

Dual Remote Resistor-Programmable Temperature Switches

Features

Applications

Computers

Fan Control Automotive

Temperature Control Temperature Alarms

- Duel Remote Temperature Switches Set by Thermistor and External Resistors
- Open-Drain Active Low Output Stage
- Guaranteed Output Signal Valid to Vcc = 0.8V

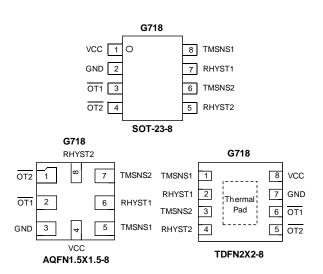
µP Temperature Monitoring in High-Speed

 SOT-23-8 , AQFN1.5X1.5-8 and TDFN2X2-8 Packages.

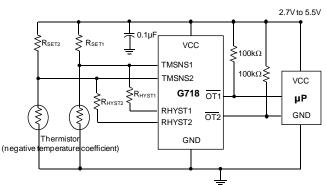
General Description

The G718 are fully integrated, resistor programmable dual remote temperature switches. The thresholds are set by external resistors and negative temperature coefficient thermistors. The G718 provides open-drain, active low over-temperature outputs for both sensors. These switches operate with a +2.7V to +5.5V single supply.

The G718 are available in 8-pin SOT-23, AQFN1.5X1.5 and TDFN2X2 packages.


Ordering Information

ORDER NUMBER	MARKING	TEMP. RANGE	PACKAGE (Green)
G718TM1U	718xx	-40°C to 125°C	SOT-23-8
G718A71U	78 xx	-40°C to 125°C	AQFN1.5X1.5-8
G718RC1U	718	-40°C to 125°C	TDFN2X2-8


Note: TM: SOT-23-8 A7: AQFN1.5X1.5-8 RC:TDFN2X2-8 1: Bonding Code

Green : Lead Free / Halogen Free.

Pin Configuration

Typical Application Circuit

U: Tape & Reel

Absolute Maximum Ratings

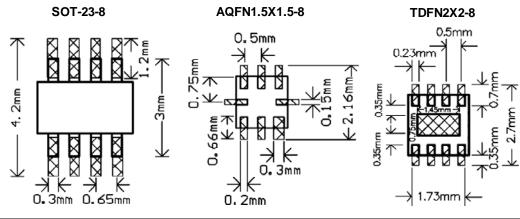
Reference to GND Supply Voltage (VCC)0.3V to +6\
OT1, OT2, RHYST1, RHYST20.3V to +6\
TMSNS1, TMSNS20.3V to (VCC + 0.3V
Output Current (all pins) 20mA
Input Current (all pins) 20mA
Thermal Resistance Junction to Ambient, $(\theta_{JA})^*$
SOT-23-8
AQFN1.5X1.5-8
TDFN2X2-8
Continuous Power Dissipation (T _A =25°C)*
SOT-23-8
AQFN1.5X1.5-80.4W
TDFN2X2-8TBDW

Thermal Resistance Junction to Case, (θ _{JC})
SOT-23-8
AQFN1.5X1.5-8
TDFN2X2-8 TBD°C/W
Operating Temperature Range40°C to +125°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Reflow Temperature (soldering, 10s) 260°C
ESD(HBM)(Note 1) 2kV

* Please refer to Minimum Footprint PCB Layout Section.

Note 1 : Human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

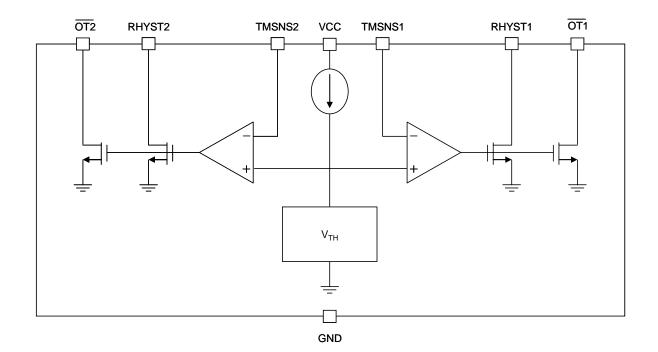

Electrical Characteristics

(Vcc = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage Range	VCC		2.7		5.5	V
Supply Current	ICC	VCC=5.5V		42	70	μA
TMSNS Input Threshold	VTH	VCC=5V, VTH/VCC	0.246	0.25	0.254	V/V
TMSNS input Threshold	VIN	VCC=3V, VTH/VCC	0.24	0.25	0.26	V/V
TMSNS Input Leakage	I _{TMSNS}	V _{TMSNS} =5.5V			0.1	μA
Open-Drain RHYST Output Sink Current	I _{RHYST}	V _{RHYST} =0.1V, V _{TMSNS} =0V	0.5	1.25		mA
Open-Drain RHYST Output Leakage Current	I _{LEAKR}	V _{RHYST} =VCC, V _{TMSNS} =5V			0.1	μA
Open-Drain OT Output Sink Current	I _{OT}	$V_{\overline{OT}} = 0.3V, V_{TMSNS} = 0V$	4	7.5		mA
Open-Drain OT Output Leakage Current	LEAK_OT	$V_{\overline{OT}} = VCC, V_{TMSNS} = 5V$			1	μA
Deglitch time to OT	Т _{от}	Deglitch time to \overline{OT} =Low, VCC=3.3V	70	100	250	μs
Deglitch time to dOT*	T_{dOT}	Deglitchtime to \overline{OT} =High, VCC=3.3V	8	16	30	μs

* Guaranteed by design

Minimum Footprint PCB Layout Section



TEL: 886-3-5788833 http://www.gmt.com.tw

	PIN		NAME	FUNCTION
SOT-23-8	AQFN1.5X1.5-8	TDFN2X2-8		FUNCTION
1	4	8	VCC	Power-Supply Input.
2	3	7	GND	Ground
3	2	6	OT1	Open-Drain Active Low over-temperature output for sensor 1.
4	1	5	OT2	Open-Drain Active Low over-temperature output for sensor 2.
5	8	4	RHYST2	Connect an external resistor from RHYST1 to TMSNS1 to set hysteresis of second remote temperature sensing.
6	7	3	TMSNS2	Connect an external 1% resistor from TMSNS2 to GND to set trigger point of second remote temperature sensing.
7	6	2	RHYST1	Connect an external resistor from RHYST1 to TMSNS1 to set hysteresis of first remote temperature sensing.
8	5	1	TMSNS1	Connect an external 1% resistor from TMSNS1 to GND to set trigger point of first remote temperature sensing.

Block Diagram

<u>G718</u>

Detailed Description

The G718 fully integrated temperature switches incorporate two remote temperature sensors. The open-drain $\overline{OT1(2)}$ outputs low if sensor 1(2) detects over temperature events.

It's easily interfaces with a microprocessor ($\mu\text{P})$ reset input.

The temperature threshold is set by external resistor and a thermistor connected to TMSNS and in series from VCC to GND. Another resistor from TMSNS to RHYST set the hysteresis of the sensor.

Applications Information

Remote Temperature Threshold Setting

Refer to Typical Application Circuit. Remote over temperature threshold is set by R_{SET} , and the value is determined by the equations below.

 $R_{SET} = 3^* R_{TMH}$

Where R_{TMH} is the resistance of thermistor at over temperature threshold. The hysteresis temperature (Temperature that release OT) is set by R_{HYST} , and the value is determined by the equations below.

$$R_{HYST} = (R_{SET} * R_{TML}) / (3 * R_{TML} - R_{SET})$$

Where R_{TML} is the resistance of thermistor at the hysteresis temperature. Both R_{TMH} and R_{TML} can be found

on datasheet of thermistor. Use high accuracy resistor as R_{SET} and R_{HYST} to achieve more accurate trigger point. Don't connect capacitors to TMSNS or RHYST pin. There is built-in deglitch circuit for over-temperature detection.

To prevent temperature offset due to power or GND differences, put R_{SET} close to G718 and connect power lines to R_{SET} and VCC pin of G718 closely. If the thermistors are far away from G718, users should layout another GND line directly connected to GND pin of G718. (Figure 1)

Thermal Considerations of Remote Temperature Sensor

To monitor accurate remote temperature, put thermistor underneath a socketed μP , allowing the device to monitor the $\mu P'$ s temperature directly.

To minimize trigger point offset come from the temperature coefficient of R_{SET} . Put R_{SET} to the position in relative stable temperature. Another way to reduce the effect is to put R_{SET} close to thermistor and take into account the temperature coefficient when calculate R_{SET} .

Self-heating of thermistor may cause trigger point offset if too large power generated in themistor. Select thermistor with sufficient resistance to reduce power.

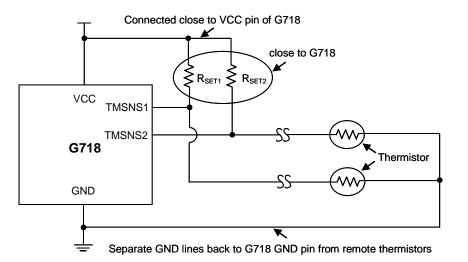
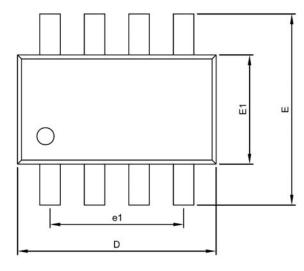
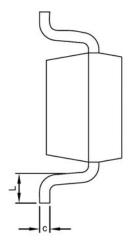
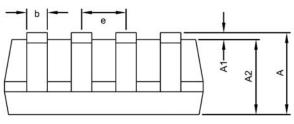
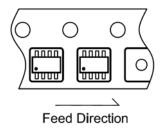




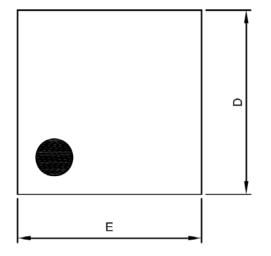
Figure 1

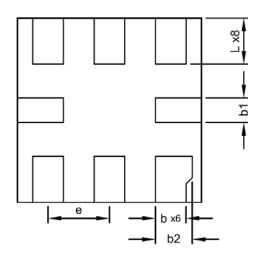


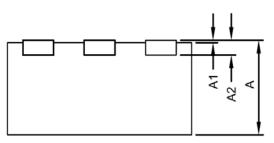
Package Information

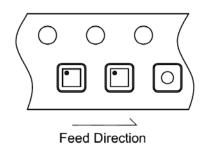

<u>G718</u>

SOT-23-8 Package

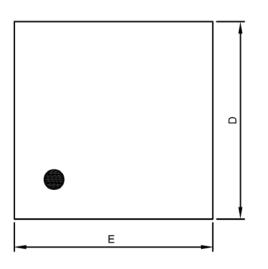

0	DIMENSION IN MM			DIMENSION IN INCH		
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.95	1.10	1.45	0.037	0.043	0.057
A1	0.00		0.15	0.000		0.006
A2	0.90	1.10	1.30	0.035	0.043	0.051
D	2.80	2.90	3.00	0.110	0.114	0.118
E	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.50	1.60	1.70	0.059	0.063	0.067
с	0.08	0.15	0.25	0.003	0.006	0.010
b	0.22	0.30	0.40	0.008	0.012	0.016
е	0.65 BSC				0.026 BSC	
e1	1.95 BSC				0.077 BSC	
L	0.30	0.45	0.60	0.012	0.018	0.024

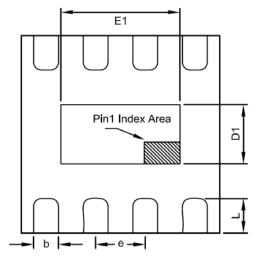

Taping Specification

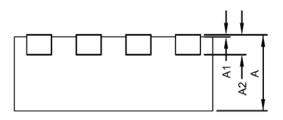

PACKAGE	Q'TY/REEL
SOT-23-8	3,000 ea

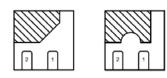

G718

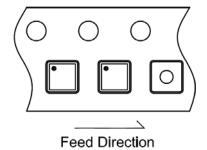
AQFN1.5X1.5-8 Package


0h.al	DIMENSION IN MM			DIMENSION IN INCH			
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	0.0276	0.0295	0.0315	
A1	0.00		0.05	0.0000		0.0020	
A2		0.11 REF			0.0043 REF		
D	1.45	1.50	1.55	0.0570	0.0590	0.0610	
Е	1.45	1.50	1.55	0.0570	0.0590	0.0610	
b	0.20	0.25	0.30	0.0079	0.0098	0.0118	
b1	0.15	0.20	0.25	0.0059	0.0079	0.0098	
b2	0.30 REF				0.0118 REF		
е		0.50 BSC			0.0197 BSC		
L	0.33	0.38	0.43	0.0130	0.0150	0.0169	


Taping Specification




PACKAGE	Q'TY/REEL	
AQFN1.5X1.5-8	3,000 ea	



Pin1 Index

TDFN2X2-8 Package

Gumbal	DIMENSION IN MM			DIMENSION IN INCH		
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.0276	0.0295	0.0315
A1	0.00		0.05	0.0000		0.0020
A2	0.20 REF			0.0079 REF		
D	1.95	2.00	2.05	0.0768	0.0787	0.0807
E	1.95	2.00	2.05	0.0768	0.0787	0.0807
D1	0.55	0.65	0.75	0.0217	0.0256	0.0295
E1	1.15	1.25	1.35	0.0453	0.0492	0.0531
b	0.18	0.25	0.30	0.0071	0.0098	0.0118
е	0.50 BSC				0.0197 BSC	
L	0.30	0.35	0.40	0.0118	0.0138	0.0157

Taping Specification

PACKAGE	Q'TY/REEL
TDFN2X2-8	3,000 ea

GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.