Variation of Impedance with Chip Size

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R 0805

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature Cycle Chamber
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF
(2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.
	Appearance	No defects	Deflection: 2mm
Resistance to Flexure	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds 7 1mm/sec
Stresses	Q	Meets Initial Values (As Above)	
	Insulation Resistance	≥ Initial Value x 0.3	90 mm —
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal	
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dia during in contrating allow at 00000 for 00
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2
Solder Fleat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)	
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature
	Appearance	No visual defects	
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test chamber set at 125°C ± 2°C
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0). Remove from test chamber and stabilize at room
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature for 24 hours before measuring.
	Dielectric Strength	Meets Initial Values (As Above)	
	Appearance	No visual defects	
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85% ±
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.
	Dielectric Strength	Meets Initial Values (As Above)	

COG (NPO) - Capacitance Range

PREFERRED SIZES ARE SHADED

						LD03								□ I D06					
SIZI	E		LD02			LC	003				LD05					LD0	6		
Solder	ing	Re	eflow/Wa	ave		Reflov	v/Wave			Re	flow/Wa	ve				Reflow/\	Wave		
Packag			All Pape				Paper				er/Embos				P	aper/Eml			
(L) Length	mm (in.)		.00 ± 0.1				± 0.15 ± 0.006)				.01 ± 0.2 .079 ± 0.0				(3.20 ± 0 0.126 ± 0			
W) Width	mm (in.)		0.50 ± 0.1 020 ± 0.0			0.81	± 0.15 ± 0.006)				.25 ± 0.2 049 ± 0.0					1.60 ± 0 0.063 ± 0	0.20		
(t) Terminal	mm	0	0.25 ± 0.1	15		0.35	± 0.15	<u>'</u>		0	.50 ± 0.2	5				0.50 ± 0	0.25		
(7)	(in.) WVDC	16	010 ± 0.0 25	50	16	25	± 0.006) 50	100	16	25	020 ± 0.0 50	100	200	16	25	0.020 ± 0	100	200	500
Cap (pF)	0.5 1.0	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
(p.)	1.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.5 1.8	C C	C	C	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	C C	C	C	G G	G G	G G	G G	J J	J	J J	J	J J	J	J	J	J	J J	J J
	3.3	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9 4.7	C C	C	C	G G	G G	G	G	J J	J	J	J	J J	J	J	J	J	J	J
	5.6	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8 8.2	C C	C	C	G G	G G	G G	G	J	J	J	J	J	J	J	J	J	J	J
	10 12	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	15	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18 22	C C	C	C	G G	G G	G G	G G	J	J	J	J	٦ ٦	J	J	J	J	J	J
	27	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	33 39	C	C	C	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	47 56	C C	C	C	G G	G G	G	G	J J	J	J	J	J	J	J	J	J	J	J
	68	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C C	C	C	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150 180	C	C	C	G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220 270	C	C	C	G G	G G	G	G	J	J	J	J	J M	J	J	J	J	J	M M
	330	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	390 470	C	C	C	G	G G	G	G	J	J	J	J	M M	J	J	J	J	J	M M
	560 680				G G	G G	G G		J	J	J J	J	М	J	J J	J	J J	J J	M P
	820				G	G	G		J	J	J	J		J	J	J	J	М	F
	1000 1200				G	G G	G		J J	J	J	J		J	J	J	J	Q Q	
	1500								J	J	J			J	J	J	М	Q	
	1800 2200								J	J	J N			J	J	M M	M P		
	2700 3300						-	-	J J	J	N			J	J	M M	P P		
	3900								J	J				J	J	М	Р		
	4700 5600								J	J				J	J	M M	Р		
	6800 8200													М	М				
Сар	0.010		<u> </u>		\vdash			+						M	M				
(pF)	0.012 0.015																		
	0.018		Ť	_ _>		€ -W-	<u> </u>												
	0.022 0.027			<	_		ÎT _												
	0.033 0.039		(1	السلر	1												
	0.047		1		4		_	1											
	0.068 0.082			ı	ונו וייי		ı												
	0.1	10	65	F0.	1.	05	F0.	100	10	C.		100	~~		C=	F0	100	000	F ~
	WVDC SIZE	16 25 50 16 25 LD02 LD0			25 50 100 LD03			16 25 50 100 200 LD05				16 25 50 100 200 500 LD06							
Letter	A	C E G J			K					(Q X Y Z				1				
Max.	0.33	0.5	56	0.71	0.90).94	1.02	1.27		1.40	1.52	1.7	78	2.29	2.54		2.79	
Thickness	(0.013)	(0.022) (0.028) (0.035) (0.037)			.037)	37) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.11 EMBOSSED						0.110)							
				PAPER								EM	POSSED						

COG (NPO) - Capacitance Range

PREFERRED SIZES ARE SHADED

FERR																	
SIZ	Έ			LD10					LD12				LD13			LD14	
Solde				Reflow Or				_	Reflow Or				Reflow On	<u> </u>		Reflow Only	
Packa	ging mm			er/Embo 3.20 + 0.2					II Emboss 4.50 ± 0.3				All Emboss 4.50 ± 0.3			All Embossed	
(L) Length	(in.)		(0.	126 ± 0.0	08)			(0.	177 ± 0.0)12)			(0.177 ± 0.0	12)		(0.225 ± 0.010)
W) Width	mm (in.)			2.50 ± 0.2 .098 ± 0.0					3.20 ± 0.2 126 ± 0.0				6.40 ± 0.4 (0.252 ± 0.0			6.35 ± 0.25 (0.250 ± 0.010)
(t) Terminal	mm		(0.50 ± 0.2	:5			(0.61 ± 0.3	36			0.61 ± 0.3 (0.024 ± 0.0	5		0.64 ± 0.39	
	(in.) WVDC	25	50	.020 ± 0.0	200	500	25	50	024 ± 0.0 100	200	500	50	100	200	50	(0.025 ± 0.015 100	200
Cap (pF)	0.5 1.0 1.2																
	1.5 1.8 2.2														<u> </u>		W
	2.7 3.3 3.9																
	4.7 5.6 6.8														_ `	 a _t	
	8.2 10					J										1 7 7	
	12 15 18					J J											
	22 27 33					J											
	39 47 56					J											
	68 82					J											
	100 120 150					J J											
	180 220 270					J J											
	330 390 470					J M M											
	560 680 820	J	J	J	J	M M											
	1000	J J	J	J	J	M	K	K	K	K	М	М	M	M	М	М	Р
	1200 1500	J	J	J	M M	M M	K K	K	K K	K K	M M	M M	M M	M M	M M	M M	P P
	1800	J	J	J	M	IVI	K	K	K	K	M	M	M	M	M	M	Р
	2200 2700	J	J	J	QQ		K	K	K K	K P	P Q	M M	M M	M M	M M	M M	P P
	3300	J	J	J			K	K	K	Р	Q	М	М	М	М	М	Р
	3900 4700	J	J	M			K K	K	K K	P P	Q	M M	M M	M M	M M	M M	P P
	5600	J	J				K	K	М	Р	X	М	М	М	М	М	Р
	6800 8200	J J	J				K K	K M	M M	Х		M M	M M	M	M M	M M	P P
Cap (pF)	0.010 0.012 0.015	J J	J				K K M	M M M	М			M M M	M M M		M M M	M M M	P P Y
	0.018 0.022 0.027						M M M	M M M				P P P	M		M M P	M Y Y	Y Y Y
	0.033 0.039 0.047						M M M	M M M				P P P			P P P		
	0.068 0.082						M M	M M				F			P Q		
SIZ	0.1 WVDC	25	50	100 LD10	200	500	25	50	100 LD12	200	500	50	100 LD13	200	Q 50	100 LD14	200
														v 1 :			
Letter Max.	0.33	0.5		E 0.71	G 0.90	0.9		1.02	M 1.27		.40	P 1.52	Q 1.78	X Y 2.29 2.54	Z 1 2.79		
Max. Thickness	(0.013)	(0.02		0.028)	(0.035)	(0.0)		(0.040)	(0.050	- 1	055)	(0.060)		0.090) (0.10			
				PAPER								EMBO	SSED				

X8R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD05	<u>5</u>	F	101	<u>J</u>	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $E = \pm .10 \text{ pF} (< 10 \text{ pF})$ $E = \pm .25 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = \pm .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text{ pF})$ $E = .50 \text{ pF} (< 10 \text$	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

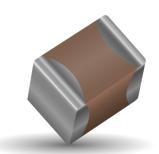
LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

Parame	ter/Test	X8R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	1 O I	-U- + 100/
Dissipation	Besignation Factor Insulation Resistance Solderability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Capacitance Capacitance Capacitance Capacitance Capacitance Capacitance	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Freq.: 1.0 k Voltage: 1.0	
Insulation		100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to		≤ ±12%	Test Time: 3	-
Flexure Stresses	Factor	Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 r	mm —
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.5	solder at 230 ± 5°C 5 seconds
	Appearance	No defects, <25% leaching of either end terminal		
		≤ ±7.5%	Bio desire in content	I I + 0<000 f <0
Resistance to Solder Heat	•	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
		Meets Initial Values (As Above)	hours before measuring	g electrical properties.
		Meets Initial Values (As Above)		
	• •	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
		No visual defects		
	Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	rated voltage (≤ 10V) in
Load Life		≤ Initial Value x 2.0 (See Above)	for 1000 hou	
		≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
		Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.



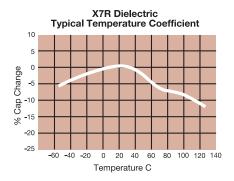
	SIZE	LI	003	LD	05	LD	06		
	WVDC	25V	50V	25V	50V	25V	50V		
271	Cap 270	G	G						
331	(pF) 330	G	G	J	J		ĺ		
471	470	G	G	J	J				
681	680	G	G	J	J				
102	1000	G	G	J	J	J	J		
152	1500	G	G	J	J	J	J		
182	1800	G	G	J	J	J	J		
222	2200	G	G	J	J	J	J		
272	2700	G	G	J	J	J	J		
332	3300	G	G	J	J	J	J		
392	3900	G	G	J	J	J	J		
472	4700	G	G	J	J	J	J		
562	5600	G	G	J	J	J	J		
682	6800	G	G	J	J	J	J		
822	Cap 8200	G	G	J	J	J	J		
103	(μF) 0.01	G	G	J	J	J	J		
123	0.012	G	G	J	J	J	J		
153	0.015	G	G	J	J	J	J		
183	0.018	G	G	J	J	J	J		
223	0.022	G	G	J	J	J	J		
273	0.027	G	G	J	J	J	J		
333	0.033	G	G	J	J	J	J		
393	0.039	G	G	J	J	J	J		
473	0.047	G	G	J	J	J	J		
563	0.056	G		N	N	М	М		
683	0.068	G		N	N	М	М		
823	0.082			N	N	М	М		
104	0.1			N	N	М	M		
124	0.12			N	N	М	М		
154	0.15			N	N	М	М		
184	0.18			N		М	М		
224	0.22			N		М	М		
274	0.27					М	М		
334	0.33					М	М		
394	0.39					М			
474	0.47					М			
684	0.68						ĺ		
824	0.82								
105	1								
	WVDC	25V	50V	25V	50V	25V	50V		
	SIZE	_	003	LD		LD06			
Letter	A C F	l G l .l	K	M I N I	PIO	1 X I	Y 7		

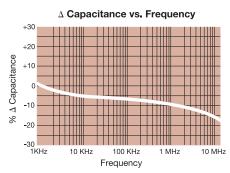
	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
	Мах.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Т	hickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		PAPER								EMB	OSSED			

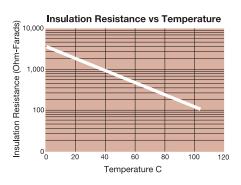
X7R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

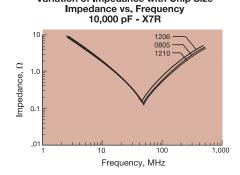

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


LD05 5	<u>c</u>	101	J	<u>A</u>	В	2	<u>A</u>
Size Voltage LD03 - 0603 6.3V = 6 LD04 - 0504* 10V = Z LD05 - 0805 16V = Y LD06 - 1206 25V = 3 LD10 - 1210 35V = D LD12 - 1812 50V = 5 LD13 - 1825 100V = 1 LD14 - 2225 200V = 2	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

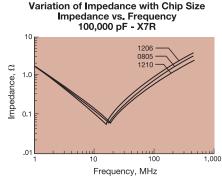

^{*}LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805

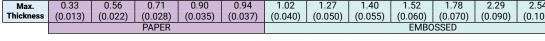

100

Frequency, MHz

Variation of Impedance with Cap Value

Variation of Impedance with Chip Size

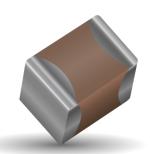
1000


Parame	ter/Test	X7R Specification Limits	Measuring (Conditions				
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
Capac	itance	Within specified tolerance						
Dissipati	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'					
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo					
Dielectric	ation Resistance Appearance	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage				
	ation Factor Por Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Capacitance Capacitance Capacitance Capacitance Capacitance	No defects	Deflectio	n: 2mm				
Resistance to	mperature Range acitance Intion Factor In Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance	≤ ±12%	Test Time: 3	0 seconds 7 1mm/sec				
Flexure Stresses	ion Factor Resistance c Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dissipation Factor Insulation Resistance Resistance	Meets Initial Values (As Above)						
	tance In Factor Resistance Strength Appearance Capacitance Variation Dissipation Resistance Capacitance Variation Dissipation Resistance Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Unisulation Resistance Resistance	≥ Initial Value x 0.3	90 n	mm				
Solder	perature Range itance In Factor Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Pactor Insulation	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5					
	Appearance	No defects, <25% leaching of either end terminal						
	perature Range itance on Factor Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric	≤ ±7.5%						
Resistance to Solder Heat	citance citance citance citance citance capacitance capacitance Capacitance Variation Dissipation Factor Insulation Resistance capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.					
	Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric	Meets Initial Values (As Above)	nours before measuring	g electrical properties.				
	Resistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Appearance Capacitance Variation Dissipation Factor Insulation Resistance ability Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro					
	· · ·	No visual defects						
		≤ ±12.5%	Charge device with 1.5 r	ated voltage (≤ 10V) in				
Load Life		≤ Initial Value x 2.0 (See Above)	test chamber set for 1000 hou					
		≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 ho					
		Meets Initial Values (As Above)						
	Appearance	No visual defects						
	Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi					
Load Humidity		≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated					
numany	Resistance Solderability Appearance Capacitance Variation Dissipation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Dielectric Dielectric Dielectric	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for				
		Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.				

PREFERRED SIZES ARE SHADED

						63																				
SIZE			LD02	2				LD03	3						LD05	5						LD	06			
Solder	ing	Ref	flow/W	lave			Ref	low/W	/ave					Ref	low/W	lave						Reflow	/Wave			
Packag	-	Α	II Pap	er			Α	II Pan	er					Paper	/Emb	osse	d				Par	per/En	nbos	sed		
(L) Length	mm		00 ± 0					60 ± 0							01 ± 0.							3.20 ±				
(L) Length	(in.)		40 ± 0.					63 ± 0							79 ± 0.						(0.126 ±		8)		
W) Width	mm		50 ± 0.					81 ± 0							25 ± 0.						,	1.60 ±		٥)		
	(in.) mm		20 ± 0. 25 ± 0.					32 ± 0 35 ± 0							49 ± 0. 50 ± 0.						(0.063 ± 0.50 ±		8)		
(t) Terminal	(in.)		10 ± 0.					14 ± 0							20 ± 0.						(0.020 ±		0)		
WVD		16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Cap	100																									
(pF)	150																									
	220			С					_		_															
	330			C					G	G	G		J	J	J	J	J	J								K
	470 680			C					G G	G G	G G		J	J	J	J	J	J								K
-	1000			C					G	G	G		J	J	J	J	J	J				-				K
	1500			C					G	G	G		J	J	J	J	J	J		J	J	J	J	J	J	M
	2200			C					G	G			J	Ĵ	Ĵ	J	Ĵ	Ĵ		J	J	J	Ĵ	J	J	М
	3300		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	4700		С	С					G	G	İ	İ	J	J	J	J	J	J	İ	J	J	J	J	J	J	М
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Сар	0.010	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
(μF)	0.015	С						G	G				J	J	J	J	J	J		J	J	J	J	J	М	
	0.022	C						G	G				J	J	J	J	J	N		J	J	J	J	J	M	
	0.033 0.047	U					G	G	G				J	J	J	J	N N			J	J	J	J	J	M	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	P	
	0.10		C*			G	G	G	G				J	J	J	J	N			J	J	J	J	P	P	
	0.15				G	G			_				J	J	J	N	N			J	J	J	J	Q		
	0.22				G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33												N	N	N	N	N			J	J	М	Р	Q		
	0.47							J*					N	N	N	N	N			М	М	М	Р	Q		
	0.68					Leb	Lite						N	N	N					M	М	Q	Q	Q		
	1.0					J*	J*						N	N	N*					M P	M	Q	Q	Q		
	1.5 2.2				J*										P*					0	Q	Q				
	3.3				J										Г					Q	Q	Ų				
	4.7												P*	P*						Q*	Q*	Q*				
	10											P*	Р						İ	Q*	Q*	Q				
	22																		Q*							
	47																									
	100	1.	0.5			10	1.0	0.5		100	000		10	1.	0.5	F.0	100	000		10	1.	0.5	F.	100	000	FC0
	WVDC	16	25 LD02	50	6.3	10	16	25 LD03	50	100	200	6.3	10	16	25 LD05	50	100	200	6.3	10	16	25 LD	50	100	200	500
	SIZE		LDU2					LDUS	•						LDUS							LD	00			
Letter	Α		С		Е		G		J		K		М	N		Р		Q		Х		Υ		Z		
Max.	0.33		0.56		0.71	(0.90	(0.94		02		27	1.4		1.5	2	1.78		2.29		2.54		2.79		
Thickness	(0.013)		0.022		0.028)						040)		050)	(0.0)		(0.06		(0.070				0.100				
	(0.0.0)				APER			,	(0.0		(0.0	/		MBOS		0) (0.090) (0.100) (0.110)										

= Under Development



PREFERRED SIZES ARE SHADED

SIZE	=				LD10					LD	12		LD	13		LD	20		LD	14
Solder	ina			R	eflow Only	,				Reflov	v Only		Reflox	w Only		Reflox	w Only		Refloy	v Only
Packac					er/Embos					All Emi				bossed			bossed			bossed
	mm				.20 + 0.20					4.50				± 0.30			± 0.50			± 0.25
(L) Length	(in.)				126 ± 0.00					(0.177 :				± 0.012)			± 0.020)			± 0.010)
W) Width	mm				.50 ± 0.20					3.20 :				± 0.40			± 0.40			± 0.25
	(in.) mm				098 ± 0.00 0.50 ± 0.25					0.126 :				± 0.016) ± 0.36		(0.197 :			0.64	± 0.010) ± 0.39
(t) Terminal	(in.)			(0.0	020 ± 0.01	0)				(0.024 :	0.014)		(0.024 :	± 0.014)		(0.025 :	± 0.015)		(0.025 :	± 0.015)
WVD		10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Cap (pF)	100 150																' . >	•	W_	' I
(pi)	220															*			<u>ڪيء</u> َ	
	330															T Ì	$\langle \cdot \rangle$		1).	J⊤
	470																<u></u>			
	680 1000		-	+				-			-					+		الما		1
	1500	J	J	J	J	J	J	М										Tt		
	2200	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	M									1	İ	I	ı
	3300	J	J	J J	М															
	4700 J J J J 6800 J J J J J							M												
Сар	0.010	J 	J	J	J	<u>J</u>	J	M	K	K	K	K	М	М		Х	Х	Х	М	Р
(μF)	0.015	J	J	J	J	J	J	P	K	K	K	P	M	M		x	x	x	M	P
(1-1)	0.022	Ĵ	Ĵ	J	J	Ĵ	J	Q	K	K	K	P	M	М		X	X	X	М	P
	0.033	J	J	J	J	J	J	Q	K	K	K	Х	М	М		X	Х	Х	М	Р
	0.047 0.068	J J	J	J	J	J	J M		K K	K K	K K	Z Z	M M	M M		X	X	X	M M	P
	0.068		J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	P
	0.15	Ĵ	Ĵ	Ĵ	Ĵ	M	Z		K	K	P	_	M	M		X	x	x	M	P
	0.22	J	J	J	J	Р	Z		K	K	Р		М	М		X	Х	Х	М	Р
	0.33	J	J	J	J	Q			K	М	Х		М	М		X	X	X	M	Р
	0.47 0.68	M M	M M	M P	M X	Q X			K M	P Q			M M	M P		X	X	Х	M M	P P
	1.0	N	N	P	X	Z		+	M	X			M	P		X	X		M	P
	1.5	N	N	Z	Z	Z			Z	Z			М			X	X		М	Х
	2.2	X	X	Z	Z	Z			Z	Z						X	X		М	
	3.3 4.7	X X	X	Z Z	Z Z				Z Z							X	Z Z			
	10	Ž	Ź	Z	Z											Ž	Z			
	22	Z	Z												Z					
	47																			
	100 WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE		LD10							30	LD		300		13	23	LD		200	LD	
									l M											· ·
Letter											١	P	Q		X	Y	Z			
Max.	0.33	0.5		0.71	0.90	0.9		1.02	1.27		40	1.52	1.78		29	2.54	2.79			
Thickness	(0.013)	(0.0		0.028) PAPER	(0.035)) (0.0	137)	(0.040)	(0.050) (0.0)55) (0.060)	(0.070 DSSED)) (U.C	090) ((0.100)	(0.110	J)		
			1	MPER								CIVID	ノンシミレ							

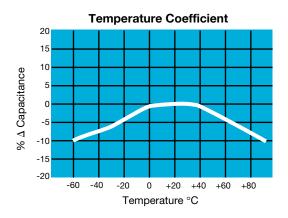
X5R - General Specifications

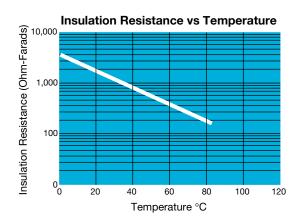
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD05	<u>5</u>	<u>D</u>	101]	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10% M = \pm 20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.


See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring	Conditions
Operating Tem		-55°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		_
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part num	bers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	· ·
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	nd humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	fore measuring.

PREFERRED SIZES ARE SHADED

											6							_					П							П							
SIZ	E			LI	D02					L	D03	3					LD	05					LD	06					ı	LD10	0				LD	12	
Solder	ring		R	Reflo	w/W	ave				Reflo	w/V	Vave	:			Re	flow	/Wa	/e			Re	eflow	/Wa	ve				Refl	ow/V	Vave						
Packa	ging			All	Pap	er				All	Par	oer			Р	аре	r/Er	nbo	sse	d	Р	ape	er/Er	nbo	sse	d		Pa		/Emb		ed					
(L) Length	mm			1.00					,	1.60								0.2					3.20 ±					,		0 ± 0							
	(in.) mm			.040 0.50		004) 10			((0.063			5)					0.0					126 ±					((0.12 2.5	6 ± 0).008 1 20	3)		+	_		
W) Width	(in.)					004)			(0	0.032			5)					0.0					063 ±					((0.09	8 ± 0	.008	3)					
(t) Terminal	mm			0.25					"	0.35			-\					0.2					0.50 ±							0 ± 0							
WVD	(in.)					006)	50	4	6.3	0.014				50	63			25		50	6.3		020 ±			50	4			0 ± 0			150	6.3	10	25	50
Cap	100	7	0.0	10	10	20	00	-	0.0	10	10	20	00	00	0.0	10	10	20	00	00	0.0	10		20	00	00	7	0.0	10	10	20	100	100	0.0	10	20	00
(pF)	150																																				
	220						С											İ																İ			
	330						С																							.1~	\nearrow	\geq	<	€ ∨	٧-,	_	1
	470						С																					7	<		<			\int_{0}^{∞})<	+	
	680						С																						(_		7		1	ノ、	↓	ļ
	1000						С																						`		$ \checkmark $	4	_				
	1500						С																									4					
	2200					-	С																								ı						ļ
	3300					-	С	ļ						•																		1					
	4700					С								G																							
Сар	6800 0.010		-	\vdash		C								G					┢									\dashv			-	+	+		H		H
(μF)	0.015					C						G	G	G																							
(μι)	0.013		i		С	C						G	G	G						N			l														
	0.033		+		С							G	G	G						N												T	+		Н		
	0.047				С	С						G	G	G						N							l	Ì									
	0.068				С			İ				G		G						N								İ				İ	İ				
	0.10			С	С	С						G		G				N		N															П		
	0.15											G						N	N																		
	0.22		C*								G	G						N	N							Q											Ш
	0.33										G	G						N																			
	0.47	C*	C*								G							N						Q	Q								X				
	0.68					_					G							N	_								\dashv	\dashv							Ш		Н
	1.0	C*	C*	C*					G	G	G	J*					N	N		P*				Q	Q						X	X	X				
	1.5 2.2	C*						G*	G*	J*	J*					N	N	N					Q	Q							Z	X					
	3.3	U.		\vdash		-		J*	J*	J*	J*	\vdash			N	N	IN	IN		\vdash	Х	Χ	Q	Ų			\dashv	\dashv				^	-		Н		Н
	4.7							J*	J*	J*					N	N	N*	N*			X	X	Х	Х						Q	Z						
	10							K*							Р	Р	Р		1		X	Х	X	X					Х	Z	Z					Z	
	22														P*						Х	Χ	Х	Х				Z	Z	Z	Z				П		П
	47																				Х							Z*				1					
	100																										Z*	Z				İ					
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
	SIZE LD02 LD03							LD	05					LD	06					L	LD10	0				LD	12										
Letter	Letter A C E G J						K		N	1		N			Р			Q			Χ		\	/		Z		1									
Max.	0.33	Ť		5 6	T	0.7			0.90		C).94		1	.02		1.2			1.4			1.52	2	-	1.78			.29		2.			2.7			
Thickness	(0.013))22))	(0.0			0.03			.03			040)	(0.0)		(0.0		(0.06			.070			090))	(0.1			(0.1			

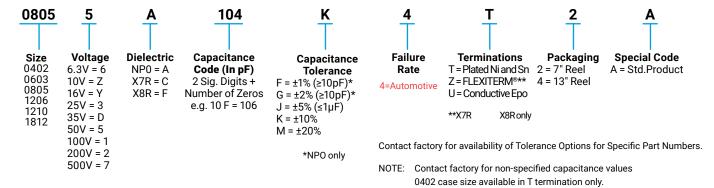
*Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

EMBOSSED

Automotive MLCC

General Specifications



GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

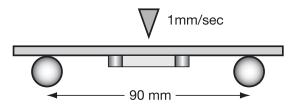
HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC


NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

SI	ZE	04	02		06	03				0805					12	206		
Sold		Reflow	/Wave		Reflow	/Wave			Re	eflow/Wa	ive				Reflov	v/Wave		
WV	'DC	25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
0R5	0.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3	3.3	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R9	3.9	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
4R7	4.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
5R6	5.6	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
6R8	6.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	С	С	G	G	G	G G	J	J	J	N	N N	J	J	J	J	J	J
100	10.0	С	С	G	G G	G G		J	J	J	N	N N	J	J	J	J	J	J
120	12	С	C C	G	G	G	G G	J	J	J	N	N N	J	J	J	J	J	J
150 180	15 18	C C	C	G G	G	G	G	J	J	J	N N	N	J	J	J	J	J	J
220	22	C	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	C	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	C	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47		Ū	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51			G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56			G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68			G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82			G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100			G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
181	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
271	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G			J	J	J			J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J		-	J	J	J	J	-	
821	820							J	J	J		-	J	J	J	J		
102 122	1000 1200							J	J	J		-	J	J	J	J		
152	1500											-		-		-		
182	1800											-		-		-		
222	2200											 		 				
272	2700											 						
332	3300											 		<u> </u>				
392	3900											 		 				
472	4700											<u> </u>						
103	10nF																	
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	/ 25V 50V 100V 200V 250V 50					500V
Si	-	04				03				0805						206		3007
31	4	04	UZ		00	US				0003					12	200		

Letter	А	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
,			PAPER						EMBC	SSED			

Automotive MLCC - X7R

	SIZE		0402					060	3					0	805						120	6				12	210		1	812		2220	
So	ldering		low/W				Re	flow/\	Nave						w/Wa	ve .				Re	eflow/\					Reflo	w Only	V	Reflo	ow Only	Ref	low C	nly
	WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V		100V	25V	50V	100V
221	Cap 220	С	С	С											С																		
271	(pF) 270	С	С	С																													
331	330	С	С	С																													
391	390	С	С	С																													
471	470	С	С	С																													
561	560	С	С	С																													
681	680	С	С	С																													
821	820	С	С	С																													
102	1000	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
182	1800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103		С			G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	` '	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	К	K	K	K	K			
153		С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	К	K	K	K	K			
183	0.018	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
223	0.022	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K		\Box	
273	0.027	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K		\Box	
333	0.033	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
473	0.047				G	G	G	G				J	J	J	N	N	N	J	J	J	М	М	М		K	K	K	K	K	K			
563	0.056				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
683	0.068				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K		\vdash	
823	0.082				G	G	G	G				J	J	J	N			J	J	J	M	M	M		K	K	K	M	K	K		\vdash	
104	0.1	_	_	_	G	G	G	G	-	-		J	J	J	N	_		J	J	J	М	P	P		K	K	K	M P	K	K		\vdash	
124	0.12	_		_	G	<u> </u>	-		_	-		J	J	N	N	_		J	J	M	М	Q	Q		K	K	K	P	K	K	_	\vdash	
154 224	0.15 0.22				G	\vdash		_				M	N	N	N	_		J	J M	M	M	Q	Q		K M	K M	K M	P	K M	K M		\vdash	
334	0.22				G							N	N	N	N			J	M	P	Q	Ų	Ų		P	P	P	Q	X	X		\vdash	
474	0.33							-				N	N	N	N			M	M	P	Q				P	P	P	Q	X	X		\vdash	
684	0.47							-				N	N	N	N			M	Q	Q	Q				P	P	Q	X	X	X		\vdash	
105	1											N	N	N	N			M	Q	Q	Q				P	Q	Q	Z	X	X		Z	Z
155	1.5	-		<u> </u>			-			-		N	N	IN	IN			Q	Q	Q	Q				P	Q	Z	Z	X	X		Z	Z
225	2.2	-	\vdash	<u> </u>	-	\vdash	 	\vdash			-	N	N	\vdash		<u> </u>		Q	Q	Q	Q				X	Z	Z	Z	Z	Z		Z	Z
335	3.3	-	\vdash	<u> </u>	-	\vdash	 	\vdash			-	14	1,4	\vdash		<u> </u>		Q	Q	Q	٧	-		-	X	Z	Z	Z	Z			Z	Z
475	4.7		\vdash	\vdash		\vdash		\vdash				\vdash		\vdash		\vdash		Q	Q	Q					X	Z	Z	Z	Z			Z	Z
106	10					\vdash	\vdash	\vdash				\vdash	\vdash	\vdash		\vdash		٧	٧	<u> </u>		\vdash			Z	Z	Z		Z		Z	Z	Z
226	22					\vdash		\vdash						\vdash					\vdash						-		-		_		Z	-	
	WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V		50V	100V
	Size		0402					0603							805						120						210			812		2220	

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			DADED						EMBO	199FD			

Automotive MLCC - X8R

Capacitance Range

S	SIZE	06	03	0	805	12	06
Sol	dering	Reflow	/Wave	Reflo	w/Wave	Reflow	//Wave
WVDC	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(F) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	М
683	0.068	G		N	N	M	M
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	М	М
154	0.15			N	N	M	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					М	М
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
WVDC	WVDC	25V	50V	25V	50V	25V	50V
S	SIZE	06	03	0	805	12	.06

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
İ	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
-				PAPER						EMBC	SSED			

APS for COTS+ High Reliability Applications

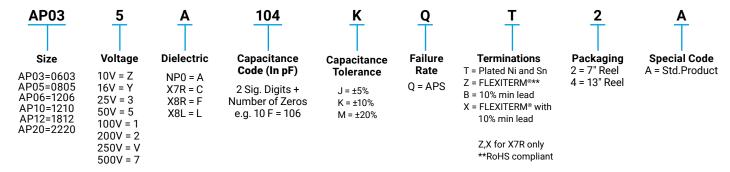
General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NPO, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

AVX'S APS RELIABILITY TEST SUMMARY


- · 100% Visual Inspection
- DPA
- · IR, DF, Cap, DWV
- Maverick Lot Review
- · Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- C of C with every Order
- · Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

HOW TO ORDER

 ${\tt NOTE: Contact \ factory \ for \ availability \ of \ Termination \ and \ Tolerance \ Options \ for \ Specific \ Part \ Number.}$

APS COTS+ NP0 Series

Size	AP	03 = 060	03	AP	05 = 08	05		AF	06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	Ð	J	J	J	J	J	J	J					
270 27	G	G	Ð	J	J	J	J	J	J	J					
330 33	G	G	Ð	J	J	J	J	J	J	J					
390 39	G	G	Ð	J	J	J	J	J	J	J					
470 47	G	G	Ð	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J J J J		J	J	J	J					
121 120	G	G	G	-	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	М	М
152 1500												J	J	М	М
182 1800												J	J	М	М
222 2200												J	J	М	М
272 2700															
332 3300															
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP	03 = 060	03	AP	05 = 08	05		AF	06 = 12	06			AP10	= 1210	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X7R Series

	Size		AP	03 = 06	503			AP	05 = 0	805			-	AP06 =	1206				AP10 =	= 1210)	AP12:	= 1812	AP	20 = 22	220
١	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	К	К			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	К			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	٦	K	K	K	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	K	K	K			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K			
124	0.12						J	J	М	N		J	J	М	М			K	K	K	Р	K	K			
154	0.15						М	N	М	N		J	J	М	М			K	K	K	Р	K	K			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	Р	Р	Q	Х	Х			
474							N	N	М	N		М	М	Р	Q			Р	Р	Р	Q	Х	Х			
684	0.68						N	N	N			М	Q	Q	Q			Р	Р	Q	Х	X	X			
105							N	N	N*			М	Q	Q	Q*			Р	Q	Q	Z*	Х	Х			
155	(μF) 1.5											Q	Q	Q				Р	Q	Z	Z	Х	X			
225	2.2											Q	Q	Q				Х	Z	Z	Z*	Z	Z			
335												Q						Х	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*						Z	Z*
226	22																							Z		
V	VVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	25V 50V 100V 200V 16 AP05 = 0805					AP06 =	1206				AP10 =	= 1210)	AP12:	=1812	AP:	20 = 22	220

^{*}Not currently available with lead plating finish, contact plant for further information.

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X8R/L Series

X8R

	0.75	4500	0400	4505	2025	1000	1004
	WVDC Cap 330 (pF) 470 680 1000 1500 2200 3300 4700 6800 6800 Cap 0.01 (μF) 0.015 0.022 0.033 0.047 0.068 0.1 0.15 0.22 0.33 0.47 0.68 0.47 0.68 0.47 0.68 0.68 1	AP03 =	: 0603	AP05	= 0805	AP06 =	1206
1	Cap 330 (pF) 470 680 1000 1500 2200 3300 4700 6800 Cap 0.01 (μF) 0.015 0.022 0.033 0.047 0.068 0.11 0.15 0.22 0.33	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	<u></u>	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(μF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	7	J	J	J
473	0.047	G	G	7	J	J	J
683	0.068	G		Ν	N	M	М
104	0.1			N	N	M	М
154	0.15			N	N	M	М
224	0.22			N		M	М
334	0.33					M	М
474	0.47					M	
684	0.68						
105							
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	060	03	08	05	120	6

X8L

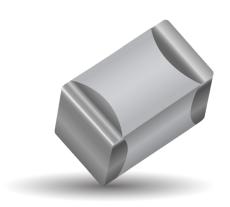
	I										
	SIZE	1	AP03 = 0603	3	, , , , , , , , , , , , , , , , , , ,	AP05 = 080	5		AP06 :	= 1206	
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
331	Cap 330		G	G		J	J				
471	(pF) 470		G	G		J	J				
681	680		G	G		J	J				
102	1000		G	G		J	J				
152	1500		G	G		J	J			J	J
222	2200		G	G		J	J			J	J
332	3300		G	G		J	J			J	J
472	4700		G	G		J	J			J	J
682	6800		G	G		J	J			J	J
103	Cap 0.01		G	G		J	J			J	J
153	(μF) 0.015	G	G		J	J	J			J	J
223	0.022	G	G		J	J	J			J	J
333	0.033	G	G		J	J	N			J	J
473	0.047	G	G		J	J	N			٦	J
683	0.068	G	G		J	J				J	J
104	0.1	G	G		J	J				٦	М
154	0.15				J	Ζ		J	J	٦	Q
224	0.22				N	Ζ		J	J	٦	Q
334	0.33				N			J	M	Р	Q
474	0.47				N			М	М	Р	
684	0.68							М			
105	1							М			
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
	SIZE		0603			0805			12	06	

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

MLCC with FLEXITERM®

General Specifications

GENERAL DESCRIPTION


With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

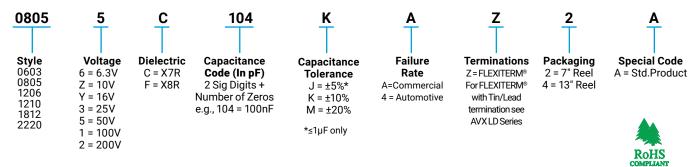
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed.
- Increased temperature cycling performance, 3000 cycles and beyond.
- · Flexible termination system.
- · Reduction in circuit board flex failures.
- · Base metal electrode system.
- · Automotive or commercial grade products available.

APPLICATIONS

High Flexure Stress Circuit Boards

 e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

MLCC with FLEXITERM®

Specifications and Test Methods

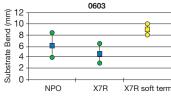
A KYOCERA GROUP COMPANY

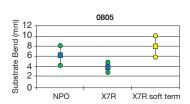
PERFORMANCE TESTING

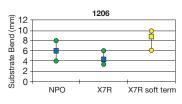
AEC-Q200 Qualification:

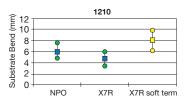
 Created by the Automotive Electronics Council

 Specification defining stress test qualification for passive components


Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:

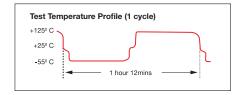

- · Bend Test
- · Temperature Cycle Test


BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

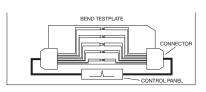

Style	Conventional Termination	FLEXITERM [©]
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- · Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

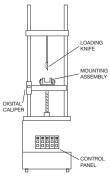

BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- · Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)



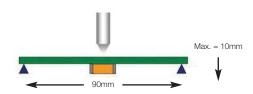

Fig 1 - PCB layout with electrical connections

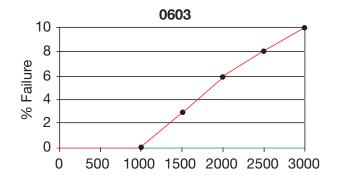
Fig 2 - Board Bend test equipment

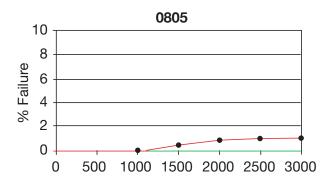
AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

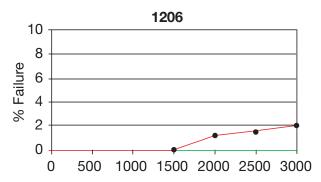
Bend Test

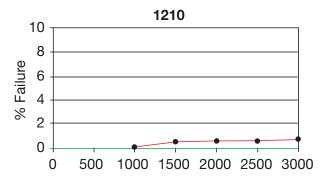
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

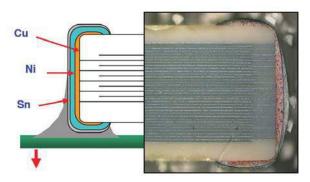

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm




Specifications and Test Methods

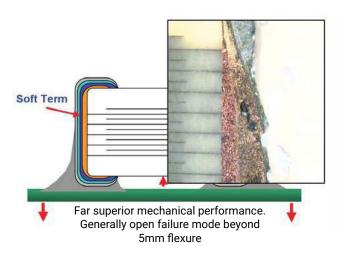


BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM® TEST SUMMARY


- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM® provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

MLCC with FLEXITERM®

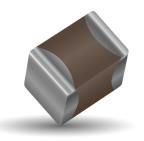
Capacitance Range X8R Dielectric

	SIZE	06	03	08	805	12	206
Sc	oldering	Reflow	//Wave	Reflov	w/Wave	Reflov	v/Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J	ĺ	
681	680	G	G	J	J	ĺ	
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
	Cap 0.01	G	G	J	J	J	J
	(μF) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	M
683 823	0.068 0.082	G		N N	N N	M M	M
104	0.082		-	N N	N N		
124	0.12		-	N N	N N	M M	M
154	0.12			N N	N N	M	M
184	0.13			N	IN	M	M
224	0.16			N N		M	M
274	0.22		 	I IN		M	M
334	0.27		 		+	M	M
394	0.39		 		+	M	141
474	0.39		 		+	M	
684	0.47				1	IVI	
824	0.82				1		
105	1		-		1		—
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE		03		805		206

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

MLCC with FLEXITERM®

Capacitance Range X7R Dielectric


	Size	!	(040	2				06	03					C	805						120	16				12	210		18	312		2220	D
S	olderi	ng		eflov Nav				Re	flow	//Wa	ve			F	Reflo	w/W	ave				Re	flow/	Wave	9			Reflo	w Onl	у		flow nlv	Re	flow (Only
	WVD0	2				10V	16V	25V	50V	100 V	/ 200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	/200V	250V	500V	16V	25V	50V	100 V	50V	100 V	25V	50V	100 \
221	Cap	220	С	С	С																													
271	(pF)	270		C	C		t																											
331	(/	330	c	c	c		t													<u> </u>												<u> </u>		\vdash
391		390	c	C	C																													\vdash
471		470	Č	C	c		\vdash																					\vdash			\vdash			\vdash
561		560	c	C	C																													\vdash
681		680	c	C	c		t	\vdash			1		 		1		<u> </u>						 					\vdash			\vdash	t		\vdash
821		820	c	c	c		<u> </u>											1		 												 	\vdash	+-
102		1000	C	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	N	N			+-
182		1800	C	C	c		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N		\vdash	+-
222		2200	C	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N		\vdash	+-
332		3300	C	С	c		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N		\vdash	+-
472		4700	c	С	c		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N		\vdash	+
103	Сар	0.01	C				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			+-
123	(µF)	0.012	C			+	G	G	G	0	+ -		J	J	J	М	J	J	J	J	J	J	J	J	-	K	K	K	K	N	N			\vdash
153	(μι)	0.015					G	G	G				J	J	J	M	J	J	J	J	J	J	J	J		K	K	K	K	N	N			\vdash
183		0.018				+	G	G	G		1		J	J	J	M	J	J	J	J	J	J	J	J		K	K	K	K	N	N			\vdash
223		0.022	c		\vdash	\vdash	G	G	G				J	J	J	J	J	J	J	J	J	J	J	J		K	K	K	K	N	N			\vdash
273		0.027	C				G	G	G				J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	N	N			\vdash
333		0.033	C			+	G	G	G		1		J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	N	N			\vdash
473		0.033					G	G	G				J	J	J	M	J	J	J	J	J	М	J	J		K	K	K	K	N	N			\vdash
563		0.056					G	G	G				J	J	J	M	J	1 3	J	J	J	M	J	J		K	K	K	M	N	N			\vdash
683		0.068				1	G	G	G				J	J	J	М		<u> </u>	J	J	J	М	J	J		K	K	K	M	N	N			\vdash
823		0.082					G	Ğ	Ğ				J	Ĵ	Ĵ	М		1	J	Ĵ	Ĵ	М	J	J		K	K	K	M	N	N			+-
104		0.002	С				G	G	G				J	J	М	М			J	J	J	М	J	J		K	K	K	M	N	N			\vdash
124		0.12	_					Ĭ	Ť				J	J	М	N			J	Ĵ	М	М	-	"		K	K	K	P	N	N			+-
154		0.15				†	<u> </u>				1		М	N	М	N		1	J	J	М	М				K	K	K	P	N	N		 	+-
224		0.22				G							М	N	М	N			J	М	М	Q				М	М	М	P	N	N			+-
334		0.33				Ŭ							N	N	М	N			J	М	P	Q				P	P	P	Q	X	X			\vdash
474		0.47			\vdash	1	<u> </u>	\vdash		<u> </u>	1		N	N	М	N			М	М	P	Q	_			P	P	P	Q	X	X			\vdash
684		0.68					t						N	N	N				M	Q	Q	Q				P	P	Q	X	X	X			\vdash
105		1			\vdash	t	t	\vdash		<u> </u>	1	\vdash	N	N	N	<u> </u>	<u> </u>		M	Q	Q	ō		t	\vdash	P	0	Q	Z	X	X		\vdash	+-
155		1.5				1	t				1				1.7				0	Q	0	<u> </u>				P	ō	Z	Z	X	X			+-
225		2.2			\vdash	\vdash	\vdash	\vdash		<u> </u>	†		<u> </u>	t	1	t	<u> </u>	<u> </u>	ō	Q	Q		t	t		X	Z	Z	Z	Z	Z		\vdash	+-
335		3.3					t			†	1		<u> </u>		+				0	ō	<u> </u>		†			X	Z	Z	Z	Z	1			+-
475		4.7					T			<u> </u>	†		<u> </u>	\vdash	t				ō	Q		t	†			X	Z	Z	Z	Z			\vdash	Z
106		10			1	\vdash	t	1		<u> </u>	1		1	\vdash	1	\vdash	1		٧	<u> </u>		<u> </u>	1	\vdash		Z	Z	'	_				Z	Z
226		22					\vdash			<u> </u>	†		<u> </u>		1						t		†			_	-				+	Z		+-
	WVD		16V	25V	50V	10V	16V	25V	50V	100 V	/ 200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	/200V	250V	500V	16V	25V	50V	100 V	50V	100 V		50V	100 V
	Size			040						03						805						120						210		_	312		2220	
	3126		· ·	J-10.	_				00						_ '	505						120					12	-10		10	, , , _		2220	,

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z	
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
_				PAPER			EMBOSSED								

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features.

HOW TO ORDER

0805	<u>5</u>	<u>C</u>	<u>104</u>	K T	Q 	z 	2	<u>A</u>
Size FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210	Voltage 16V = Y 25V = 3 50V = 5 100V = 1	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF =106	Capacitance Tolerance J = ±5% K = ±10% M = ±20%	Failure Rate A = Commercial 4 = Automotive Q = APS	Terminations Z = FLEXITERMTM *X = FLEXITERMTM with 5% min lead *Not RoHS Compliant	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

FLEXISAFE X7R RANGE

Capacitance Code Soldering WVDC		FS03 = 0603			FS05 = 0805 Reflow/Wave				FS06 = 1206 Reflow/Wave			FS10 = 1210 Reflow Only			
		Reflow/Wave													
		16 25		50 100		100 16	25	50	50 100	16	25	50	16	25	50
102	μF 0.001														
182	0.0018														
222	0.0022														
332	0.0033														
472	0.0047														
103	0.01														
123	0.012														
153	0.015														
183	0.018														
223	0.022														
273	0.027														
333	0.033														
473	0.047														
563	0.056														
683	0.068														
823	0.082														
104	0.1														
124	0.12														
154	0.15														
224	0.22														
334	0.33														
474	0.47		ĺ				1			ĺ	İ				

Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

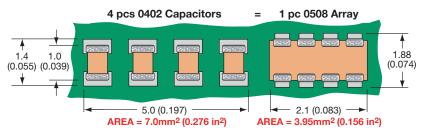
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4×0402 discrete capacitors and of >70% vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

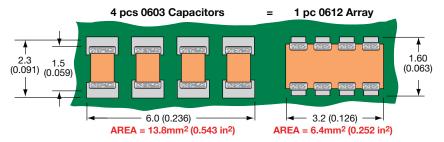
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

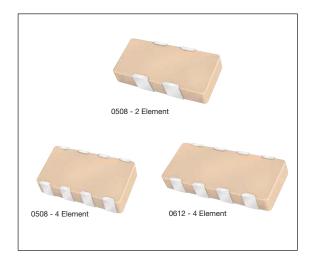
During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

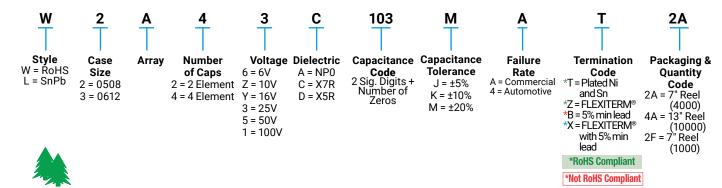

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array

Capacitor Array (IPC)

GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.


AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude 0 -5 -10 -15 S21 mag. (dB) -20 5pF 10pF -25 15pF 22pF -30 33pF 39pF 68pF -35 -40 0.1 0.01 Frequency (GHz)

HOW TO ORDER

RoHS COMPLIANT

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Capacitor Array

Capacitance Range - NP0/C0G

SIZE		W	2 = 05	08	W	3 = 061	12	
# Element	s		4			4		
Soldering		Re	flow/Wa	ave	Re	flow/Wa	ve.	
Packaging			er/Embos			er/Embos		
	mm		1.30 ± 0.1			.60 ± 0.15		
Length	(in.)		051 ± 0.0		(0.063 ± 0.006)			
AAC III	mm		2.10 ± 0.1			3.20 ± 0.20		
Width	(in.)	(0.	083 ± 0.0	06)	(0.	126 ± 0.0	08)	
Max.	mm	•	0.94		Ì	1.35		
Thickness	(in.)		(0.037)			(0.053)		
WVDC		16	25	50	16	25	50	
1R0 Cap	1.0							
1R2 (pF)	1.2							
1R5	1.5							
1R8	1.8							
2R2	2.2							
2R7 3R3	2.7 3.3							
3R9	3.3 3.9							
4R7	3.9 4.7							
5R6	5.6							
6R8	6.8							
8R2	8.2							
100	10							
120	12							
150	15							
180	18							
220	22							
270	27							
330	33							
390	39							
470	47							
560	56							
680	68							
101	82 100							
121	120							
151	150							
181	180							
221	220							
271	270							
331	330							
391	390							
471	470							
561	560							
681	680							
102	820 1000					-		
102	1200							
152	1500							
182	1800							
222	2200							
272	2700							
332	3300					İ		
392	3900					İ		
472	4700							
562	5600							
682	6800							
822	8200							

= Supported Values

Capacitor Array

Capacitance Range - X7R

	SIZE			٧	V2 =	050	8			٧	V2 =	050	8			V	N3 =	061	2	
#	Elements				:	2						4					-	4		
	Soldering			F		v/Wav	e		Reflow/Wave								//Wav			
	Packaging					aper			Paper/Embossed					Paper/Embossed 1.60 ± 0.150						
Lengt	h mı (in			(0		± 0.15 ± 0.00			1.30 ± 0.15 (0.051 ± 0.006)					(0.063 ± 0.006)						
\ A /: - + -	mı			(0		± 0.15			(0.051 ± 0.006) 2.10 ± 0.15					3.20 ± 0.20						
Width	(in	.)		(C		± 0.00	6)		(0.083 ± 0.006)					(0.126 ± 0.008)						
Max.	mı			0.94								94						35		
Thick	ness (in		6	10	(0.0 16	037) 25	50	100	6	10	(0.0	25 25	50	100	6	10	(0.0	25 25	50	100
101	Cap 10		0	10	10	23	30	100	0	10	10	23	30	100	0	10	10	23	30	100
	(PF) 12	- 1		ı																
151	15			_																
181 221	18 22																			
271	27																			
331	33		\top	ヿ																
391	39																			
471 561	56		-	-																
681	68																			
821	82																			
102	100																			
122 152	120 150																			
182	180			-																
222	220	00																		
272	270	_																		
332 392	330 390																			
472	470																			
562	560	_																		
682	680																			
822	820 Cap 0.01		+	\dashv										-						
	(μF) 0.01																			
153	0.01																			
183	0.01																			
223 273	0.02 0.02																			
333	0.03																			
393	0.03																			
473	0.04	_		_								<u> </u>		_						Ш
563 683	0.05 0.06																			
823	0.08											L		L						
104	0.1																			
124 154	0.1																			
184	0.1	_																		Н
224	0.2																			
274	0.2		\perp	4																Ш
334 474	0.3 0.4																			
564	0.2																			
684	0.6	8	\top	\dashv																П
824	0.8																			
105 125		.0	+	\dashv																Н
155		.5																		
185	1	.8																		
225		.2	T	T																
335 475		.3																		
106		0	+	\dashv			_													Н
226		22																		
476		17																		
107	10	00																		

Capacitor Array

Automotive Capacitor Array (IPC)

0508 - 4 Element

0612 - 4 Element

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request.

All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

<u>w</u>	<u>3</u>	<u>A</u>	4	<u>Y</u>	<u>C</u>	104	<u>K</u>	4	<u>T</u>	<u>2A</u>
Style W = RoHS L = SnPb	Case Size 2 = 0508 3 = 0612	Array	Number of Caps	Voltage Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V	Dielectric A = NP0 C = X7R F = X8R	Capacitance Code (In pF) Significant Digits + Number of Zeros e.g. 10µF=106	Capacitance Tolerance *J = ±5% *K = ±10% *M = ±20%	Failure Rate 4 = Automotive	Terminations *T = Plated Ni and Sn *Z = FLEXITERM® B = 5% min lead X = FLEXITERM® with 5% min lead *RoHS Compliant	Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000)

^{*}Contact factory for availability by part number for $K = \pm 10\%$ and $J = \pm 5\%$ tolerance.

NPO/COG

S	SIZE		W2 =	0508			W3 =	0612	
No. of	Elements			4			Reflow	//Wave	
V	VVDC	16	25	50	100	16	25	50	100
1R0 1R2 1R5	Cap 1.0 (pF) 1.2 1.5								
1R8 2R2 2R7	1.8 2.2 2.7								
3R3 3R9 4R7	3.3 3.9 4.7								
5R6 6R8 8R2	5.6 6.8 8.2								
100 120 150	10 12 15								
180 220 270	18 22 27								
330 390 470	33 39 47								
560 680 820	56 68 82								
101 121 151	100 120 150								
181 221 271	180 220 270								
331 391 471	330 390 470								
561 681 821	560 680 820								
102 122 152	1000 1200 1500								
182 222 272	1800 2200 2700								
332 392 472	3300 3900 4700								
562 682 822	5600 6800 8200								

W2 = 0508 W2 = 0508 W3 = 0612 No. of Elements 16 25 50 100 16 25 50 100 10 16 25 50 100 WVDC Cap (pF) 120 151 181 221 150 180 220 271 331 391 270 330 390 471 470 1000 1200 1500 1800 222 2200 392 3900 472 562 682 4700 5600 6800 822 103 123 153 8200 Cap 0 010 (µF) 0.012 0.015 273 333 393 0.039 683 0.068 823 104 124 0.082 0.10 0.12

X7R

LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT

For RoHS compliant products,

*Not RoHS Compliant

= NPO/COG

PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	T	BW	BL	P	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	Т	BW	BL	Р	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	Х	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10	0.18 +0.25	0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010)	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors

Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

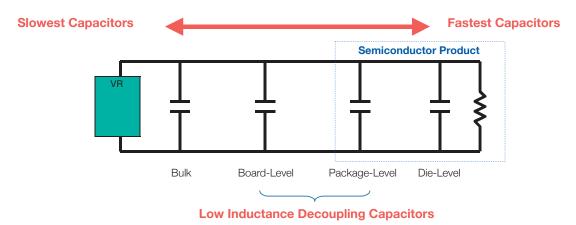


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

Introduction

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA® product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, LICA® products are the best option.

470 nF 0306 Impedance Comparison

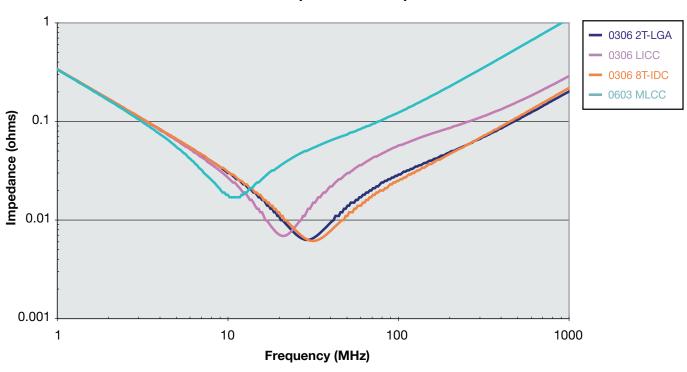
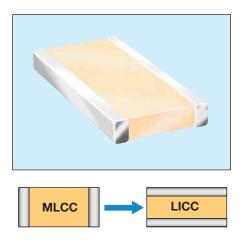


Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

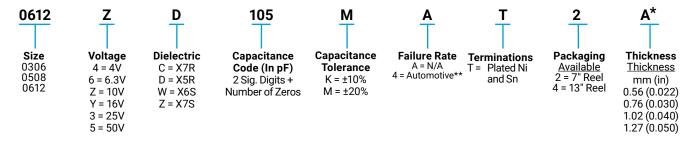

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

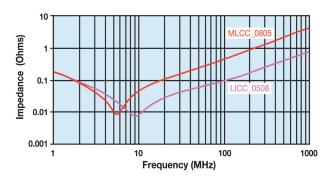
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

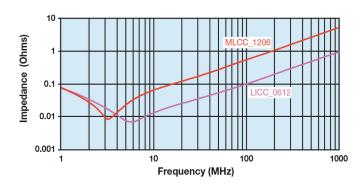
AVX LICC products are available with a lead-free finish of plated Nickel/Tin.



PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation	X7R = -55°C to +125°C
Temperature Range	X5R = -55°C to +85°C
remperature kange	X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance	$100,000$ M Ω min, or $1,000$ M Ω per μF
(@+25°C, RVDC)	min.,whichever is less


HOW TO ORDER



^{*}See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

^{**}Select voltages for Automotive version, contact factory

Low Inductance Ceramic Capacitors

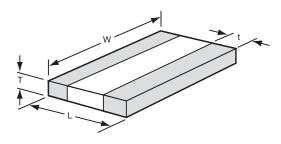
LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

S	SIZE			0306	<u> </u>			(0508	3				0612	2		
Pac	kaging		Er	nboss	ed			En	nboss	ed			En	nboss	ed		
Length	mm (in.)		(0.03	31 + 0. 32 ± 0.	006)			1.27 + 0.25 (0.050 ± 0.010)					1.60 + 0.25 (0.063 ± 0.010)				
Width	mm (in.)		1.60 + 0.15 (0.063 ± 0.006)						00 + 0. 30 ± 0.				3.20 + 0.25 (0.126 ± 0.010)				
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50	
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	V	
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	٧	
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧	
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧	
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧	
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧	
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W	
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W	
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W	
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W	
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W	
104	0.1		Α	Α	M		S	S	٧	Α	Α	S	S	S	٧	W	
154	0.15		Α	Α			S	S	٧			S	S	S	W	W	
224	0.22		Α	Α			S	S	Α			S	S	٧	W		
334	0.33						٧	٧	Α			S	S	٧			
474	0.47						٧	٧	/N/			S	S	٧			
684	0.68						Α	Α				٧	٧	W			
105	1	A					Α	Α				V	٧	Α			
155	1.5						/N/					W	W				
225	2.2											Α	Α				
335	3.3											//					
475	4.7																
685	6.8																
106	10														İ		

Solid = X7R

mm (in.)

0306


Code Thickness

A 0.56 (0.022)

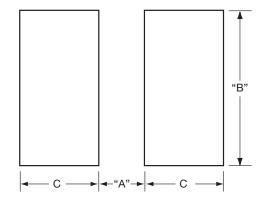
	mm (in.)				
	0508				
Code	Thickness				
S	0.56 (0.022)				
V	0.76 (0.030)				
Α	1.02 (0.040)				

	mm (in.)				
	0612				
Code	Thickness				
S	0.56 (0.022)				
V	0.76 (0.030)				
W	1.02 (0.040)				
Α	1.27 (0.050)				

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
0206	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0308	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

mm (in.)

			111111 (111.)
Size	Α	В	С
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"

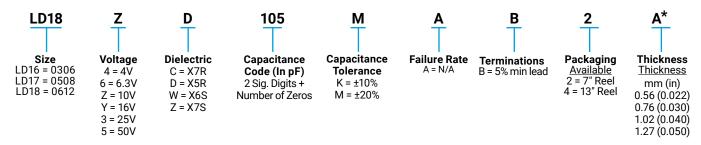
GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

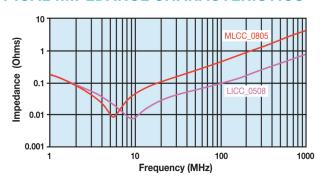
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues

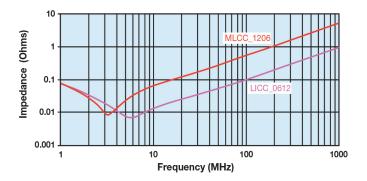


PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

*Not RoHS Compliant


HOW TO ORDER



*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

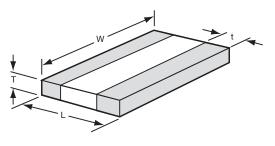
TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"

S	SIZE		LD (03					LD17 0508					LD18 0612		
Pac	kaging		Embo			Embossed				Embossed					
Length	mm (in.)	(0.81 ±		 5)		(0.05	27 ± 0. 50 ± 0.	010)				0 ± 0.		
Width	mm (in.)		1.60 ± 0.063 ±		5)			00 ± 0. 30 ± 0.					0 ± 0. 26 ± 0.		
Cap Code	WVDC	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
222	(μF) .0022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
332	0.0033	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
472	0.0047	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
682	0.0068	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
103	0.01	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	V
153	0.015	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033	Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047	Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068	Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1	Α	Α	//		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15	Α	Α			S	S	٧			S	S	S	W	W
224	0.22	Α	Α			S	S	Α			S	S	٧	W	
334	0.33					٧	٧	Α			S	S	٧		
474	0.47					٧	٧	/M //			S	S	٧		
684	0.68					Α	Α				V	>	W		
105	1					Α	Α				V	>	Α		
155	1.5										W	W			
225	2.2										Α	Α			
335	3.3										//				
475	4.7														
685	6.8														
106	10														

Solid = X7R



mm (in.)			
LD16			
(0306)			
Code	Thickness	l	
Α	0.56 (0.022)		

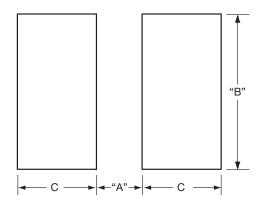
mm (in.)				
	LD17			
((0508)			
Code	Thickness			
S	0.56 (0.022)			
V	0.76 (0.030)			
Α	1.02 (0.040)			

mm (in.)				
	LD18			
(0612)				
Code	Thickness			
S	0.56 (0.022)			
V	0.76 (0.030)			
W	1.02 (0.040)			
Α	1.27 (0.050)			

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

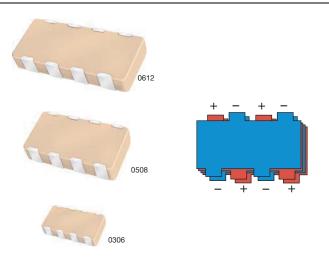
mm (in.)

Size	Α	В	С
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

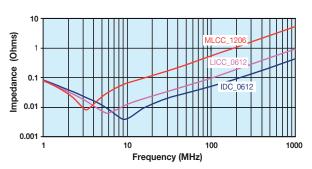
IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

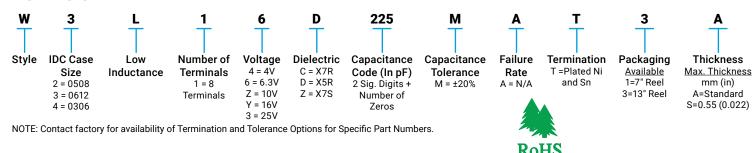
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on $0.13\mu, 90nm, 65nm,$ and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead-free finish of plated Nickel/Tin.

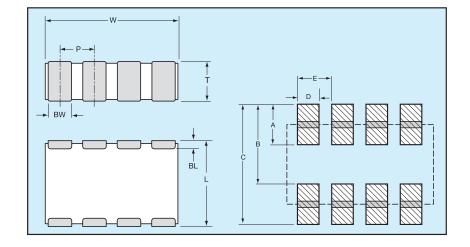
TYPICAL IMPEDANCE

HOW TO ORDER

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (RoHS)

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Th	nin 06	12		W	3 = 06	512		W3	= TH	ICK 0	612
Max. mm Thickness (in.)		55 (22)			0.55. (0.022					0.95 (0.037	`				.55 022)			0.95 (0.037)			1.22 (0.048)				
WVDC	4	6.3	4	6.3		16	25	4	6.3			25	4	6.3		16	4	6.3	10	16	25	4	6.3		16
Cap 0.010 (μF)								-					-												
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

SIZE	W	L	BW	BL	Р
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

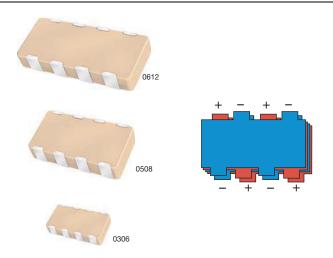
PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	E
0306	0.38 (0.015)	0.89 (0.035)	1.27 (0.050)	0.20 (0.008)	0.40 (0.015)
0508	0.64 (0.025)	1.27 (0.050)	1.91 (0.075)	0.28 (0.011)	0.50 (0.020)
0612	0.89 (0.035)	1.65 (0.065)	2.54 (0.010)	0.45 (0.018)	0.80 (0.031)

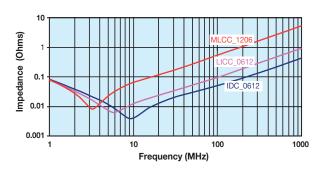
IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on $0.13\mu, 90nm, 65nm,$ and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

TYPICAL IMPEDANCE

HOW TO ORDER

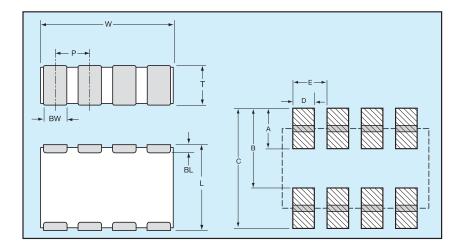
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

*Not RoHS Compliant

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Th	nin 06	12		W3	3 = 00	512		W3	= TH	ICK 0	612
Max. mm Thickness (in.)					0.55. (0.022					0.95 (0.037	`				.55 022)			0.95 (0.037)						22 (48)	
WVDC (III.)	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (μF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

SIZE	W	L	BW	BL	Р
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0500	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DIMENSIONS

SIZ	ZE	Α	В	C	D	E
03	06	0.38 (0.015)	0.89 (0.035)	1.27 (0.050)	0.20 (0.008)	0.40 (0.015)
05	80	0.64 (0.025)	1.27 (0.050)	1.91 (0.075)	0.28 (0.011)	0.50 (0.020)
06	12	0.89 (0.035)	1.65 (0.065)	2.54 (0.010)	0.45 (0.018)	0.80 (0.031)

LGA Low Inductance Capacitors

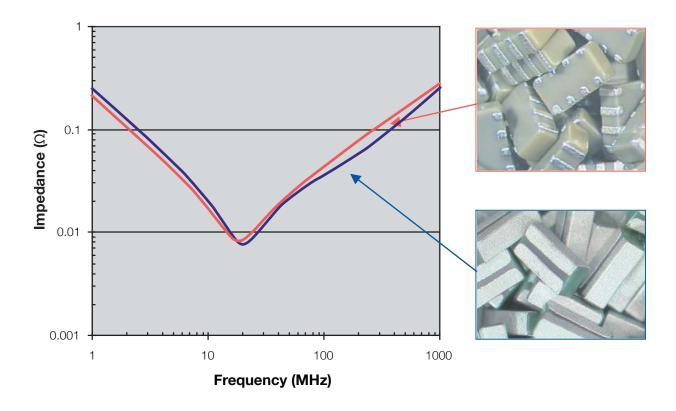
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- · Better solder joint reliability

APPLICATIONS

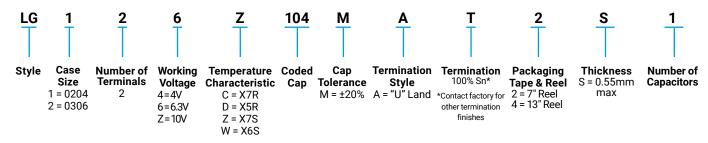

Semiconductor Packages

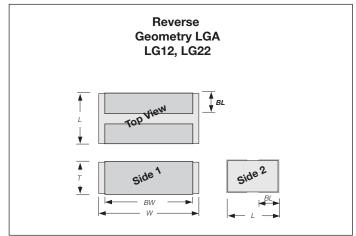
- · Microprocessors/CPUs
- · Graphics Processors/GPUs
- · Chipsets
- FPGAs
- ASICs

Board Level Device Decoupling

- · Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- · Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC


LGA Low Inductance Capacitors



SIZE		L	G12 (0204	!)					LG2	2 (03	306)			
Length mm (in.)		0.50 (0.020)					0.76 (0.030)								
Width mm (in.)			1.00 (0	0.039)			1.60 (0.063)								
Temp. Char.	X5R	(D)	X7S	(Z)	X6S	(W)	Х	7R (C	;)	X5R	(D)	X7S	(Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
		= X7	R		= X5	R		= X7	S		= X6	S			

HOW TO ORDER

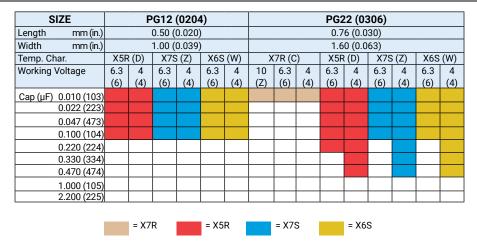
PART DIMENSIONS

MM (INCHES)

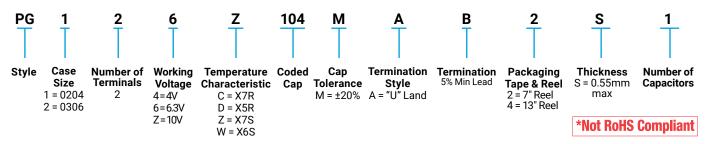
Series	L	W	Т	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

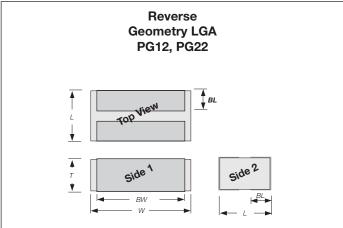
RECOMMENDED SOLDER PAD DIMENSIONS

Series	PL	PW1	G
LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)



MM (INCHES)


LGA Low Inductance Capacitors



0204/0306 Land Grid Array - Tin/Lead Termination "B"

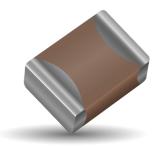
HOW TO ORDER

PART DIMENSIONS

MM (INCHES)

Series	L	W	Т	BW	BL
PG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS MM (INCHES)



Series	PL	PW1	G
PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

AT Series - 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "down-hole" oil exploration and aerospace programs.

HOW TO ORDER

AT10	3	Т	104	K	Α	Т	2	Α
	T	T		T	T	T	T	T
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
Style	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT03 = 0603	16V = Y	PME	+ no. of zeros)	$J = \pm 5\%$		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT05 = 0805	25V = 3	C0G 250°C = A	101 = 100pF	$K = \pm 10\%$		(RoHS Compliant)	9 = Bulk	
AT06 = 1206	50V = 5	COG 200°C = 2	102 = 1nF	$M = \pm 20\%$		7 = Ni/Au Plated		
AT10 = 1210		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT12 = 1812		VHT 200°C = 4	104 = 100nF			COG Only)		
AT14 = 2225		BME	105 = 1μF			•		
		C0G 250°C = 5	·					
		COG 200°C = 3						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME C0G 0±30ppm/°C, -55C to 250°C BME C0G 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C

VHT: T $\pm 15\%$, -55°C to +150°C

See TCC Plot for +250°C

Capacitance Test (MIL-STD-202, Method 305)

 25° C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

C0G: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Insulation Resistance 25°C (MIL-STD-202, Method 302)

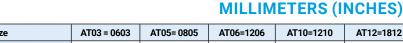
100GΩ or 1000MΩ- μ F (whichever is less)

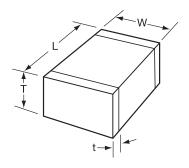
Insulation Resistance 125°C (MIL-STD-202, Method 302)

 $10G\Omega$ or $100M\Omega\text{-}\mu\text{F}$ (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302)

 $1G\Omega$ or $10M\Omega$ -μF (whichever is less)

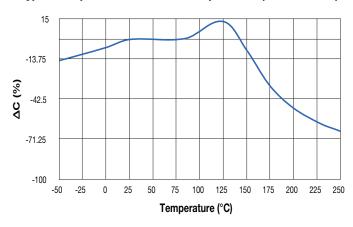

Insulation Resistance 250°C (MIL-STD-202, Method 302)


100MΩ or 1MΩ- μ F (whichever is less)

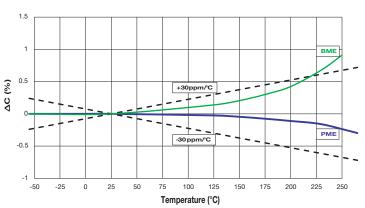
Direct Withstanding Voltage 25°C (Flash Test)

250% rated voltage for 5 seconds with 50mA max charging current

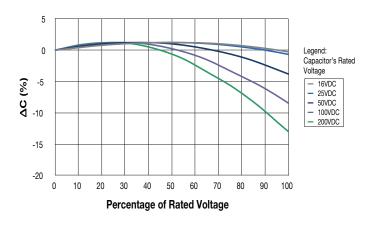
DIMENSIONS

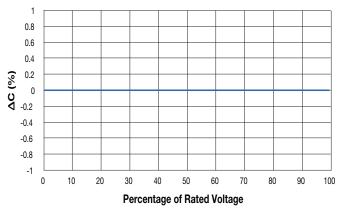

Size	AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(L) Length	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickness Max.	1.02 1.30		1.52	1.70	2.54	2.54
	(0.040) (0.051)		(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)

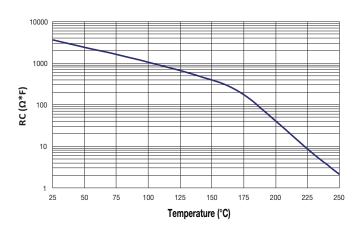
AT Series - 200°C & 250°C Rated

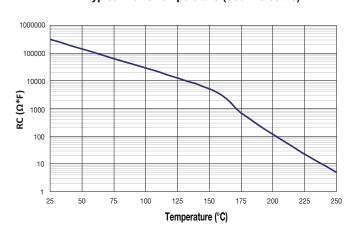


PERFORMANCE CHARACTERISTICS


Typical Temperature Coefficient of Capacitance (VHT Dielectric)

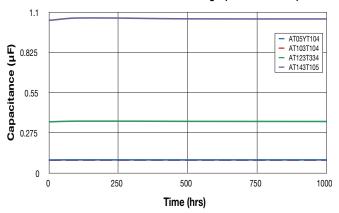

Typical Temperature Coefficient of Capacitance (COG Dielectric)


Typical Voltage Coefficient of Capacitance (VHT Dielectric)


Typical Voltage Coefficient of Capacitance (COG Dielectric)

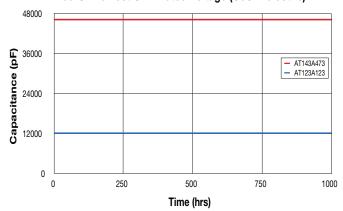
Typical RC vs Temperature (VHT Dielectric)

Typical RC vs Temperature (COG Dielectric)



AT Series - 200°C & 250°C Rated

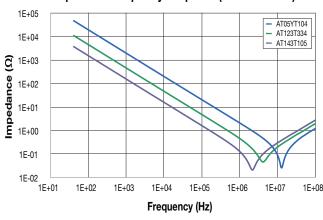
RELIABILITY



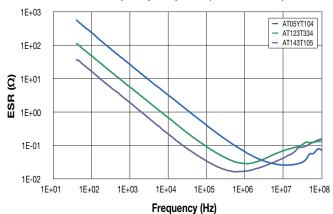
VHT - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C) 50% Rated Voltage 100% Rated Volta									
200	0.002	0.017							
250	0.026	0.210							

^{*}Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

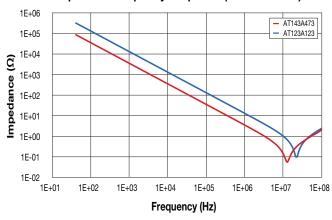
250°C Life Test @ 2x Rated Voltage (C0G Dielectric)



COG - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C) 50% Rated Voltage 100% Rated Voltage									
200	0.006	0.047							
250 0.074 0.590									


^{*}Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

FREQUENCY RESPONSE


Impedance Frequency Response (VHT Dielectric)


ESR Frequency Response (VHT Dielectric)

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (COG Dielectric)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

V	ΉΤ	To	emp. Coeffi	cient:	4	200°C	Rate	d			
(Case S	ize	AT03 = 0603)5 = :05		06 = 106	ı	10 = 10	AT12 = 1812	AT14 = 2225
-;	Solderi	na	Reflow/Wave		//Wave		//Wave		v Only	Reflow Only	Reflow Only
		mm	1.60±0.15	2.01 :	±0.20	3.20:	±0.20	3.20:		4.50±0.30	5.72±0.25
Ĺ		(in.)	(0.063±0.006)	(0.079	,		±0.008)		±0.008)	(0.177±0.012)	(0.225±0.010)
(W)	Width	mm (in)	0.81 ± 0.15		±0.20		± 0.20	2.50:		3.20±0.20	6.35±0.25
(T) 1	Thickness	(in.) mm	(0.032±0.006) 1.02	(0.049 :			±0.008) 52		±0.008) 70	(0.126±0.008) 2.54	(0.250±0.010) 2.54
(1)	I I II CNI ICOO	(in.)	(0.040))51)		<u>32</u> 060)	(0.0		(0.100)	(0.100)
(t) 1	Terminal	min	0.25(0.010)	0.25(0.010)	0.25(0.25 (0.010)	0.25 (0.010)
.,		max	0.75 (0.030)	0.75(0.75(0.030)	0.75(1.02 (0.040)	1.02 (0.040)
Ra	ted Temp	o. (°C)	200	20	00	2	00	20	00	200	200
Ter	np. Coef	ficeint	4	4	4		4	4	4	4	4
١	/oltage	(V)	25	25	50	25	50	25 50		50	50
Cap	1000	102									
(pF)	1200	122									
	1500	152									
	1800	182									
	2200	222									
	2700	272									
	3300	332									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
Сар	0.010	103									
(μF)	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
	0.033	333									
	0.039	393									
	0.039	473									
	0.056	563									
	0.068	683									
	0.008	823									
	0.100	104									
	0.100	124									
	0.120	154									
	0.130	184					<u> </u>				
	0.180	224	<u> </u>								
	0.220	274									
	0.270	334			l 1				 		
	0.330	394							<u> </u>		
	0.390	394 474			 				 		
		-									
	0.560	564						\vdash	\vdash		
	0.680	684			 		-	 			
	0.820	824						_			
_	1.000	105	25	25	EO	25	EO	25	EO	EO	E0
-	/oltage	<u> </u>	25	25	50	25	50	25	50	50	50
Ka	ted Temp	J. (°C)	200 AT03 =)5 =		00 06 =		00 0 =	200 AT12 =	200 AT14 =
(Case S	ize	0603		05 =		.06 .06		10 =	1812 = 1812	2225

	Case	Size	AT03 = 0603	AT(08)5 = 05		06 = 206	AT1		AT12 = 1812	AT14 = 2225
	Solde	rina	Reflow/Wave		/Wave	Reflov	v/Wave	Reflov	v Only	Reflow Only	Reflow Only
(L) I	Length	mm	1.60±0.15	2.01:			±0.20	3.20:		4.50±0.30	5.72±0.25
,	. 3.	(in.)	(0.063±0.006)	(0.079			±0.008)	-	± 0.008)	(0.177±0.012)	(0.225±0.010
(W)	Width	mm	0.81±0.15	1.25:	±0.20	1.60	±0.20	2.50:	0.20	3.20±0.20	6.35±0.25
		(in.)	(0.032±0.006)	(0.049			±0.008)		£0.008)	(0.126±0.008)	(0.250±0.010
T(T)	Thickness	mm	1.02	1.			52	1.		2.54	2.54
		(in.)	(0.040))51)		060)	(0.0		(0.100)	(0.100)
t) I	Terminal	min max	0.25(0.010)	0.25(0.010)	0.25(0.25 (0.010)	0.25(0.010)
_	Data d Tax		0.75 (0.030) 250	0.75(0.030)	0.75(0		1.02 (0.040) 250	1.02 (0.040) 250
	Rated Ter			250 T		_	50	25			
_	emp. Co		T				Т		Г	T	T
	Voltag	e (V)	16	16	25	16	25	16	25	25	25
ap no	1000	102									
pF)	1200	122									
	1500	152									
	1800	182									
	2200	222									
	2700	272									
	3300	332									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
ap	0.010	103									
JF)	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
	0.033	333									
	0.039	393									
	0.039	473									
	<u> </u>										
	0.056	563									
	0.068	683									
	0.082	823									
	0.100	104									
	0.120	124									
	0.150	154									
	0.180	184									
	0.220	224									
	0.270	274									
	0.330	334									
	0.390	394									
	0.470	474									
	0.560	564									
	0.680	684									
	0.820	824									
	1.000	105						\vdash	\vdash		
_			16	16	25	16	25	16	25	25	25
,	Voltag					_					
	Rated Ter	пр. (~С)	250 AT03 =		50)5 =		50)6 =	AT1	0 -	250 AT12 -	250
	Case	Size	0603		າວ = 05		.06 .06		10 = 10	AT12 = 1812	AT14 = 2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

B	ME	CO	G Tem	p. Coefficie	nt: 4 200	O°C Rated			
C	ase Si	ze	AT03:	=0603	AT05	=0805	AT06:	=1206	
5	Solderin	na	Reflow	//Wave	Reflov	v/Wave	Reflow	/Wave	
	ength	mm	1.60:	±0.15	2.01	±0.20	3.20±0.20		
64		(in.)		±0.006)		±0.008)	(0.126±0.008)		
(W)	Width	mm (in.)		±0.15 ±0.006)		±0.20 ±0.008)	1.60: (0.063:		
(T) T	hickness	mm		02		30	1.		
.,		(in.))40)		051)	(0.0)		
(t) T	erminal	min	0.25(0.010)	0.25(
Dat	ed Temp	max (0C)		0.030)	=	0.030)	0.75().030)).030)	
Rdl	Temp.	('0)							
(Coefficei	nt	;	3		3	3	3	
٧	oltage (V)	25	50	25	50	25	50	
Cap	39	390							
(pF)	47	470							
	56	560							
	68	680							
	82	820							
	100	101							
	120	121							
	150	151							
	180	181							
	220	221							
	270	271							
	330	331							
	390	391							
	470	471							
	560	561							
	680	681							
	820 1000	821 102							
	1200	122							
	1500	152							
	1800	182							
	2200	222							
	2700	272							
l	3300	332							
	3900	392							
İ	4700	472							
	5600	562							
	6800	682							
L_I	8200	822							
Cap	0.010	103							
(μF)	0.012	123							
	0.015	153							
	0.018	183							
	0.022	223							
	0.027	273							
	0.033	333							
	0.039	393							
	0.047	473							
	0.056	563							
	0.068	683 823							
		-							
1		104	0.5	50	0.5	50	0.5		
V	'oltage (י וע	25		25	50	25	50	

Case S	Size	AT03=0603	AT05=0805	AT06 = 1206
Solde		Reflow/Wave	Reflow/Wave	Reflow/Wave
L) Length	mm (in.)	1.60±0.15	2.01 ± 0.20	3.20±0.20
(A) (A): Jal-	` ′	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
(W) Width	(in.)	0.81±0.15 (0.032±0.006)	1.25±0.20 (0.049±0.008)	1.60±0.20 (0.063±0.008)
T)	mm	1.02	1.30	1.52
Thickness	(in.)	(0.040)	(0.051)	(0.060)
t)	min	0.25(0.010)	0.25(0.010)	0.25(0.010)
	max	0.75 (0.030)	0.75(0.030)	0.75 (0.030)
Rated Ten		250	250	250
Tem				
Coeffic		5	5	5
Voltage	e (V)	25	25	25
ap 39	390			
pF) 47	470			
	-			
56	560			
68	680			
82	820			
100	101			
120	121			
150	151			
_	-			
180	181			
220	221			
270	271			
330	331			
390	391			
470	471			
<u> </u>	-			
560	561			
680	681			
820	821			
1000	102			
1200	122			
1500	152			
1800	182			
_	-			
2200	222			
2700	272			
3300	332			
3900	392			
4700	472			
5600	562			
6800	-			
_	-			
8200	-			
O.010				
0.012	_			
0.015	153			
0.018	183			
0.022	-			İ
0.027	-			
0.027	-			
	_			-
0.039	-			
0.047	473			
0.056	563			
0.068	683			
0.082	_			
0.100	-			
Voltage		25	25	25
Rated Ten		250	250	250
www ICII	η· (U)			
Case	0:	AT03=0603	AT05=0805	AT06=1206

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

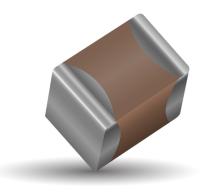
AT06=1206

AT05=0805

AT03=0603

Case Size

AT Series - 200°C & 250°C Rated


CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

PI	ME	CO	G Temp.	Coefficient: 2	200°C Ra	ted		PI	ME	CO	G Temp.	Coefficient: A	250°C Ra	ted	
C	ase Si	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225	C	ase S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
S	Solderi	na	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only	S	Solderi	na	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
		mm	2.01 ± 0.20	3.20±0.20	3.20±0.20	4.50±0.30	2.75±0.25			mm	2.01 ± 0.20	3.20±0.20	3.20±0.20	4.50±0.30	2.75±0.25
(L) L	ength	(in.)	(0.079±0.008)	(0.126±0.008)	(0.126±0.008)	(0.177±0.012)	(0.225±0.010)	(L) L	ength	(in.)	(0.079±0.008)	(0.126±0.008)	(0.126±0.008)	(0.177±0.012)	(0.225±0.010)
(w) v	Width	mm	1.25±0.20	1.60±0.20	2.50±0.20	3.20±0.20	6.35±0.25	(W) \	Width	mm	1.25±0.20	1.60±0.20	2.50±0.20	3.20±0.20	6.35±0.25
(,		(in.) mm	(0.049±0.008) 1.30	(0.063±0.008) 1.52	(0.098±0.008) 1.70	(0.126±0.008) 2.54	(0.250±0.010) 2.54	(,		(in.) mm	(0.049±0.008) 1.30	(0.063±0.008) 1.52	(0.098±0.008) 1.70	(0.126±0.008) 2.54	(0.250±0.010) 2.54
(T)Th	hickness	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(T) Th	hickness	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(+) T.	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25(0.010)	0.25(0.010)	0.25 (0.010)	(+) T.	erminal	min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
٠,		max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)	. ,		max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
	ted Temp		200	200	200	200	200		ted Temp		250	250	250	250	250
	mp. Coeff		2	2	2	2	2		mp. Coef		A	Α	A	A	Α
<u> </u>	Voltage (50	50	50	50	50	\	Voltage		25	25	25	25	25
l		101							100	101					ļ
	120								120	121					
	150	151							150	151					
	180	181							180	181					
	220	221							220	221					
	270	271							270	271					
	330	331							330	331					
	390	391							390	391					
	470	471							470	471					
	560	561							560	561					
,	680	681						_	680	681					
Cap (pF)	820	821						Cap (pF)	820	821					
(pr)	1000	102							1000	102					
	1200	122							1200	122					
	1500	152							1500	152					
1	1800								1800						
1	2200	222							2200	222					
	2700								2700	272					
1	3300 3900								3300						
		392							3900	392	 				
	4700 5600		ļ						4700						
1	6800	682							5600 6800						
l	8200				-				8200						
\vdash	0.010				 			_	0.010						
l	0.010								0.010						
l	0.012				 				0.012						
l	0.013				 				0.013		l		 		
l	0.018				 	 			0.018						
l	0.022				 	1			0.022	273					
Сар	0.027				 	1		Cap	0.027	333					
(μF)	0.033							(µF)	0.039						
ı	0.039				†	<u> </u>			0.039		i		i		
l	0.056				i	i			0.056		i		i		
l	0.068				i	i			0.068		1		 		
ı	0.000				-	1			0.000		1		1		
l	0.100				i	i			0.100		i		i		
V	oltage		50	50	50	50	50	V	oltage		25	25	25	25	25
	ed Temp		200	200	200	200	200		ed Tem		250	250	250	250	250
U	ase Si	ze	A105 = 0805	AT06 = 1206	AI IU = 1210	A112 = 1812	A114 = 2225		ase S	ıze	A105 = 0805	AT06 = 1206	AI 10 = 1210	A112 = 1812	A1 14 = 2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

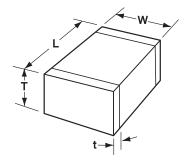
For 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)

NEW 630V RANGE


HOW TO ORDER

1808	A 	A 	<u>271</u>	<u>M</u>	<u>A</u>	1	<u>2</u>	<u>A</u>
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient NPO (COG) = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF = 105	Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%		Termination ² 1 = Pd/Ag T = Plated Ni and Sn (RoHS Compli	1 or 2 = 7" Reel** 3 or 4 = 13" Reel	Special Code A = Standard

*Note: Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

^{***} AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

MILLIMETERS (INCHES)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.72 ± 0.25	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	2.54	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.100)	(0.100)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

^{**}The 3640 Style is not available on 7" Reels.

For 600V to 5000V Applications

NPO (COG) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max, current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

	mm (in.) mm (in.) mm (in.) mm (in.) mm (in.)	2.1 (0.08 1.2 (0.04 (0.04 0.5 (0.02	low/W 10 ± 0 35 ± 0 25 ± 0 49 ± 0 1.35 (0.053 50 + 0 630 A A A A A A	.20 .008) .2 0 .008) .20 .008) 1000 C C C		3.3 (0.13 1.60 - 0.063 + (0.0 630	1.80 0.071 0 + 0. 4 + 0.	30 012) /-0.10 /-0.00) 20 008)		600	(0	0.098 2. (0.75 0.75 (.030	+ 0.40 + 0.01 + 0.30 + 0.01 80 110) + 0.35	6)				(0	4.60 - 4.60 - 1.181 - 2.00 - 1.079 -	+ 0.50 + 0.02 + 0.20 + 0.00	0)					(0	Reflow 4.60 + 0.177 + 3.20 + 0.126 + 2.8 (0.1	- 0.50 - 0.012 - 0.30 - 0.008 30 00)	2)		
W) Width (T) Thickness (t) Terminal Voltage (V	(in.) mm (in.) (in.) mm (in.) mm (in.) vy 5 0R5 1.0 1R0 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2.7 2R7 3.3 3R3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 100 100 100 100 100 100 100 100	(0.08 1.2 (0.04 (0.02 600 A A A A A A A	35 ± 0 25 ± 0. 49 ± 0 1.35 (0.053 50 + 0 20 + 0 630 A A A A A	.008) .2 0 .008) .20 .008) 1000 C C C C	600 X X	(0.13 1.60 - 0.063 + (0.0 630	30 + 0. +0.30/ -0.012 1.80 -0.071 50 + 0. 4 + 0.1	012) /-0.10 /-0.00) 20 008)		600	(0	2.50 0.098 2. (0. 0.75 (.030	+ 0.01 + 0.30 + 0.01 80 110) + 0.35	6) 2)				(0	2.00 - 2.079 - 2.079 -	+ 0.02 + 0.20 + 0.00 20	0)					(0	3.20 + 3.20 + 3.126 + 2.8	- 0.012 - 0.30 - 0.008 30 00)			
(T) Thickness (t) Terminal Voltage (V Cap (pF)	(in.) mm (in.) mm (in.) mm (in.) y) 5 OR5 1.0 1R0 1.2 1R2 1.5 1R5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 120 120 120 120	(0.04 (0.02 600 A A A A A A	49 ± 0 1.35 (0.053 50 + 0 20 + 0 630 A A A A A A	.008) 3) .20 .008) 1000 C C C C C C	600 X X	0.63 + 0.6 (0.0 630	0.012 1.80 0.071 0 + 0. 4 + 0.0	/-0.00) 20 008)		600	(0	0.098 2. (0.75 0.75 (.030	+ 0.01 80 110) + 0.35	2)					.079 - 2.:	+ 0.00 20							1.126 + 2.8	- 0.008 30 00)	3)		
(t) Terminal Voltage (V Cap (pF)	mm (in.) y) .5 0R5 1.0 1R0 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	0.5 (0.02 600 A A A A A A A	1.35 (0.053 50 + 0 20 + 0 630 A A A A A A A	3) .20 .008) 1000 C C C C	600 X X	0.6 (0.0 630	1.80 0.071 0 + 0. 4 + 0.) 20 008)		600		2. (0.75 (.030	80 10) + 0.35						2.	20	-,						2.8	30 00)	,		
(t) Terminal Voltage (V Cap (pF)	mm (in.) 3.5 0R5 1.0 1R0 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 100	0.5 (0.02 600 A A A A A A A	630 + 0 630 A A A A A A A A A	.20 .008) 1000 C C C C C	X	0.6 (0.0 630	0 + 0. 4 + 0.	20 008)	2000	600		0.75	+ 0.35														(0.1				
Voltage (V Cap (pF)	(in.) √y √y − 5 0R5 1 0	(0.02 600 A A A A A A A	20 + 0 630 A A A A A A A	.008) 1000 C C C C C	X	(0.0 630 X	4 + 0.0	(800	2000	600		(.030)							<u>(0.0</u> 0.75 -								0.75 +	- 0 35			
Cap (pF)	.5 0R5 1.0 1R0 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A A A A	A A A A A A A	C C C C C	X	X	1000	1500	2000	600	630		0.014)					(.030)	0.014							(.030)	0.014)			
	1.0 1R0 1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A A A	A A A A A A	C C C C		X	V					1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
	1.2 1R2 1.5 1R5 1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A A A	A A A A A	C C C		X	V																							\rightarrow	
	1.8 1R8 2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 6.8 6R8 8.2 8R2 10 100 12 120	A A A A A	A A A A	C C		X	l v																							\Box	\equiv
	2.2 2R2 2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A A A	A A A	C			-	X	X																					\rightarrow	—
	2.7 2R7 3.3 3R3 3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A A	A A	С		X	X	X	X								С	С		С		С	С							\dashv	
	3.9 3R9 4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A	Α		Х	Х	Х	Χ	Χ								С	С	С	С	С	С	С							=	\equiv
	4.7 4R7 5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A A A		C	X	X	X	X	X								C C	C	СС	C	C	C	၁၁						\vdash	\rightarrow	—
	5.6 5R6 6.8 6R8 8.2 8R2 10 100 12 120	A		C	X	X	X	X	X								С	C	C	С	C	C	C							\dashv	
	8.2 8R2 10 100 12 120		Α	С	Х	Х	Х	Χ	Х								С	С	С	C	С	С	С							=	\equiv
	10 100 12 120		A	C	X	X	X	X	X		_	_	<u> </u>				C C	C	СС	C	C	C	ဂဂ			<u> </u>		_	$\vdash\vdash\vdash$		
	12 120	A	A	C	X	X	X	X	X	С	М	М	D	М	F	С	С	C	C	С	C	C	С	С	С	С	С	С	С	С	Е
	15 150	Α	Α	С	Х	Х	Х	Х	Х	C	М	М	D	М	F	С	С	С	С	С	С	С	С	С	C	C	C	C	C	C	Е
	18 180	A	A	C	X	X	X	X	X	C	M	M	D D	M	F	С	C C	00	C	C	СС	C	ဂဂ	C	C C	C	С	C	C	C	E F
	22 220	A	A	C	X	X	X	X	X	С	М	М	D	M	F	C	С	C	C	C	C	С	Е	C	C	C	C	C	C	C	Ē
	27 270	Α	Α	С	Х	Х	Х	Χ	Х	С	М	М	D	М	F	С	С	С	С	С	С	С	Е	С	С	С	С	F	С	С	E
	33 330 39 390	A	A	C	X	X	X	D D	M	C	M	M	D D	M	F	C	C	C	СС	C	C	C	F	C	C C	C	С	F	C	C C	E F
	47 470	A	A	C	X	X	Ĉ	D	M	C	M	M	D	M	F	C	C	C	C	C	C	С	C	C	C	C	С	F	C	С	E
	56 560	Α	Α	С	Х	Х	С	С	С	С	М	М	С	С	F	С	С	С	С	С	С	С		С	С	С	С	F	С	С	F
	68 680 82 820	A X	A X	C X	X	X	C	C	C	C	M	M	C	C	F	С	C C	00	C	C	СС	C		C	C C	C	С	F	C	C	F
	100 101	X	X	X	X	X	C	C	C	С	M	C	C	C	F	C	С	C	С	С	F	F		C	C	C	С	F	C	С	F
	120 121	С	С	С	Х	Х	С	Е	Е	С	М	С	С	С	F	С	С	С	С	С	F	F		С	С	С	С	F	С	С	G
	150 151 180 181	C	C	C	X	X	C E	E	E	C	M	C E	E	E	H H	C	C C	00	F	F	F	F		С	C C	C	С	F	C F	C F	G
	220 221	C	C	C	X	X	E	E	E	C	M	E	E	E	F	C	С	С	F	F	F	F		C	C	C	C	F	F	F	
	270 271	С	С	С	С	М	E	Е	Е	С	М	Е	Ē	Е	G	С	F	С	F	F	F	F		С	С	С	С	F	F	F	
	330 331	C	C	C	C	M	E F	E	E	С	M	E	E	E		C	F	F	F	F	F	F		C	C C	C	F	F	F	F	-
	390 391 470 471	C	C	C	C	M	E	E	E	C	M	E	E	E		C	F	F	F	F	F	F		C	C	C F	F	F	F	F	
	560 561	С	С		С	С	Е			С	М	Е	Е	Е		С	F	F	F	F		F		С	С	F	F	F	F	F	\equiv
	680 681 750 751	C	C		C E	C E	E			C	M	E	F G	E		С	F	F	F	F				C	C C	F	F	F	G	G G	—
	820 821	C	C		E	E	E			C	M	E	G	E		C	F	F	E	F				C	C	F	F	F	G	G	
10	000 102		С		Е	Е	Е			С	С	Е	F	F		С	F	F	Е	F				С	С	F	F	F	G	G	\equiv
	200 122500 152		C		E	E	Е			C	C	E F		F G		C E	F	F	Е	F				С	C C	F	E	E F	\sqcup	\dashv	
	800 182		C		E	E				C	C	G		G		E	F	F		F				C	C	F	G	F	\vdash	\dashv	
2:	2200 222		C		E	Е				Е	С	G				E	F	F						С	С	Ē	G	G		=	=
	2700 272 3300 332	_	<u> </u>	_	E	E	_	<u> </u>		E	C	G	_			E	F	F						C	C C	F	G	G G	$\vdash \vdash$		
	3900 392				_	E				E	C	G				Ē	F							C	C	F		G		\dashv	
4	700 472					E				E	С					E	F							С	С	Ğ				ightharpoonup	=
	600 562 800 682	<u> </u>	\vdash	_	-	Е	<u> </u>	<u> </u>		Е	E	_	\vdash	-		E	F	$\vdash\vdash$			\vdash			C	C C	G		<u> </u>	$\vdash\vdash\vdash$		
	200 822				 						F						F	\vdash						E	C				\vdash	\dashv	
Cap (μF) 0.0	.010 103										F						F							Ē	С					=	=
	.012 123 .015 153	_	<u> </u>	_	_	-	<u> </u>	<u> </u>			G		<u> </u>					\vdash						F G	F G	_		_	$\vdash\vdash\vdash$		
	.018 183				\vdash																			G	G					\dashv	
0.0	.022 223																								F					\equiv	
	027 273																								G				\square	\dashv	_
	.033 333 .047 473			-	1	1						-						\vdash							G				\vdash	\dashv	
0.0	.056 563																														
	068 683																														
Voltage (V	.100 104 V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	620	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size		1 2 2 2	0805		1 - 5 5		1206												1300					OUU I							

(0.032)(0.057)(0.071)(0.087)(0.110)(0.037)(0.130)

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Total Tota	Case Size				18	25								2220									2225	5								3640)			
10 10 10 10 10 10 10 10																																				
9 WHEN THE PROPERTY OF THE PRO	Length																																			
The color The	mm				6.30 ±	± 0.40							5.	00 0.4	10							6	.30 0.	40				\vdash			1	0.2 ± 0	.25			
Tributes and Control and Contr	(In.)			(0			6)								16)							(0.2						-			(0.4		.010)			
THE PARTY NAME AND ASSESSMENT OF THE PARTY NAME AND ASSESSMENT OF	ickness (in.)				(0.1	34)							(0.134)								(0.100)))								(0.100))			
Cappl 15 188	max			(0	0.030 ±	± 0.014	4)						(0.03)	3 ± 0.	014)							(0.03	33 ± 0	.014)							1.	52 (0.0	160)			
The content of the		600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
22 36			1																									1		1						├
27 39																																				
39 39 39 39 39 39 39 39	27 2R7																																			
A																																				<u> </u>
Section Sect																												1								
Region R	5.6 5R6																																			
The column The																																				<u> </u>
The content of the		F	F	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			├		-		-	_	\vdash
18 18 18 18 18 18 18 18	12 120		E	G	_			F		E	_					E			E	Ē	E	E		E		F	F			L						
22 20		_			_		_			_			_	_	_		_	_				_	_	Е	_	F	F									
77 70 8		_			-	-	-		_	_				_			_	-				_	_	E		F	F		\vdash	-	\vdash	-	\vdash	\vdash	-	\vdash
3 30 E E G E F F F F E F F E E E E E E E E E	27 270	_				-	_		_	_				_	_		_	_				_	_	E		F	F									L
47 470 E E G E F E F F F E F F E E E E E E E E		_	Е	G	_						Е	Е				Е			Е	Е	Е															
S S S E C C C F E F F E E E E E E		_			_		_	_	F										_				_			_			\vdash	-	\vdash		\vdash	-	-	G
66 66 E E G E F E F F E E E E E						F		F	F	E	_								_			_				F					H					G
Total Tota	68 680			G								Е	Е		Е	Е		Е	Е	Е	Е				Е		G									G
120 121 E E G E F E F F E E E E E									_																					-	_	_	_	0	_	G
130 151 E E G E F E F F E E E E E		Ė			_			_	F	E	_		_				E	-				E		-										_		G
220 221 E	150 151	Е	E	_	Е	F	Е	F	F	E	E	E	E	Е	E	E	E	E	Е	_	Е	Е	Е	Е	_		_				_					G
270 271 E E G G E F E F F E E E E E E E E E E E					E	F			F	E	_		E				F	F				E		E			_			_						G
39 33 F E F G G E F E F F E E E E E E E E E E										_	_		_				F	F			_	_								1						G
A70 A71 E	330 331		Е	G	E	F	Е	F		E	_	Е		Е	Е	_				E		E	E	Е	Е	G	J				G	G	G	G	G	G
\$60 \$50 \$61 \$E\$ \$G\$ \$E\$ \$F\$ \$F\$ \$E\$ \$F\$ \$F\$ \$E\$ \$E\$ \$E\$ \$E										Е																										G
660 681 E																												-								G G
S20 S21 E E G E F F G E E E E E E E F F G G G G G G G G								_		_																_		\vdash		 					G	G
1000 102 E E G E F F G E E E E E E E E E					_		-	_		Е	_	_	_		_						_			-	_										G	G
1200 122 E E G G E F G G G E E E E E E E						<u> </u>				E					_		_											G	G	G						G
1500 152 E E G F G G G G E E E F F G G G G G G G G					_										_				_	_		_			_			G	G	_						
2200 222 E E G G G G G E E E				G				G		Е	Е				G	G						Е		F	_						G	G	G	G		
2700 272 E E G G G G G E E E			_				G			E			_		G	G								G	G											<u> </u>
3300 332 E E E G G G G G F E E E G G G G F E E E G G G F E E E E			_							E	_	_			\vdash	\vdash	\vdash			_		_	_		\vdash	\vdash			_							\vdash
4700 472 E E E G G G G G G F F F G G G G G F F F F	3300 332	Ε	Е	G	G	G					Е	Е	G	G					Е	Е	Е	F	F					G	G	G	G	G	G			
Scoto Scoto F								\vdash								_																	G		_	<u> </u>
6800 682 F F F G G G G G G G G G G G G G G G G									\vdash	F	F						 			_	F						<u> </u>							\vdash	-	\vdash
Cap (μF) 010 103 F E G <	6800 682	F		G		G				F	F	F								F	F							G	_	_	G					
0.012 123 E G G G G G G G G G G G G G G G G G G						G				G											_								_							<u> </u>
0.015 153 E		F	_		\vdash		-		-	7	/	7		-	\vdash	-	-	_		_	G	<u> </u>	-	-	-	-	<u> </u>		_	_	G			-	-	₩
0.002 223 E				G			-	\vdash		\vdash					\vdash	\vdash	-	\vdash	_	_		-		-	-		\vdash		_	-				-	_	\vdash
0022 223							\vdash			\vdash							_			_		-		\vdash	_		\vdash		_	_				\vdash		\vdash
0027 273 F			_				\vdash															-		\vdash						_				\vdash	_	\vdash
0.033 333 F							1													,				1										1		\vdash
0.039 333																			G	G								G	G							\vdash
0047 473																																				
0.068 683 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9																			G	G								G	G							
0.100 104 U	0.056 563		G																G	G																
Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 630 1000 1500 2000 2500 3000 4000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 600 600 600 600 600 600 600	0.068 683		G				L										L		G	G			L	L	L		L	Ĺ			L			L		
0 0: 1005		600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000	1500			3000	4000	5000
Case Size 1825 2220 2225 3640	Case Size				18	25								2220									2225	5								3640)			

 Letter
 A
 C
 E
 F
 G
 X
 7

 Max.
 0.813
 1.448
 1.8034
 2.2098
 2.794
 0.940
 3.30

 Thickness
 (0.032)
 (0.057)
 (0.071)
 (0.087)
 (0.110)
 (0.037)
 (0.130)

For 600V to 5000V Applications

X7R Dielectric

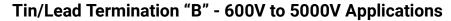
Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size	, [0805				1206					1210						18	808							15	12			
Soldering			low/W	ave		Ref	low/W				Ret	flow O	nly						w Only	,						Reflo				
(L) Length	mm	2	.10 0.2	.0		3.	30 ± 0.	30			3	.30 0.4	0					4.60	± 0.50	,,						4.60	± 0.50			
	(in.) mm	1.:	85 ± 0. 25 ± 0.:	20		1.60	30 ± 0. +0.30/	-0.10			2	30 0.0 .50 0.3	0					2.00	± 0.020 0.20							3.20	± 0.012 ± 0.30)		
	(in.) mm	(0.0	49 ± 0. 1.35	(800	(0.063	+0.012 1.80	/-0.004)		(0.0	98 0.0 2.80	12)						± 0.008 20	3)						(0.126	± 0.008 80	3)		
(1) Illickiless	(in.)		(0.053))			(0.071))				(0.110)						(0.0	087)							(0.	100)			
(t) Terminal	mm max	(0.0	50 ± 0.: 20 ± 0.	20 008)		0. (0.0	60 ± 0. 24 ± 0.	20 008)			(0.0	.75 0.3 30 ± 0.0	5 014)				(0.75 : : 0.030)	± 0.35 ± 0.014	I)						0.75	± 0.35 ± 0.014	!)		
Voltage (V)		600		1000	600			1500				1000			600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 100	101 121	X	X	C	C	C	E	E	E	E	E E	E	E	E					-						-					-
150	151	X	X	С	С	С	E	E	E	E	E	E	E	E																
180	181	Х	Х	С	С	С	E	E	Е	E	E	E	Е	E																
220	221	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
270	271	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	Е	Е	Е	Е			ļ
330	331 391	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			-
470	471	X	X	C	C	C	E	E	E	E	E	E	E	E	E E	E	E	E	E	E	F		E E	E	E	E	E	Е	Е	
560	561	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	
680	681	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
750	751	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
820	821	Χ	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
1000	102	Х	Х	Х	С	С	E	Е	Е	Е	Е	E	Е	E	E	Е	Е	E	Е	F	F		Е	E	E	E	Е	F	F	
1200 1500	122 152	X	X	X	C	C	E	E	E	E	E E	E	E	E	E E	E	E	E	E	F	F		E E	E	E	E	E	F G	F G	-
1800	182	X	X	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	G	G	
2200	222	X	Х	Х	С	С	E	E	E	E	E	E	F	E	E	E	E	F	F	F			E	E	E	E	E	G	G	
2700	272	С	С		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	Е	F	F				Е	Е	Е	Е	Е	G	G	
3300	332	С	С		С	С	Е			Е	Е	Е	F	Е	Е	Е	Е	F	F				Е	Е	Е	F	F	G	G	
3900	392	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					Е	Е	Е	F	F	G	G	
4700 5600	472 562	C C	C		C	C	E F			E	E E	E F	F		E E	E E	E	F					E E	E	E	F G	F G	G	G	-
6800	682	C	C		C	C	E			E	E	E	F		E	E	E	F					E	E	E	G	G	G		
8200	822	С	С		С	С	E			E	E	E			E	E	E	•					E	E	E	G	G			
Cap (µF) 0.010	103	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						Е	Е	F	G	G			
0.015	153	С	С		Е	Е	Е			Е	Е	Е			F	F	F						Е	Е	F	G				
0.018	183 223	С	С		Е	Е				Е	Е	Е			F	F	F		-				Е	Е	G					-
0.022	273	С	С		E E	E				E	E	F			F F	F			-				E E	E	G			-		-
0.033	333				E	E				F	E				F	F							E	E	G					
0.039	393				_	_				E	E				F	F			1				E	E	G					
0.047	473									Е	Е				F	F							Е	Е	G					
0.056	563									F	F				F	F							F	F						
0.068	683									F	F				F	F		<u> </u>	-				F	F		<u> </u>		<u> </u>		-
0.082	823 104		-			-		-		F	F							-	-	-	-		F	F		-		-		-
0.100	154																		<u> </u>	1	1		G	G				 	-	<u> </u>
0.220	224																						G	G						
0.270	274																													
0.330	334																													
0.390	394		<u> </u>		<u> </u>	<u> </u>	_	<u> </u>									-	<u> </u>	-	-	-	<u> </u>	<u> </u>	<u> </u>	₩	<u> </u>	-	<u> </u>		-
0.470	474 564																-	-		-	-			-	1	-	-	-		-
0.680	684																1	 	<u> </u>					<u> </u>	\vdash	 	<u> </u>	 		\vdash
0.820	824																			1	1									
1.000	105																													
Voltage (V)		600		1000	600	630		1500	2000	600	630	1000	1500	2000	600	630	1000			2500	3000	4000	600	630	1000	1500		2500	3000	4000
Case Size			0805				1206					1210						18	808							18	112			

Letter	l A	С	E	F	G	X	l 7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)


For 600V to 5000V Applications

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	ze				18	25								2220)								2225	5								3640)			
Solderin	g				Reflov									low 0									flow (flow C				
(L) Length	mm (in.)				4.60	± 0.50 ± 0.020	2)							0 ± 0. 4 ± 0.									70 ± 0 25 ± 0									14 ± 0 60 ± 0				
W) Width	mm				6.30 :	± 0.40							5.0	0 ± 0.	40							6.3	30 ± 0	.40							10	0.2 ± 0	.25		-	
(T)	(in.) mm			(0		± 0.016 40	6)							7 ± 0. 3.40	016)							(0.25	50 ± 0 3.40								(0.4	00 ± 0 2.54	.010)			
Thickness	(in.)				(0.1	34)							(0.134)							((0.100)))								(0.100))			
(t) Terminal	mm max			(0	0.75 : 0.030 :	± 0.35 ± 0.014	4)						0.8	5 ± 0. 3 ± 0.	35 014)							0.03	85 ± 0 33 ± 0	.35 .014)							0.1 1.1	76 (0.0 52 (0.0	130) 160)			
Voltage (\	V)	600	630					3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000
Cap (pF) 100																																				
120																																				
150																																				
180																																				
220																																				
270																																				
330																																				
390									-																	-								Ш		
470																																		Ш		
560			\vdash	\vdash	<u> </u>	-	-	-	-		<u> </u>	<u> </u>	-	_		-	\vdash				-	-		-	-	-	-		<u> </u>	\vdash	-	<u> </u>	-	\vdash		
750																																				
820									-	_		_			-				_				-	_	-	-				-		_		Н		
1000		F	-	_	-	_	-	_		-	-	-	-	-	-				-	-	_	-	-	-	-				_	_	0	_	_	_		_
1200	-	F	F	F	F	F	F	-		F	F	F	-	F	F	G			F	F	F	F	F	F	-			G	G G	G	G	G G	G G	G G	G G	G G
1500		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
4700	472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
5600	562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800	682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
8200	822	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	\neg	
Cap (µF) 0.010	103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	\Box	
0.015	153	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G	\Box	
0.018	183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G	\Box	
0.022	223	F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G			
0.027	273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G			\Box	
0.033	333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
0.039	393	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.047	473	F	F	F	Р					F	F	F	G						F	F	F	G						G	G	G	G					
0.056	563	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.068	683	F	F	G						F	F	G							F	F	F	G						G	G	G	G					
0.082	823	F	F	G						F	F	G							F	F	G							G	G							
0.100	104	F	F	G						F	F	G							F	F	G							G	G							
0.150		F	F							F	F	G							F	F	G							G	G							
0.220		F	F							F	F	G							F	F								G	G						لــــ	
0.270		F	F							F	F								F	F								G	G					Ш	لــــ	
0.330		F	F	\sqcup	<u> </u>	_	<u> </u>	_	₩	F	F				_	_			F	F			_			<u> </u>	<u> </u>	G	G		<u> </u>			\square	لــــــ	
0.390			F	\sqcup	<u> </u>	_	<u> </u>	_	ऻ—	F	F				_	_			F	F			_			<u> </u>	<u> </u>	G	G		_			\square	لــــــا	
0.470		F	F	\square	<u> </u>	_	<u> </u>	_	<u> </u>	F	F				_	_			F	F			_			<u> </u>	<u> </u>	G	G	_	_			\square		
0.560		G	G	\sqcup		<u> </u>	<u> </u>	<u> </u>	-	G	G					_			F	F	_			_	-	-	-	G	G	_	_		_	Щ		
0.680			<u> </u>	$\vdash \vdash$		<u> </u>	<u> </u>	<u> </u>	1	G	G					_	\vdash		G	G	_	_		<u> </u>	-	1	-			-	<u> </u>		_	$\vdash \vdash$		
0.820			\vdash		_				-		_	_				_			G	G					-	-	-		_	-				Ш		
1.000		600	620	1000	1500	2000	2500	2000	4000	600	620	1000	1500	2000	2500	2000	4000	Enoc	600	620	1000	1500	2000	2500	2000	4000	ECOC	600	600	1000	1500	2000	2500	2000	4000	E000
Voltage (600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	030	1000				3000	4000	5000	600	030	1000	1500			3000	4000	5000
Case Siz	ze				18	25								2220									2225)								3640				

Letter	A	С	E	F	G	Χ	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NEW 630V RANGE

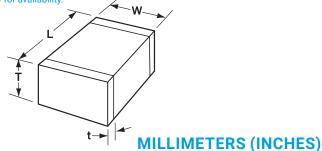
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

HOW TO ORDER


LD08	Α	Α	271	K	Α	В	1	Α
	T	Ţ	T	T	T	Ţ	T	T
AVX	Voltage	Temperature	Capacitance	Capacitance	Test Level	Termination*	Packaging	Special
	600V/630V = C	Coefficient	Code	Tolerance	A = Standard	B = 5% Min Pb	2 = 7" Reel**	Code
LD05 - 0805	1000V = A	COG = A	(2 significant digits	COG: $J = \pm 5\%$	4 = Automotive*	X = FLEXITERM®	4 = 13" Reel	A = Standard
LD06 - 1206	1500V = S	X7R = C	+ no. of zeros)	$K = \pm 10\%$		5% min. Pb*		
LD10 - 1210	2000V = G		Examples:	$M = \pm 20\%$				
LD08 - 1808	2500V = W		10 pF = 100	$X7R: K = \pm 10\%$				
LD12 - 1812	3000V = H		100 pF = 100	$M = \pm 20\%$				
LD13 - 1825	4000V = J		1.000 pF = 101	Z = +80%, -2	20%			
LD20 - 2220	5000V = K		22,000 pF = 223	,				
LD14 - 2225			220,000 pF = 224					
LD40 - 3640								
***			1 μF =105					

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

- * FLEXITERM is not available in the LD40 Style
- ** The LD40 Style is not available on 7" Reels.
- *** AVX offers nonstandard chip sizes. Contact factory for details...

* Not all values are supported in Automotive grade. Please contact factory for availability.

NOT RoHS Compliant

DIMENSIONS

SIZE	LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(T) Thickness Max.	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40	2.54
	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)	(0.100)
(t) terminal min. max.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF
Capacitance Nange	(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 \pm 0.2 Vrms, 1kHz, for \leq 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	AGE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 μF	0.012 pF	0.018 μF	0.047 μF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 μF	0.022 μF
1500	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1300	max.	_	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 μF
2000	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	_	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	_	_	_	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	_	_	_	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	_	_	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	_	_	_	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	_	_	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	_	_	_	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	_	_	_	_	_	_	10 pF	10 pF	10 pF
3000	max.	_	_	_	_	_	_	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

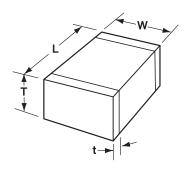
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	IGE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF	0.010 μF	0.010 µF	0.010 μF
000/030	max.	6800 pF	0.022 μF	0.056 μF	0.068 µF	0.120 μF	0.390 µF	0.270 μF	0.330 μF	0.560 μF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF
1000	max.	1500 pF	6800 pF	0.015 μF	0.018 μF	0.039 µF	0.100 µF	0.120 μF	0.150 μF	0.220 μF
1500	min.	_	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500	max.	-	2700 pF	5600 pF	6800 pF	0.015 µF	0.056 µF	0.056 µF	0.068 µF	0.100 µF
2000	min.	_	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	_	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 µF	0.027 µF
2500	min.	_	_	_	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2500	max.	_	_	_	2200 pF	5600 pF	0.015 µF	0.018 μF	0.022 µF	0.022 µF
3000	min.	_	_	_	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	_	_	_	1800 pF	3900 pF	0.010 µF	0.012 µF	0.015 µF	0.018 µF
4000	min.	_	_	_	_	_	_	_	-	100 pF
4000	max.	-	_	_	_	_	_	_	_	6800 pF
5000	min.	-	_	_	_	_	_	-	-	100 pF
3000	max.	_	_	_	_	_	_	_	_	3300 pF

FLEXITERM® - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A 	<u>C</u>	<u>272</u>	<u>K</u>	<u>A</u>	z 	<u>1</u>	<u>A</u>
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z=FLEXITERM® 100% Tin (RoHS Compliar	Packaging 2 = 7" Reel 4 = 13" Reel nt)	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

^{***} AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

MILLIMETERS (INCHES)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)
(W) Width	1.25 ± 0.20	1.60 ^{+0.30}	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40
	(0.049 ±0.008)	(0.063 ^{+0.012} _{-0.004})	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35
	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)

^{*}Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci
Custom values, ratings and configurations are also available.

FLEXITERM® - 600V to 5000V Applications

NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

EFERRED	<u>J</u>	ZLJ	AI	VE.	<u>ЗП</u>	AD	LU																						
Case Size		0805				1206					1210						18	308							18	12			
Soldering		eflow/W				low/W					flow 0							w Only							Reflov				
(L) Length mm (in.)	(0	2.10 ± 0.1 .083 ± 0.1	20	ł		30 ± 0. 30 ± 0.				3.1 (0.1	30 ± 0. 30 ± 0.	40 016)					4.60	± 0.50 ± 0.020))					,	4.60 ± 0.181 ±)		
W) Width mm	\mathbf{T}	1.25 ± 0.3	20		1.60	± 0.30/	/-0.10		ļ	2.	50 ± 0.	30					2.00	± 0.20							3.20 ±	₹ 0.30			
/ (In.)	(0	1.35	008)	(0.063 :	± 0.012 1.80	/-0.004	1)	-	(0.0	98 ± 0. 2.80	012)				- (± 0.008	3)					(0.126 ± 2.8)		
(in.)	ــــــــــــــــــــــــــــــــــــــ	(0.053)				(0.071)			<u> </u>		(0.110)						(0.0	087)							(0.1	10)			
(t) Terminal mm max	(0	0.50 ± 0. .020 ± 0.	20 008)		(0.0	.60 ± 0. 24 ± 0.	20 008)				75 ± 0. 30 ± 0.							± 0.35 ± 0.014	1)					(0.75 ± 0.030 ±	E 0.35 E 0.014)		
Voltage (V)	600	0 630		600	630	1000	1500		600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 1.5 1R 1.8 1R				X	X	X	X	X	-																				\vdash
2.2 2R				X	X	X	X	X																					
2.7 2R			_	X	X	X	X	X								С	С	С	С	C									\vdash
3.3 3R 3.9 3R				X	X	X	X	X	<u> </u>							C	C	C	C	C									\vdash
4.7 4R	7 A	Α		Х	Х	Х	Х	Х								С	С	С	С	С									
5.6 5R 6.8 6R				X	X	X	X	X	<u> </u>							С	С	С	С	С									\vdash
6.8 6R 8.2 8R				X	X	X	X	X	-							C	C	C	C	C									\vdash
10 10	0 A	Α	Α	Х	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е
12 12 15 15			A	X	X	X	X	X	C	C	D D	D D	D D	C C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
18 18			A	X	X	X	X	X	C	С	D	D	D	C	С	C	C	C	C	C	C	С	C	C	С	С	C	C	E
22 22			Α	Х	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е
27 27 33 33			A	X	X	X	X D	X D	C	C	D D	D D	D D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
39 39	0 A		A	X	X	Х	D	D	С	С	D	D	D	С	C	C	C	С	С	C	С	С	C	C	С	С	C	C	E
47 47			Α	Х	Х	М	D	D	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Е
56 56 68 68			A	X	X	M	C	C	C	C	D D	C	C	C	C	C	C	C	C	C		C	C	C	C	C	C	C	F
82 82	0 X		X	X	X	C	С	C	C	С	D	C	C	С	O	C	C	C	C	C		С	C	C	С	C	C	C	F
100 10 120 12			X	X	X	C	С	C	С	С	C	C	C	С	С	C	C	C	F	F		С	C	С	С	C	C	С	F
120 12 150 15			C	X	X	C	E	E	C	C	C	C E	C E	C	C	C	C F	C	F	F		C	C	C	C	C	C	C	G G
180 18	1 C	С	С	Х	Χ	Е	Е	E	С	С	E	Е	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F	
220 22 270 27	_		_	C	X	E	E	E	С	С	E	E	E	С	С	С	F	F	F	F		С	С	С	С	С	F	F	Ш
330 33				C	C	E	E	E	C	C	E	E	E	C	C	C F	F	F	F	F		C	C	C	C F	C F	F	F	\vdash
390 39	1 C	С		С	С	Е	Е	Е	С	С	Е	Е	Е	С	С	F	F	F	F	F		С	С	С	F	F	F	F	
470 47 560 56				C	С	E	Е	Е	C	С	E F	E	E	С	С	F	F	F	F	F		С	C	F	F	F	F	F	\vdash
680 68				C	C	E			C	C	E	F	F	C C	C	F	F	F				C	C	F	F	F	G	G	\vdash
750 75	1 C	С		Е	Е	Е			С	С	Е	G	G	С	С	F	F	F				С	С	F	F	F	G	G	
820 82 1000 10		С		E F	E	E			C	C	E F	G	G	C	C	F	E F	E				C	C	F	F	F	G	G	\vdash
1200 12				E	E				C	С	E			E	E	F	E	E				С	C	F	E	E			
1500 15				Е	Е				С	С	G			Е	Е	F						С	С	F	F	F			
1800 18 2200 22	2	_		F	E				C F	C E	G			E	E	F				-		C	C	F	G	G			\vdash
2700 27	2			Ē	E				E	E				E	E							С	C	E	G	G			
3300 33	2	_		Е	Е				E	E				E	E			\vdash		\vdash		С	С	F					Щ
3900 39 4700 47		+							E	E				E E	E E			1	1	1		C	C	G					\vdash
5600 56	2								Е	Е				Ē	Ē							С	C						
6800 68 8200 82									<u> </u>					F	F			-	-	-		C F	C E						$\vdash\vdash$
8200 82 Cap (µF) 0.010 10		+			\vdash				\vdash					<u> </u>						 		E	E						$\vdash \vdash$
0.012 12	_	+																				F	F						H
0.015 15	_					t										t	t	t		İ		G	G				l –		Н
0.018 18	_																					G	G						
0.022 22	_																												
0.033 33	_																												
0.047 47	_																		_	ļ				_					\sqcup
0.056 56	_	_		<u> </u>	_	_					_					_	_												\sqcup
0.068 68	_	+		<u> </u>	-	-	<u> </u>		<u> </u>		-				-	-	-		-	-			-	-			-		$\vdash\vdash$
0.100 10 Voltage (V)	600	0 630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size	1	0805	1000	000	, 000	1206	1000	2000	000	000	1210	1000	12000	000	000	1000		308	_ 2000	10000	1000	000	, 000	1000	18		12000	3000	, 1000

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

PERKED 3	-	_3	_	\ <u>_</u>			LU							000									000				
Case Size						825								2220									222				
Soldering	nm					ow Only 0 ± 0.50								eflow (eflow (
(I) Longth	in.)					1 ± 0.02								224 ± 0					ł				.72 ± 0				
m	nm) ± 0.40				l				.00 ± 0									.35 ± 0				
W) Width (ii	in.)					3 ± 0.01								197 ± 0									250 ± 0				
(T) Thickness	nm				` ;	3.40								3.40									3.40				
` (11	in.)					.134)								(0.134									(0.13	4)			
I (T) Terminal	nm					5 ± 0.35								$.85 \pm 0$								0.	.85 ± 0).35			
Voltage (V)	nax	600	620	1000		± 0.01	2500	2000	4000	600	620	1000)33 ± 0		2000	4000	5000	600	630	1000				3000	4000	5000
	1R5	000	030	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	4000	3000	000	030	1000	1300	2000	2300	3000	4000	3000
	1R8																										
2.2	2R2																										
	2R7																										
	3R3																							<u> </u>		<u> </u>	
	3R9 4R7	\vdash				-			<u> </u>	├									-	_		-		├─		 	
	5R6	\vdash																						\vdash			
	6R8																							 			
	8R2																										
	100	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F
12	120	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	F	F
15 18	150 180	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	220	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	270	E	E	E	E	E	E	E	E	E	Ē	Ē	Ē	E	Ē	E	Ē	E	E	Ē	Ē	E	E	E	Ē	F	F
	330	E	E	E	E	E	E	E	E	Ē	E	E	E	Е	E	E	E	E	E	E	E	E	E	E	E	F	F
	390	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F
	470	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G
	560	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	680 820	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
100	101	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
120	121	E	E	E	Ē	E	E	E	F	Ē	E	E	Ē	Ē	Ē	Ē	Ē	E	E	Ē	Ē	E	Ē	Ē	E	G	G
150	151	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G
	181	Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е	Е	Е	Е	Е	Е	G	G
	221	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G
	271 331	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	G
	391	E	E	E	E	Ē	E	Ē	-	E	Ē	Ē	Ē	E	Ē	E			E	Ē	Ē	E	E	E	Ē	G	
	471	E	E	Ē	Ē	Ē	Ē	Ē		Ē	Ē	Ē	Ē	Ē	Ē	Ē			E	Ē	Ē	Ē	Ē	Ē	Ē	G	
560	561	Е	Е	Е	Е	Е	Е	Е		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G	
	681	Е	Е	Е	Е	Е	F	F		Е	Е	E	Е	Е	F	F			Е	Е	E	Е	Е	Е	Е		
	751	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E		
	821 102	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F E	E		
	122	E	E	E	E	E	G	G		E	Ë	Ē	Ē	E	G	G			E	Ē	E	E	E	F	F		
	152	E	E	E	F	F	G	G		E	Ē	Ē	F	F	G	G			E	E	Ē	Ē	Ē	F	F		
1800	182	Е	Е	Е	F	F	G	G		Е	Е	Е	F	F	G	G			Е	Е	Е	Е	Е	G	G		
	222	E	Е	E	G	G				E	E	E	G	G					E	E	E	E	E	_		<u> </u>	
	272	Е	Е	E	G	G		-	<u> </u>	E	E	E	G	G					E	E	E	F	F	<u> </u>		₩	
	332 392	E	E	E	G	G		\vdash	-	E	E	E	G G	G G			 		E	E	E	G	F G	-		 	-
	472	E	E	E	G	G				E	E	E	G	G					F	F	F	G	G				1
5600	562	F	F	F	G	G				F	F	F							F	F	F	G	G				
	682	F	F	F						F	F	F							F	F	F	G	G				
8200		G	G	Ğ		<u> </u>		_	ļ	G	G	G							_	G	G	<u> </u>	_	₩		Ь—	
Cap (μF) 0.010		\vdash	\vdash		-	-	-	-	-	\vdash	-								G	G	G	-	-	\vdash		₩	-
0.012 0.015					\vdash	-		\vdash	<u> </u>	\vdash			\vdash				\vdash		G G	G	G G	-			\vdash	\vdash	
0.013									 	\vdash									G	G	G			<u> </u>		 	
0.022										t									G	G	G			\vdash			
0.033	_										L								G	G	G						
0.047																			G	G	G						
0.056		\square																	G	G	G			<u> </u>		<u> </u>	
0.068 0.100	683																		G	G	G				l	oxdot	_
	104	1 1					ı								l								ı				
Voltage (V)	104	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	G	G 630	1000	1500	2000	2500	3000	4000	5000

Letter	A	C	E	F	G	X
Max.	0.813	1.448	1.803	2.210	2.794	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)

FLEXITERM® - 600V to 5000V Applications


X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

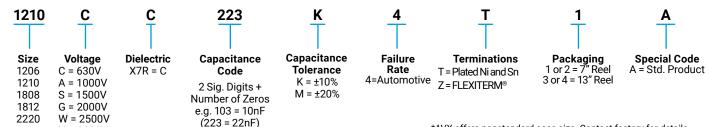
Case Size		0805				1206					1210						10	808							18	12			
	-			-					<u> </u>																				
Soldering mm	Re	eflow/V 2.10 0.2				low/V 30 ± 0.					flow 0 .30 0.4							w Only ± 0.50							Reflov 4.60				
(L) Length (in.)	(0	083 ± 0.	(800.		(0.1	30 ± 0.	012)			(0.1	30 0.0	16)					(0.181	± 0.020)						(0.181 :	± 0.020)		
W) Width mm (in.)	(0	1.25 0.2 .049 ± 0.				+0.30/ +0.012		1)			.50 0.3 098 0.0							0.20 ± 0.008	3)						: 3.20 : 0.126)	± 0.30 + 0.012)		
(T) Thickness mm		1.35		T '		1.80					2.80						2.	.20							2.	80	,		
(III.)	+	(0.053 0.50 ± 0. 020 ± 0.	20		0.	(0.071 60 ± 0.	20		\vdash	0	(0.110) .75 0.3	5					0.75	087) ± 0.35							0.75	+ 0 35			
(t) Terrifinal max				600	(0.0	24 ± 0 .	(800	2000	600	(0.0)	30 ± 0.0	J14)	Inna	600	L 600		(0.030)	± 0.014	2500	10000	1000	600	1 600	11000	1500	± 0.014	10500		14000
Voltage (V) Cap (pF) 100 10		630 X	C	C	C	F	1500 E	2000 E	E	630 E	1000 E	1500 E	2000 E	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
120 12		X	С	С	С	E	E	E	E	E	E	E	E																
150 15		Х	C	С	С	E	E	E	E	E	E	E	E																
180 18		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
220 22	1 X	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																
270 27	1 X	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е									Е	Е	Е	Е	Е			
330 33	1 X	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
390 39	1 X	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е			
470 47		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F		Е	Е	Е	Е	Е	Е	Е	
560 56	- ^ -	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	Е	Е	
680 68		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
750 75		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
820 82		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
1000 10		Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
1200 12	- / (Х	С	С	С	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	E	F	F	
1500 15	- / (Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	E	G	G	
1800 18 2200 22	_ ^	X		С	С	E	E	E	E	Е	E	E	E	Е	E	E	E	E	F	F		E	E	E	E	E	G	G	
2700 27	- ^ -	X		С	С	E	E	Е	E	E	E	F	E	E	E	E	F	F	F			E	E	E	E	E	G	G	
3300 33		X		С	С	E	E		E E	E	E	F	E	E	E	E	F	F				E E	E	E	E F	E	G	G	
3900 39	- / (X		C	C	E			E	E	E E	F G	E	E E	E	E	F	-		-		E	E	E E	F	F	G G	G G	
4700 47	- / (X		С	С	E			E	E	E	G		E	E	E	F					E	E	E	F	F	G	G	
5600 56		X		С	С	E			E	E	E	G		E	E	E	F					E	E	E	G	G	G	G	
6800 68	- / \	X		С	С	E			E	E	E	_		F	E	E	F					E	E	E	G	G			
8200 82		X		C	С	E			E	E	E			E	E	E						E	E	E	G	G			
Cap (µF) 0.010 10		С		С	С	E			E	Е	E			Е	Е	E						E	E	F	G	G			
0.015 15		С		Е	Е	Е			Е	Е	Е			F	F	F						Е	Е	F	G				
0.018 18	3 C	С		Е	Е				Е	Е	Е			F	F	F						Е	Е	G					
0.022 22	3 C	С		Е	Е				Е	Е	Е			F	F							Е	Е	G					
0.027 27				Е	Е				Е	Е				F	F							Е	Е	G					
0.033 33	3			Е	Е				Е	Е				F	F							Е	Е	G					
0.039 39	3								Е	Е				F	F							Е	Е	G					
0.047 47	_								Е	Е				F	F							Е	Е	G					
0.056 56	_	_	_						F	F				F	F			_				F	F						
0.068 68	-		<u> </u>	\perp					F	F				F	F		<u> </u>	1		-		F	F						_
0.082 82		+	_	\vdash	_		_		F	F	ļ		_	<u> </u>			_	-	<u> </u>	ļ		F	F		_	_			<u> </u>
0.100 10		+	<u> </u>	\vdash	<u> </u>		<u> </u>		F	F			<u> </u>	<u> </u>			_	-	<u> </u>	ļ		F	F						<u> </u>
0.150 15	-	+-	-	\vdash	_	-	_		 	_				<u> </u>		-	-	-	-	-		G	G		-	-	-	_	-
0.220 22	-	+	-	\vdash	<u> </u>	-	<u> </u>		\vdash				<u> </u>	<u> </u>		-	-	-	-	-		G	G			-	-		-
0.270 27	-	+	-	\vdash	-		-		├				<u> </u>	-			-	-		-				-					-
0.330 33	-	+	<u> </u>	\vdash	-		-		\vdash	-			<u> </u>	<u> </u>	-		-	1	-	1	-		-	-				-	-
0.390 39	-	+							\vdash					 															-
0.560 56	-	+							-									1		-				1					\vdash
0.680 68	_	+			<u> </u>		<u> </u>		\vdash									 	1	-				\vdash					1
0.820 82	_	+																											
1.000 10	_	1							 											<u> </u>									
Voltage (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size		0805	5			1206	•				1210						18	808							18	12			

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size					25					2220 Reflow Only 5.70 0.50 (0.224 0.020)												2225									3640				
Soldering					w Only																	flow (eflow C				
(L) Length mm (in.)					0.50 0.020))																72 ± 0 25 ± 0									.14 ± 0 360 ± 0				
W) Width mm			,,		0.40	~							00 0.4									35 ± 0									.72 ± 0				
(in.)			((± 0.01 40	6)		-					97 0.0 3.40	116)							(0.2	50 ± 0 2.54								(0.2	225 ± 0 2.54	.010)			_
Thickness (in.)				(0.1									0.134)								(0.100									(0.100)			
(t) Terminal mm max			((0.35 ± 0.01	4)							85 0.3 3 ± 0.									85 ± 0	0.35							0.	.76 (0.0 .52 (0.0	30)			
Voltage (V)	600	630					3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000			2500	3000	4000	5000
Cap (pF) 100 101																																			
120 121																																			
150 151																																			
180 181																																	ш	L'	
220 221							_	\sqcup																									igsquare	<u> </u>	
270 271									_													_											\vdash	<u> </u>	
330 331		_							-				_		_				_			-	-						_				\vdash	<u></u>	\vdash
390 391							-	\vdash	_																								\vdash	<u> </u>	\vdash
470 471								\vdash	-										_										_				\vdash	\vdash	\vdash
560 561 680 681								\vdash	-										_				-						_				-	\vdash	\vdash
680 681 750 751	_							\vdash	-							-						-	-										\vdash	\vdash	\vdash
820 821		1	\vdash	\vdash	1	1	1	\vdash	\vdash		\vdash			 			\vdash	-	<u> </u>				+					\vdash	<u> </u>	\vdash	\vdash		\vdash	-	$\vdash\vdash$
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200 122	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1500 152	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800 182	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200 222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700 272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800 682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	-
8200 822	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		\vdash
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		\vdash
0.015 153	F	F	F	G	G	G	-		F	F	F	G	G	G	-			F	F	F	G	G	G	G			G	G	G	G	G	G	G		\vdash
0.018 183	F	F	F	G	G	, ·			F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		\vdash
0.022 223	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G	г	\vdash
0.022 223	F	F	F	G	-				F	F	F	G	G					F	F	F	G	G	9				G	G	G	G	G	9	\vdash	\vdash	-
	F	F	F	_		-			F	F	F		G					F	F	F		_		\vdash				_		_	G		\vdash	\vdash	-
0.033 333	F	F	F	G G	_	-	-	\vdash	F	F	F	G G	_		\vdash	-	\vdash	F	F	F	G G	G		\vdash			G G	G G	G	G G	_		\vdash	 '	$\vdash\vdash$
0.039 393	F	F	_	P	-	\vdash	-	\vdash	F	F	F	_	-					F	F	F	_		-	\vdash		-		-	G	_	-	-	\vdash		\vdash
0.047 473	F	F	F			-	-		F	F	F	G	-			-		F	F	F	G		-	\vdash			G	G	G	G	_		\vdash	 '	$\vdash\vdash$
0.056 563	_	-	F	G		-	-		_		_	G	-	-		-			_	_	G		-	\vdash			G	G	G	G	_		\vdash	 '	$\vdash\vdash$
0.068 683	F	F	G	—	\vdash	\vdash	-	\vdash	F	F	G		-	-	_	-	\vdash	F	F	F	G		\vdash	\vdash	-	<u> </u>	G	G	G	G	-		\vdash	 '	$\vdash\vdash$
0.082 823	-	F	G	_	-	-	-	\vdash	F	F	G		-	-		-		_	F	G	<u> </u>	-	1				G	G	_	-	-		\vdash	<u></u> '	$\vdash \vdash$
0.100 104	F	F	G	_	-	-	-	\vdash	F	F	G		-	-		-		F	F	G	<u> </u>	-	1				G	G	_	-	-		\vdash	<u></u> '	$\vdash \vdash$
0.150 154	F	F	<u> </u>	<u> </u>	-	-	-	\vdash	F	F	G G		-	<u> </u>		-	\vdash	F	F	G		\vdash	-	\vdash			G	G	-	-	\vdash			 '	$\vdash \vdash$
0.220 224	F	F	_	-	-	-	-	\vdash	F	F	G		-	-	_	-	\vdash	F	F			\vdash	-	\vdash			G	G		-	-		\vdash	 '	$\vdash\vdash$
0.270 274	F	F		-	\vdash	\vdash	\vdash	\vdash	F	F			-	-	-	-		F	F	-	-	\vdash	-	\vdash		-	G G	G	-	-	-	-	$\overline{}$		\vdash
0.390 394	F	F		-	\vdash	\vdash	-	\vdash	-	F				-		-	\vdash	F	F		-	\vdash	-	\vdash		-	G	G	-	-	-	-	$\overline{}$		$\vdash\vdash$
0.470 474	F	F	—	\vdash	\vdash	\vdash	\vdash	\vdash	F	F			-		\vdash		\vdash	F	F		\vdash	\vdash	\vdash	\vdash		\vdash	G	G	_		\vdash	-	\vdash	\vdash	$\vdash\vdash$
0.560 564	G	G			\vdash	\vdash	\vdash	\vdash	G	G			\vdash	-	\vdash	-		F	F	<u> </u>		\vdash	\vdash	\vdash			G	G					\vdash	\vdash	$\vdash\vdash$
0.680 684	- 0	0		<u> </u>	\vdash	\vdash	\vdash	\vdash	G	G				-		-	\vdash	G	G			\vdash	1				0	9	_		 		$\overline{}$	\vdash	$\vdash\vdash$
0.820 824	-						1	\vdash	G	G					\vdash			G	G			\vdash	1						_		\vdash		-		\vdash
1.000 105	_	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	G	G					\vdash	\vdash		G	G			\vdash	\vdash					\vdash	_		\vdash		\rightarrow	-	\vdash
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	_		1000	1500	2000	2500	3000	4000	5000	600		1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Size	500	1 000	. 500		325	12300	10000		550	000	.500				10000	.500	0000	550				2225		10000	.500	0000	550	000	. 500	. 500	3640		3030	.555	3000
Case Size				10	,23						2220											222	-								J040				

Letter	Α	С	Е	F	G	Р	X
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

High Voltage MLC Chip Capacitors

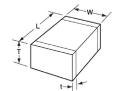

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, AVX recommend to use flexible terminations system - FLEXITERM®.

HOW TO ORDER


*AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

H = 3000V

(See capacitance range chart on page 128)

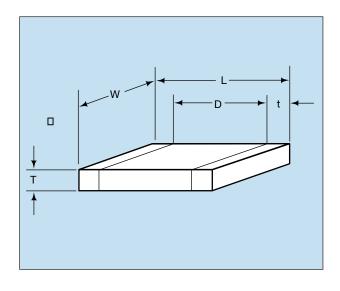
L = Length W = Width T = Thickness t = Terminal

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions	
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber	
Capacitance Dissipation Factor Capacitance Tolerance	within specified tolerance 2.5% max. ±5% (J), ±10% (K), ±20% (M)	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms T = +25°C, V = 0Vdc	
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)	
Insulation Resistance	100GΩ min. or 1000MΩ • μF min. (whichever is less) 10GΩ min. or 100MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)	
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA	

High Voltage MLC Chips FLEXITERM®

For 600V to 3000V Automotive Applications - AEC-Q200


X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case S	Size				1206				12	10				18	08						1812						2220		
Solder	ring			Ref	low/W	/ave			Reflo	wOnly				Reflo	wOnly					Re	flowO	nly				Re	flow0	nly	
(L) Length		nm n.)			20 ± 0. 26 ± 0.				3.20 : (0.126 :	± 0.20 + 0.008	,		4.57 ± 0.25 (0.180 ± 0.010)						50 ± 0. 77 ± 0.					5. (0.2	70 ± 0. 24 ± 0.	50 020)			
W) Width	m	nm		1.	60 ± 0.	20			2.50	± 0.20		2.03 ± 0.25			3.20 ± 0.20					5.00 ± 0.40									
vv) vvidili		1.)		(0.0	63 ± 0.				(0.098 ± 0.008)			(± 0.010)				(0.1	26 ± 0.	008)				(0.1	97 ± 0.	016)		
(T) Thickness	m (ir	nm			1.52					70					03						2.54						3.30		
		nm			(0.060 25 (0.0					067) 0.010)				0.25 ((0.100 25 (0.0						(0.130 25 (0.0		-
(t) Terminal		nax			75 (0.0					0.030)				1.02 (2 (0.0						0.0 (0.0		
Voltage	e (V)	\dashv	630				2500	630			2000	630	1000			2500	3000	630	1000				3000	4000	630			2000	3000
Cap (pF)	100																											\Box	\Box
		121																											
	150																												
		181																											
		221																										igsquare	$\overline{}$
		271																										\square	\vdash
		331																										\vdash	\vdash
	390																											\vdash	\vdash
	470 4 560																											\vdash	\vdash
		681																					_					\vdash	-
		821																					_					\vdash	\vdash
		102																											-
		122																											\vdash
		152																											\vdash
		182																											-
		222																											
		272																											
		332																											\Box
	3900	392				ĺ																	ĺ						\Box
		472																											
		562																											
		682																											
		822																											\perp
Cap (µF)		103																											\vdash
	0.012		\rightarrow																										\vdash
	0.015		_																				-						\vdash
	0.018	183	-																		_		-						\vdash
	0.022																						-						\vdash
		333	-			_													_		_	_						\vdash	\vdash
		393																					-					\vdash	-
	0.039				\vdash					-							\vdash		-		\vdash			1			 	\vdash	-
	0.056		\dashv																				 					\vdash	\vdash
	0.068																		 									\vdash	\vdash
		823																	<u> </u>				†					\Box	-
	0.100		\neg																										\Box
		124																											\Box
		154	\neg																										П
Voltage			630	1000			2500	630			2000	630	1000			2500	3000	630	1000	1500		2500	3000	4000	630	1000		2000	3000
Case S	Size				1206				12	10				18	80						1812						2220		

NOTE: Contact factory for non-specified capacitance values

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Example

CDR01 BP 101 B K S M

MIL Style

Voltage-temperature
Limits

Capacitance
Rated Voltage

Capacitance Tolerance

Termination Finish

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,

CDR06

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from -55°C to ± 125 °C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J \pm 5%, K \pm 10%, M \pm 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

T = Silver

Failure Rate

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per	AVX	Length (L)	Width (W)	Thickr	ness (T)		D	Termination Band (t)		
MIL-PRF-55681	Style		widii (w)	Min.	Max.	Min.	Max.	Min.	Max.	
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	_	.010	_	
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	_	_	.010	.030	
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	_	_	.010	.030	
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	_	_	.010	.030	
CDR05	1825	.180 + .020 015	.250 + .020 015	.020	.080	_	_	.010	.030	
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	_	_	.010	.030	

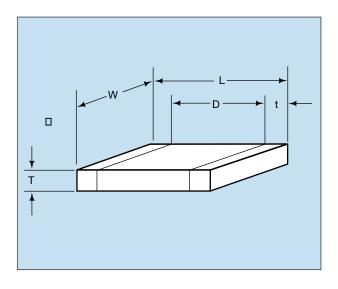
^{*}For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

Military Part Number Identification CDR01 thru CDR06

CDR01 thru CDR06 to MIL-PRF-55681

Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC			
AVX Style 08	05/CDR01						
CDR01BP100B	10	J,K	BP	100			
CDR01BP120B	12	J	BP	100			
CDR01BP150B	15	J,K	BP	100			
CDR01BP180B CDR01BP220B	18 22	J J,K	BP BP	100 100			
CDR01BP270B	27	J	BP	100			
CDR01BP330B	33	J,K	BP BP	100			
CDR01BP390B	39	J	BP	100			
CDR01BP470B	47	J,K	BP	100			
CDR01BP560B	56	J	BP	100			
CDR01BP680B	68	J,K	BP	100			
CDR01BP820B	82	J	BP	100			
CDR01BP101B	100	J,K	BP	100			
CDR01B121B	120	J,K	BP,BX	100			
CDR01B151B	150	J,K	BP,BX	100			
CDR01B181B CDR01BX221B	180 220	J,K K,M	BP,BX BX	100 100			
CDR01BX2Z1B	270	K,IVI	BX	100			
CDR01BX331B	330	K,M	BX	100			
CDR01BX391B	390	K	BX	100			
CDR01BX471B	470	K,M	BX	100			
CDR01BX561B	560	K	BX	100			
CDR01BX681B	680	K,M	BX	100			
CDR01BX821B	820	K	BX	100			
CDR01BX102B	1000	K,M	BX	100			
CDR01BX122B	1200	K	BX	100			
CDR01BX152B CDR01BX182B	1500 1800	K,M K	BX BX	100 100			
CDR01BX162B	2200	K,M	BX	100			
CDR01BX272B	2700	K	BX	100			
CDR01BX332B	3300	K,M	BX	100			
CDR01BX392A	3900	K	BX	50			
CDR01BX472A	4700	K,M	BX	50			
AVX Style 18	05/CDR02						
CDR02BP221B	220	J,K	BP	100			
CDR02BP271B	270	J	BP	100			
CDR02BX392B	3900	K	BX	100			
CDR02BX472B CDR02BX562B	4700 5600	K,M K	BX BX	100 100			
CDR02BX682B	6800	K.M	BX	100			
CDR02BX822B	8200	K,IVI	BX	100			
CDR02BX103B	10,000	K,M	BX	100			
CDR02BX123A	12,000	K	BX	50			
CDR02BX153A	15,000	K,M	BX	50			
CDR02BX183A	18,000	K	BX	50			
CDR02BX223A	22,000	K,M	BX	50			
	- Add appropriate		nish				
Capacitance Tolerance							

Military Type	Capacitance	Capacitance	Rated temperature and voltage-	WVDC
Designation/	in pF	tolerance	temperature limits	
AVX Style 18	308/CDR03			
CDR03BP331B	330	J,K	BP	100
CDR03BP391B CDR03BP471B	390 470	J J,K	BP BP	100 100
CDR03BP561B	560	J	BP BP	100
CDR03BP681B	680	J,K	BP	100
CDR03BP821B	820	J	BP	100
CDR03BP102B	1000	J,K	BP	100
CDR03BX123B CDR03BX153B	12,000 15.000	K K,M	BX BX	100 100
CDR03BX183B	18.000	K,IVI	BX	100
CDR03BX223B	22,000	K,M	BX	100
CDR03BX273B	27.000	K	BX	100
CDR03BX333B	33.000	K,M	BX	100
CDR03BX393A	39.000	K	BX	50
CDR03BX473A	47.000	K,M	BX	50
CDR03BX563A CDR03BX683A	56.000 68.000	K K,M	BX BX	50 50
AVX Style 18	312/CDR04			
CDR04BP122B	1200	J	ВР	100
CDR04BP152B	1500	J,K	BP	100
CDR04BP182B	1800	J	BP	100
CDR04BP222B CDR04BP272B	2200 2700	J,K J	BP BP	100 100
CDR04BP332B	3300	J,K	BP BP	100
CDR04BX393B	39.000	K	BX	100
CDR04BX473B	47.000	K,M	BX	100
CDR04BX563B	56.000	K	BX	100
CDR04BX823A	82.000	K	BX	50
CDR04BX104A CDR04BX124A	100,000 120,000	K,M K	BX BX	50 50
CDR04BX124A CDR04BX154A	150.000	K,M	BX	50
CDR04BX184A	180.000	K	BX	50
AVX Style 18	325/CDR05			
CDR05BP392B	3900	J,K	BP	100
CDR05BP472B-	4700	J,K	BP BB	100
CDR05BP562B CDR05BX683B	5600 68,000	J,K K,M	BP BX	100 100
CDR05BX823B	82,000	K	BX	100
CDR05BX104B	100,000	K,M	BX	100
CDR05BX124B	120,000	K	BX	100
CDR05BX154B	150.000	K,M	BX	100
CDR05BX224A CDR05BX274A	220.000	K,M K	BX	50 50
CDR05BX274A	270,000 330,000	K,M	BX BX	50 50
AVX Style 22				
CDR06BP682B	6800	J,K	ВР	100
CDR06BP822B	8200	J,K	BP	100
CDR06BP103B	10,000	J,K	BP	100
CDR06BX394A	390.000	K	BX	50
CDR06BX474A	470.000	K,M	BX	50


Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Example

(example) CDR31 BP 101 B K S M

MIL Style

Voltage-temperature
Limits

Capacitance
Rated Voltage

Capacitance Tolerance

Termination Finish

Failure Rate

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from $\pm 55\%$ C to $\pm 125\%$ C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: B \pm .10 pF, C \pm .25 pF, D \pm .5

pF, F ± 1%, J ± 5%, K ± 10%,

M ± 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

= Silve

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel

per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per	AVV Ctule	Length (L)	Width (W)	Thickness (T)	D	Termination Band (t)		
MIL-PRF-55681	AVX Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max.	
CDR31	0805	2.00	1.25	1.3	.50	.70	.30	
CDR32	1206	3.20	1.60	1.3	_	.70	.30	
CDR33	1210	3.20	2.50	1.5	_	.70	.30	
CDR34	1812	4.50	3.20	1.5	_	.70	.30	
CDR35	1825	4.50	6.40	1.5	_	.70	.30	

CDR31 to MIL-PRF-55681/7

Military Type Designation 1 /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-temperature limits	WVDC
AVX Style 08	05/CDR31	(BP)		
CDR31BP1R0B	1.0	B,C	BP	100
CDR31BP1R1B	1.1	B,C	BP	100
CDR31BP1R2B	1.2	B,C	BP	100
CDR31BP1R3B	1.3	B,C	BP	100
CDR31BP1R5B CDR31BP1R6B CDR31BP1R8B CDR31BP2R0B	1.5	B,C	BP	100
	1.6	B,C	BP	100
	1.8	B,C	BP	100
	2.0	B,C	BP	100
CDR31BP2R2B	2.2	B,C	BP	100
CDR31BP2R4B	2.4	B,C	BP	100
CDR31BP2R7B	2.7	B,C,D	BP	100
CDR31BP3R0B CDR31BP3R3B CDR31BP3R6B CDR31BP3R9B	3.0	B,C,D	BP	100
	3.3	B,C,D	BP	100
	3.6	B,C,D	BP	100
	3.9	B,C,D	BP	100
CDR31BP4R3B CDR31BP4R7B CDR31BP5R1B CDR31BP5R6B CDR31BP6R2B	4.3	B,C,D	BP	100
	4.7	B,C,D	BP	100
	5.1	B,C,D	BP	100
	5.6	B,C,D	BP	100
	6.2	B,C,D	BP	100
CDR31BP6R8B CDR31BP7R5B CDR31BP8R2B CDR31BP9R1B CDR31BP100B	6.8	B,C,D	BP	100
	7.5	B,C,D	BP	100
	8.2	B,C,D	BP	100
	9.1	B,C,D	BP	100
	10	FJ,K	BP	100
CDR31BP110B CDR31BP120B CDR31BP130B CDR31BP150B CDR31BP160B	11	FJ,K	BP	100
	12	FJ,K	BP	100
	13	FJ,K	BP	100
	15	FJ,K	BP	100
	16	FJ,K	BP	100
CDR31BP180B CDR31BP200B CDR31BP220B CDR31BP240B CDR31BP270B	18	FJ,K	BP	100
	20	F,J,K	BP	100
	22	FJ,K	BP	100
	24	F,J,K	BP	100
	27	FJ,K	BP	100
CDR31BP300B CDR31BP330B CDR31BP360B CDR31BP390B CDR31BP430B	30	FJ,K	BP	100
	33	F,J,K	BP	100
	36	FJ,K	BP	100
	39	F,J,K	BP	100
	43	FJ,K	BP	100
CDR31BP470B CDR31BP510B CDR31BP560B CDR31BP620B CDR31BP680B	47	FJ,K	BP	100
	51	F,J,K	BP	100
	56	FJ,K	BP	100
	62	F,J,K	BP	100
	68	FJ,K	BP	100
CDR31BP750B	75	FJ,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	FJ,K	BP	100

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	805/CDR31	(BP) con	t'd	
CDR31BP101B— CDR31BP111B— CDR31BP121B— CDR31BP131B— CDR31BP151B— CDR31BP161B— CDR31BP181B— CDR31BP201B— CDR31BP221B— CDR31BP241B— CDR31BP241B— CDR31BP241B—	100 110 120 130 150 160 180 200 220 240 270	F.J.K F.J.K F.J.K F.J.K F.J.K F.J.K F.J.K F.J.K F.J.K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 100
CDR31BP301B CDR31BP331B CDR31BP361B CDR31BP391B CDR31BP431B CDR31BP471B CDR31BP551A CDR31BP621A CDR31BP681A CDR31BP681A	300 330 360 390 430 470 510 560 620 680	F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K F,J,K	BP BP BP BP BP BP BP BP	100 100 100 100 100 100 50 50 50 50
AVX Style 08	305/CDR31	(BX)		1
CDR31BX471B CDR31BX561B CDR31BX821B CDR31BX102B CDR31BX122B CDR31BX152B CDR31BX152B CDR31BX222B CDR31BX222B CDR31BX222B	470 560 680 820 1,000 1,200 1,500 1,800 2,200 2,700	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX	100 100 100 100 100 100 100 100 100
CDR31BX332B CDR31BX472B CDR31BX472B CDR31BX562A CDR31BX822A CDR31BX103A CDR31BX123A CDR31BX153A CDR31BX183A	3,300 3,900 4,700 5,600 6,800 8,200 10,000 12,000 15.000 18.000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX	100 100 100 50 50 50 50 50 50 50

Add appropriate failure rate
 Add appropriate termination finish

Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CDR32 to MIL-PRF-55681/8

Military Type Designation 1 /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 12	06/CDR32	(BP)		
CDR32BP1R0B	1.0	B,C	BP	100
CDR32BP1R1B	1.1	B,C	BP	100
CDR32BP1R2B	1.2	B,C	BP	100
CDR32BP1R3B	1.3	B,C	BP	100
CDR32BP1R5B	1.5	B,C	BP	100
CDR32BP1R6B	1.6	B,C	BP	100
CDR32BP1R8B	1.8	B,C	BP	100
CDR32BP2R0B	2.0	B,C	BP	100
CDR32BP2R2B	2.2	B,C	BP	100
CDR32BP2R4B	2.4	B,C	BP	100
CDR32BP2R7B	2.7	B,C,D	BP	100
CDR32BP3R0B	3.0	B,C,D	BP	100
CDR32BP3R3B	3.3	B,C,D	BP	100
CDR32BP3R6B	3.6	B,C,D	BP	100
CDR32BP3R9B	3.9	B,C,D	BP	100
CDR32BP4R3B CDR32BP4R7B CDR32BP5R1B CDR32BP5R6B CDR32BP6R2B	4.3	B,C,D	BP	100
	4.7	B,C,D	BP	100
	5.1	B,C,D	BP	100
	5.6	B,C,D	BP	100
	6.2	B,C,D	BP	100
CDR32BP6R8B CDR32BP7R5B CDR32BP8R2B CDR32BP9R1B CDR32BP100B	6.8 7.5 8.2 9.1	B,C,D B,C,D B,C,D B,C,D FJ,K	BP BP BP BP BP	100 100 100 100 100
CDR32BP110B— CDR32BP120B— CDR32BP130B— CDR32BP150B— CDR32BP160B—	11 12 13 15	F,J,K FJ,K FJ,K FJ,K FJ,K	BP BP BP BP BP	100 100 100 100 100
CDR32BP180B CDR32BP200B CDR32BP220B CDR32BP240B CDR32BP270B	18 20 22 24 27	FJ,K F,J,K FJ,K F,J,K FJ,K	BP BP BP BP	100 100 100 100 100
CDR32BP300B	30	FJ,K	BP	100
CDR32BP330B	33	F,J,K	BP	100
CDR32BP360B	36	FJ,K	BP	100
CDR32BP390B	39	F,J,K	BP	100
CDR32BP430B	43	FJ,K	BP	100
CDR32BP470B CDR32BP510B CDR32BP560B CDR32BP620B CDR32BP680B	47 51 56 62 68	FJ,K F,J,K FJ,K F,J,K FJ,K	BP BP BP BP	100 100 100 100 100
CDR32BP820B CDR32BP910B	75 82 91	FJ,K F,J,K FJ,K	BP BP BP	100 100 100 100

Add appropriate failure rate
— Add appropriate termination finish
— Capacitance Tolerance

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	305/CDR31	(BP) con	t'd	
CDR32BP101B	100	FJ,K	BP	100
CDR32BP111B	110	FJ,K	BP	100
CDR32BP121B	120	FJ,K	BP	100
CDR32BP131B	130	FJ,K	BP	100
CDR32BP151B	150	FJ,K	BP	100
CDR32BP161B	160	FJ,K	BP	100
CDR32BP181B	180	F,J,K	BP	100
CDR32BP201B	200	FJ,K	BP	100
CDR32BP221B	220	F,J,K	BP	100
CDR32BP241B	240	FJ,K	BP	100
CDR32BP271B	270	FJ,K	BP	100
CDR32BP301B	300	F,J,K	BP	100
CDR32BP331B	330	FJ,K	BP	100
CDR32BP361B	360	F,J,K	BP	100
CDR32BP391B	390	FJ,K	BP	100
CDR32BP431B	430	FJ.K	BP	100
CDR32BP471B	470	F.J.K	BP	100
CDR32BP511B	510	FJ,K	BP	100
CDR32BP561B	560	F,J,K	BP	100
CDR32BP621B	620	FJ,K	BP	100
CDR32BP681B	680	FJ.K	BP	100
CDR32BP751B	750	F,J,K	BP	100
CDR32BP821B	820	FJ.K	BP	100
CDR32BP911B	910	F,J,K	BP	100
CDR32BP102B	1,000	FJ,K	BP	100
CDR32BP112A	1,100	FJ,K	BP	50
CDR32BP112A	1,100	F,J,K	BP BP	50
CDR32BP132A	1,300	FJ.K	BP BP	50
CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP162A	1,600	FJ,K	BP	50
CDR32BP182A	l '	FJ.K	BP BP	50
CDR32BP182A CDR32BP202A	1,800	/	BP BP	50
CDR32BP202A	2,000 2,200	F,J,K FJ,K	BP BP	50
	<u> </u>	'	DF	30
AVX Style 12	206/CDR32	(BX)		
CDR32BX472B	4,700	K,M	BX	100
CDR32BX562B	5,600	K,M	BX	100
CDR32BX682B	6,800	K,M	BX	100
CDR32BX822B	8,200	K,M	BX	100
CDR32BX103B	10,000	K,M	BX	100
CDR32BX123B	12,000	K,M	BX	100
CDR32BX153B	15.000	K,M	BX	100
CDR32BX183A	18.000	K,M	BX	50
CDR32BX223A	22,000	K,M	BX	50
CDR32BX273A	27,000	K,M	BX	50
CDR32BX333A	33.000	K,M	BX	50
CDR32BX393A	39.000	K.M	BX	50

Capacitance Tolerance

Add appropriate termination finish

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CDR33/34/35 to MIL-PRF-55681/9/10/11

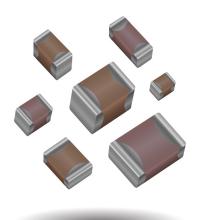
Military Type Designation 1 /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC		
AVX Style 12	210/CDR33	(BP)	temperature iiiiito			
CDR33BP102B— CDR33BP112B— CDR33BP132B— CDR33BP132B— CDR33BP152B— CDR33BP162B— CDR33BP122B— CDR33BP202B— CDR33BP222B— CDR33BP222B— CDR33BP242A— CDR33BP242A— CDR33BP33BA— CDR33BP302A— CDR33BP302A— CDR33BP332A—	1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400 2,700 3,000 3,300	EJ,K FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K F	BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 50 50 50		
AVX Style 12	210/CDR33	(BX)	,			
CDR33BX153B CDR33BX223B CDR33BX2273B CDR33BX393A CDR33BX473A CDR33BX563A CDR33BX683A CDR33BX823A CDR33BX8104A	15.000 18.000 22,000 27.000 39.000 47.000 56.000 68.000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50 50		
AVX Style 18	312/CDR34	(BP)				
CDR34BP222B CDR34BP242B CDR34BP302B CDR34BP332B CDR34BP32B CDR34BP432B CDR34BP472B CDR34BP512A CDR34BP562A CDR34BP52A CDR34BP52A CDR34BP52A CDR34BP52A CDR34BP52A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A CDR34BP32A	2,200 2,400 2,700 3,000 3,300 3,600 3,900 4,300 4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000	EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 50 50 50 50 50		
Add appropriate failure rate Add appropriate termination finish						

Military Type	Capacitance	Capacitance	Rated temperature and voltage-	WVDC
Designation 1 /	in pF	tolerance	temperature limits	
AVX Style 18	12/CDR34	(BX)		
CDR34BX273B	27.000	K,M	BX	100
CDR34BX333B	33.000	K,M	BX	100
CDR34BX393B	39.000	K,M	BX	100
CDR34BX473B	47.000	K,M	BX BX	100 100
CDR34BX563B	56.000	K,M	BX BX	
CDR34BX104A CDR34BX124A	100,000 120.000	K,M K,M	BX BX	50 50
CDR34BX124A	150.000	K,M	BX	50
CDR34BX184A	180.000	K,M	BX	50
AVX Style 18	325/CDR35	(BP)		
•				100
CDR35BP472B CDR35BP512B	4,700 5,100	FJ,K F,J,K	BP BP	100 100
CDR35BP512B	5,100	FJ.K	BP	100
CDR35BP622B	6,200	F,J,K	BP BP	100
CDR35BP682B	6,800	FJ,K	BP	100
CDR35BP752B	7,500	FJ.K	BP	100
CDR35BP822B	8,200	F,J,K	BP	100
CDR35BP912B	9,100	FJ,K	BP	100
CDR35BP103B	10,000	FJ,K	BP	100
CDR35BP113A	11,000	F,J,K	BP	50
CDR35BP123A	12,000	FJ,K	BP	50
CDR35BP133A	13.000	F,J,K	BP	50
CDR35BP153A CDR35BP163A	15.000 16.000	FJ,K F.J.K	BP BP	50 50
CDR35BP183A	18,000	FJ,K	BP BP	50
CDR35BP203A	20,000	FJ.K	BP	50
CDR35BP223A	22,000	F,J,K	BP	50
AVX Style 18	25/CDR35	(BX)	l	
CDR35BX563B	56.000	K,M	BX	100
CDR35BX683B	68.000	K,M	BX	100
CDR35BX823B	82,000	K,M	BX	100
CDR35BX104B	100,000	K,M	BX	100
CDR35BX124B	120,000	K,M	BX	100
CDR35BX154B	150.000	K,M	BX	100
CDR35BX184A CDR35BX224A	180.000	K,M	BX BX	50 50
CDR35BX224A CDR35BX274A	220,000 270.000	K,M K,M	BX BX	50 50
CDR35BX274A	330.000	K,M	BX	50
CDR35BX394A	390.000	K,M	BX	50
CDR35BX474A	470.000	K,M	BX	50
			l	

- Add appropriate failure rate

– Add appropriate termination finish

- Capacitance Tolerance


Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

MLCC Medical Applications – MM Series

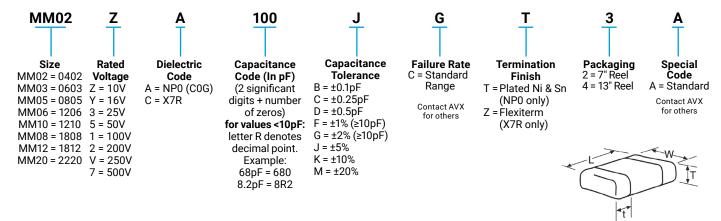
General Specifications

The AVX MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

Implantable, Non-Life Supporting Medical Devices

· e.g. implanted temporary cardiac monitor, insulin pumps


External, Life Supporting Medical Devices

· e.g. heart pump external controller

External Devices

· e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product
Design	Minimum ceramic thickness of 0.020" on all X7R product	Minimum ceramic thickness of 0.029" (0.74mm)
Dicing	Side & end margins = 0.003" min	Side & end margins = 0.004" min Cover layers = 0.003" min
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing
Design/Change Control	Required to inform customer of changes in: form fit function	AVX will qualify and notify customers before making any change to the following materials or processes: • Dielectric formulation, type, or supplier • Metal formulation, type, or supplier • Termination material formulation, type, or supplier • Manufacturing equipment type • Quality testing regime including sample size and accept/ reject criteria

NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions
	perature Range	-55°C to +125°C	Temperature Cycle Chamber
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF
(2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity
Dielectric	Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.
	Appearance	No defects	Deflection: 2mm
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds 1mm/sec
Flexure Stresses	Q	Meets Initial Values (As Above)	
	Insulation Resistance	≥ Initial Value x 0.3	90 mm
Solder		≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal	
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)	
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes
S.I.O.I.	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature
	Appearance	No visual defects	
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test chamber set at 125°C ± 2°C
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0). Remove from test chamber and stabilize at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature for 24 hours before measuring.
	Dielectric Strength	Meets Initial Values (As Above)	below medodring.
	Appearance	No visual defects	
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85%
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperature for 24 ± 2 hours before measuring.
	Dielectric Strength	Meets Initial Values (As Above)	j

NP0/C0G Capacitance Range

	SIZE			06	03				0805				1206	
		WVDC	16	25	50	100	16	25	50	100	16	25	50	100
Сар	0.5	0R5												
(pF)	1.0	1R0												
	1.2	1R2												
	1.5	1R5												
	1.8	1R8												
	2.2	2R2												
	2.7	2R7												
	3.3	3R3												
	3.9	3R9												
	4.7	4R7												
	5.6	5R6												
	6.8	6R8												
	8.2	8R2												
	10	100												
	12	120												
	15	150												
	18	180												
	22	220												
	27	270												
	33	330												
	39	390												
	47	470												
	56	560												
	68	680												
	82	820												
	100	101												
	120	121												
	150	151												
	180	181												
	220	221												
	270	271												
	330	331												
	390	391												
	470	471												
	560	561												
	680	681												
	820	821												
	1000	102												
	1200	122												
	1500	152												
	WVDC 16 25			50	100	16	25	50	100	16	25	50	100	
	SIZE				03				0805				1206	

X7R Specifications and Test Methods

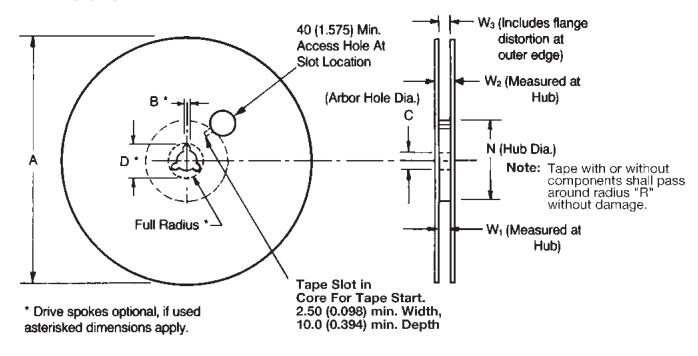
Parame	ter/Test	X7R Specification Limits	Measuring (Conditions
	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
(Q	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rate secs @ room to	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300 1-5 seconds, w/charge limited to 50 Note: Charge device voltage for 50	and discharge current mA (max) with 150% of rated
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V	
	Insulation Resistance	≥ Initial Value x 0.3	90 n	
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
- Cilicon	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	and measure after om temperature
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	at 125°C ± 2°C
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperature for	24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	measu	ırıng.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber : ± 5% relative humid	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

PREFERRED SIZES ARE SHADED

	SIZE		()40	2			0	60	3					(080	5						12	06							12	10				1	808	3		18	12		:	222	0
		WVDC	16	25	50	10	16	2	5 5	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250 5	500	50	100	200	50	100	200	250	25	50	10
ар	220	221																																											
oF)	270	271				T		t	T	T	一													П						t			T i					H		П			г		Г
	330	331					\top	T	T	T	一													П		П				T		П			ヿ			П		П			Г		Г
\neg	390	391					+	$^{+}$	+	_	\neg													Н						t								Н		Н			\Box		г
\neg	470	471					\top	+	+	_	\neg													Н		\Box				<u> </u>		\Box		\dashv	\dashv			Н		Н			П		Г
_	560	561						+	+	_	_													Н								\Box		\neg	\neg			Н		Н			П		Г
	680	681						+	+	_	_													Н										\neg	\neg			Н		Н			П		г
_	820	821				H		t	+	T	一													П						<u> </u>				\neg	\neg			Н		Н			П		Г
	1000	102				T		T	T	T	一													П						<u> </u>		H	T i		\neg			H		П			г		г
	1200	122				H	+	t	+	_	_									\vdash				Н		Н			\vdash	 		\Box	\neg	\dashv	\dashv			Н		Н			г	\vdash	Т
	1500	152				H	+	+	+	_	_																											Н		Н			П	\vdash	Т
	1800	182				H	+	+	+	_														Н		Н				1		\Box	_	\neg				Н		Н			П		Г
_	2200	222																																				\vdash		Н			г	t	\vdash
	2700	272							T	1																												Н		Н		t	П	t	Н
	3300	332								1		-																										H		Н		t	\vdash	t	Н
	3900	392								1																												H		Н		t	\vdash	t	Н
	4700	472				\vdash	+	+	+	_														Н		Н				1		\Box	_	_				Н		Н			г		Н
	5600	562				\vdash	+	+	+	_														Н						1			_	_				Н		Н			М		Н
	6800	682				\vdash	+	+	+	_														Н						1			_	_				Н		Н			М		Н
	8200	822				\vdash	+	+	+	_														Н						1			_	_				Н		Н			т		Н
	0.010	103		_	-	H	+	+	+	+														Н		Н			\vdash	\vdash	\vdash	\vdash	-	\rightarrow	\dashv					Н			Н	\vdash	Н
	0.012	123					+	+	+															Н		Н			\vdash	 		\vdash	-	\rightarrow	\dashv			Н		Н			Н	\vdash	Н
	0.012	153		-	+		+	+	+		\dashv					_								Н		Н				-		\vdash	-	\rightarrow	\dashv		_	Н		Н			Н		\vdash
	0.018	183		-	+		+	+	+		\dashv													Н		Н				 		\vdash	-	\rightarrow	\dashv			Н		Н			Н	\vdash	\vdash
	0.010	223					+	+	+		\dashv													Н		Н				1		\vdash	-	-	\dashv			Н		Н			Н	 	Н
	0.027	273			1		+	+	+		\dashv										┈			Н						1	 	\vdash	-	-	\dashv			Н		Н			Н	 	Н
	0.027	333			1		+	+	+		\dashv													Н						1		\vdash	-	-	-			Н		Н			\vdash	-	\vdash
	0.039	393					+	+	+		\dashv													Н						1		\vdash	-	-	-			Н		Н			Н		\vdash
	0.039	473					+	╁	+		\dashv													Н		H				1		\vdash	-	-	-			Н		Н		 	Н		\vdash
	0.056	563		_	+		+	╁	+		\dashv					_								Н		Н				 		\vdash	-					Н		Н		 	Н		\vdash
	0.068	683		-	+		+	+	+		\dashv					_		\vdash						Н		Н				-		\vdash	-		\dashv			Н		Н			Н		\vdash
	0.082	823		\vdash	 						\dashv	_						\vdash						Н		$\vdash \vdash$									\dashv		_	\vdash		Н			Н	\vdash	\vdash
_	0.10	104		\vdash	 						\dashv							\vdash						Н		$\vdash \vdash$									\dashv		\vdash	\vdash					Н	\vdash	\vdash
	0.12	124			 						\dashv	-														\vdash									\dashv			Н							
\dashv	0.12	154			 			+	+	\dashv	\dashv													Н		\vdash							\dashv	+	\dashv			Н							
+	0.13	224		\vdash	+			+	+	\dashv	\dashv	-						\vdash						Н		$\vdash \vdash$							\dashv	\dashv	\dashv			$\vdash \vdash$							H
\dashv	0.22	334			+			+	+	\dashv	\dashv							\vdash						Н		$\vdash \vdash$							\dashv	\dashv	\dashv			Н							Н
+	0.33	474		_	+	\vdash	+	+	+	\dashv	\dashv					_	\vdash	\vdash						Н		$\vdash \vdash$						\vdash	\dashv	\dashv	\dashv		_	Н			\vdash	\vdash			H
+	0.56	564		\vdash	1	\vdash	+	+	+	\dashv	\dashv					\vdash		\vdash						Н		$\vdash \vdash$						\vdash	\dashv	\dashv	\dashv		\vdash	\vdash			\vdash	\vdash			Н
+	0.68	684		\vdash	 	\vdash	+	+	+	\dashv	\dashv	_			\vdash	\vdash	\vdash	\vdash						Н		$\vdash \vdash$						\vdash	\dashv	\dashv	\dashv		\vdash	\vdash			\vdash	\vdash			Н
+	0.82	824		\vdash	+	\vdash	+	+	+	\dashv	\dashv	-			\vdash	\vdash		\vdash					<u> </u>	Н		$\vdash \vdash$							\dashv	\pm	\dashv		\vdash	$\vdash \vdash$		Н	\vdash	\vdash			H
+	1.0	105		-	1	\vdash	+	+	+	\dashv	\dashv	-			\vdash	-		\vdash						Н		$\vdash \vdash$						\vdash	\dashv	\dashv	\dashv		-	$\vdash \vdash$		Н	\vdash	\vdash			Н
+	1.2	125		\vdash	+	\vdash	+	+	+	+	\dashv	-			\vdash	\vdash	\vdash	\vdash						Н	\vdash	$\vdash\vdash$							\dashv	+	\dashv		\vdash	Н		Н		\vdash			Н
+	1.5	155			1	\vdash	+	+	+	+	\dashv	_	\vdash		\vdash			\vdash		\vdash	\vdash			Н		\vdash			\vdash	\vdash	\vdash	\vdash	\dashv		\dashv			$\vdash \vdash$		Н		\vdash			H
	WVDC			25	50	10	1 16	21	5 6	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250 5	inn l	50	100	200	50	100	200	250	25	50	10
_				_		10	, 10				100	200	10	10				200	200	10	110	120			200	200	500	10	10	120			200	200 0	,,,,,			\neg	30				$\overline{}$		
	SIZE		()40	2			0	60	13					(080	5						12	06							12	10				1	808	3		18	12		1 '	222	0

Packaging of Chip Components

Automatic Insertion Packaging



TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

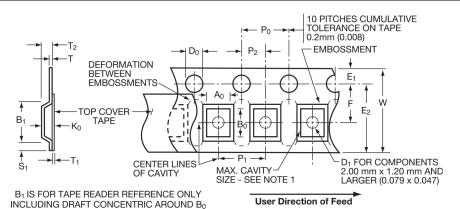
	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

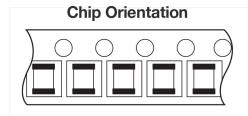
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 +0.50	20.2	50.0	8.40 ^{+1.5} (0.331 ^{+0.059})	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	(0.512 +0.020)	(0.795)	(1.969)	12.4 ^{+2.0} _{-0.0} (0.488 ^{+0.079})	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

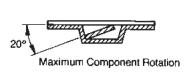


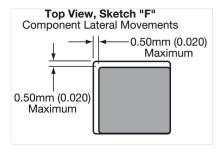
Embossed Carrier Configuration

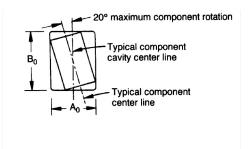
4, 8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

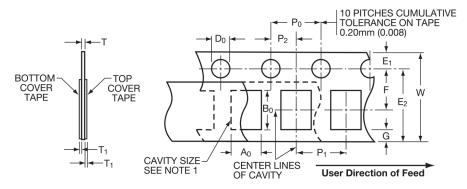

Tape Size	D_0	E ₁	P ₀	P_2	S ₁ Min.	T Max.	T₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
4mm	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	1.50 +0.10	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm	$(0.059^{+0.004}_{-0.0})$	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)


VARIABLE DIMENSIONS


Tape Size	B ₁ Max.	D₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A ₀ B ₀ K ₀
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

NOTES:

- The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
- b) the component does not protrude beyond the sealing plane of the cover tape.
- c) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
- d) rotation of the component is limited to 20° maximum (see Sketches D & E).
- e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B_1 dimension is a reference dimension for tape feeder clearance only.
- 5. If P_1 = 2.0mm, the tape may not properly index in all tape feeders.

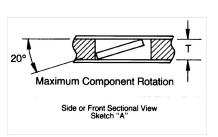


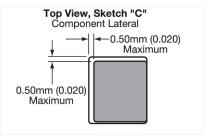
Paper Carrier Configuration

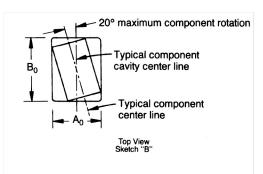
8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS


Tape Size	D _o	E	P ₀	P ₂	T ₁	G. Min.	R Min.
8mm	1.50 +0.10	1.75 ± 0.10	4.00 ± 0.10	2.00 ± 0.05	0.10	0.75	25.0 (0.984)
and	$(0.059^{+0.004}_{-0.0})$	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	` ′	(0.030)	See Note 2
12mm					Max.	Min.	Min.


VARIABLE DIMENSIONS


Tape Size	P ₁ See Note 4	E ₂ Min.	F	W	$A_0 B_0$	Т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012})	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} _{0.10} (0.315 ^{+0.012} _{0.004})		1.60mm (0.063) Max. for Non-
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		Paper Base Compositions

NOTES:

- The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:
 - a) the component does not protrude beyond either surface of the carrier tape;
 - b)) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
- c) rotation of the component is limited to 20° maximum (see Sketches A & B);
- d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
- 4. If P_1 = 2.0mm, the tape may not properly index in all tape feeders.

Bar Code Labeling Standard

AVX bar code labeling is available and follows latest version of EIA-556

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_D}$$

Metric: $C = \frac{.0884 \text{ K A}}{T_D}$

II. Energy stored in capacitors (Joules, watt - sec)

$$E = \frac{1}{2} CV^2$$

III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_L = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.=
$$\tan \delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{X_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine (loss angle) = $\cos \varphi$ (phase angle)

P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

Q = Cotan
$$\delta$$
 (loss angle) = $\frac{1}{D}$ F

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2
$$\pi$$
 fC)

XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.)

XIII. KVA (Kilowatts)

 $KVA = 2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors

$$\begin{array}{c} L_{o} = \left(\frac{V_{t}}{V_{o}}\right)^{X} & \left(\frac{T_{t}}{T_{o}}\right)^{-X} \end{array}$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \frac{1}{C_N}$$
 Two: $C_T = \frac{C_1 C_2}{C_1 + C_2}$

XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 --+ C_N$$

XIX. Aging Rate

A.R. = $\%\Delta$ C/decade of time

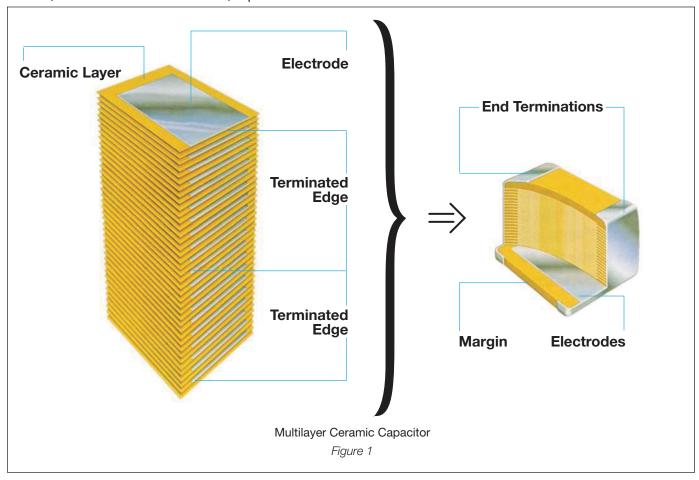
XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES

Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²

SYMBOLS


K	= Dielectric Constant	f	= frequency	L_{t}	= Test life
Α	= Area	L	= Inductance	V_{t}	= Test voltage
T _D	= Dielectric thickness	δ	= Loss angle	V _o	= Operating voltage
V	= Voltage	φ	= Phase angle	T _t	= Test temperature
t	= time	X & Y	= exponent effect of voltage and temp.	T _o	= Operating temperature
R _s	= Series Resistance	L _o	= Operating life		

Basic Construction – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the

quality and quantities needed in today's electronic equipment.

Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range			
RS198	Temperature Range		
X7 X6 X5 Y5 Z5	-55°C to +125°C -55°C to +105°C -55°C to +85°C -30°C to +85°C +10°C to +85°C		
Code	Percent Capacity Change		
D E F P R S T U V	±3.3% ±4.7% ±7.5% ±10% ±15% ±22% +22%, -33% +22%, - 56% +22%, -82%		

EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE				
Symbol	ool Temperature Range			
A B C	-55°C to +85°C -55°C to +125°C -55°C to +150°C			
Symbol	Cap. Change Zero Volts	Cap. Change Rated Volts		
R S W X Y Z	+15%, -15% +22%, -22% +22%, -56% +15%, -15% +30%, -70% +20%, -20%	+15%, -40% +22%, -56% +22%, -66% +15%, -25% +30%, -80% +20%, -30%		

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

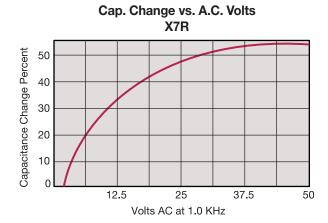
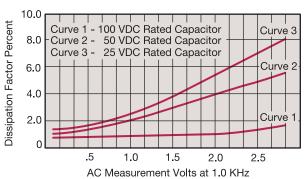
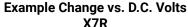
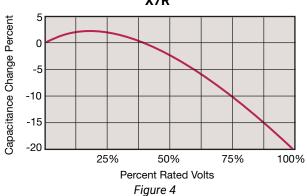


Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts X7R


Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

General Description

Example Cap. Change vs. Temperature X7R

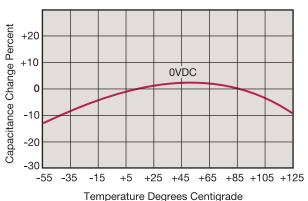


Figure 5

Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after deaging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Example Curve of Aging Rate X7R

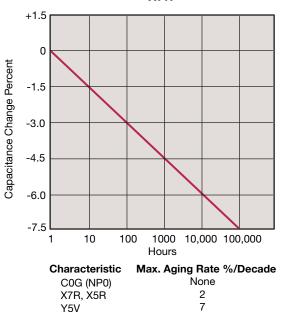


Figure 6

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.

General Description

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

 $\begin{array}{ll} \textbf{L}_{\text{o}} = \text{operating life} & \textbf{T}_{\text{t}} = \text{test temperature and} \\ \textbf{L}_{\text{t}} = \text{test life} & \textbf{T}_{\text{o}} = \text{operating temperature} \\ \textbf{V}_{\text{t}} = \text{test voltage} & \text{in } ^{\circ} \textbf{C} \\ \end{array}$

 V_0 = operating voltage X,Y = see text

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10⁻⁶), nano (10⁻⁹) or pico (10⁻¹²) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

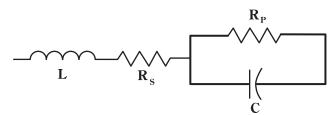
Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance


dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance L = Inductance

 \mathbf{R}_{s} = Series Resistance \mathbf{R}_{n} = Parallel Resistance

Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

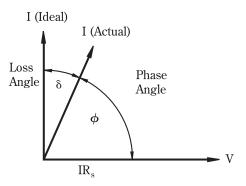
$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

Z = Total Impedance

R_s = Series Resistance

 X_c = Capacitive Reactance = $\frac{1}{2 \pi fC}$


 X_i = Inductive Reactance = $2 \pi fL$

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

General Description

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

> Power Factor (P.F.) = $Cos \phi$ or $Sine \delta$ Dissipation Factor (D.F.) = $tan \delta$

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

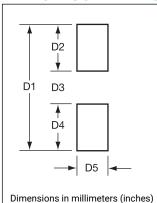
The $\frac{cli}{clt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{\text{res}} = \frac{1}{2\pi\sqrt{\text{LC}}}$$

Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohmmicrofarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.


Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

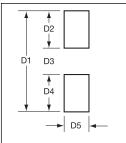
Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

MLC Chip Capacitors

REFLOW SOLDERING

Case Size	D1	D2	D3	D4	D5
0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Component Pad Design

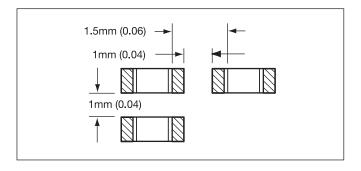

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- · Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

WAVE SOLDERING



Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

Recommended Soldering Profiles

REFLOW SOLDER PROFILES

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180°C).

Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

Cool Down:

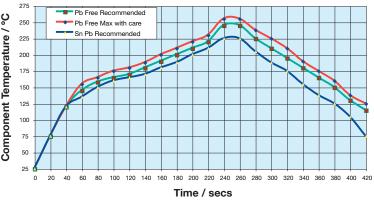
Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

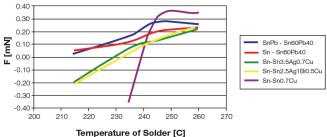
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

Preheat:

This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.

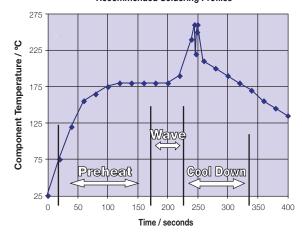

Wave:

250°C - 260°C recommended for optimum solderability.


Cool Down:

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.

Recommended Reflow Profiles



Wetting Force at 2nd Sec. (higher is better)

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

Recommended Soldering Profiles

MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 245° C +/- 5° C for 5+0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/ Lead/Silver	Solder Temp °C	Immersion Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

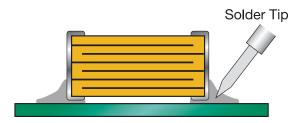
MLC Chip Capacitors

POST SOLDER HANDLING

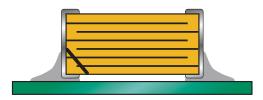
Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

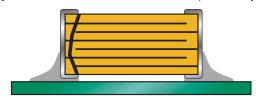
Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:


Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

COMMON CAUSES OF MECHANICAL CRACKING

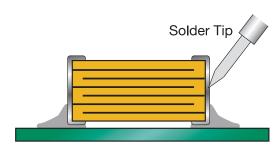

The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.


Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

Preferred Method - No Direct Part Contact

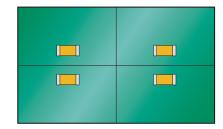
Type A: Angled crack between bottom of device to top of solder joint.



Type B: Fracture from top of device to bottom of device.

REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.


However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.


Poor Method - Direct Contact with Part

PCB BOARD DESIGN

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

FOLLOW US: O 🗷 🖪 D in VISIT US AT WWW.AVX.COM

North America

Tel: +1 864-967-2150

Central America Tel: +55 11-46881960 Europe

Tel: +44 1276-697000

Asia Tel: +65 6286-7555

Japan Tel: +81 740-321250