

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD PROTECTION

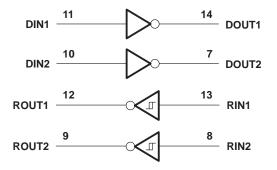
- ESD Protection for RS-232 Bus Pins
 ±15-kV Human-Body Model
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates at 5-V V_{CC} Supply
- Operates Up To 120 kbit/s
- External Capacitors . . . $4 \times 0.1 \ \mu F$
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Applications
 - Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment

description/ordering information

The SP202 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with \pm 15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 5-V supply. The device operates at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs driver output slew rate.

Function Tables

INPUT D _{IN}	OUTPUT DOUT
L	Н
н	L


H = high level, L = low level

EACH RECEIVER

INPUT R _{IN}	OUTPUT ROUT
L	Н
Н	L
Open	Н
LL Istalia I	and the later

H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Positive charge pump voltage range, V+ (see Note 2	1) V _{CC} – 0.3 V to 14 V
Negative charge pump voltage range, V- (see Note	1) –14 V to 0.3 V
Input voltage range, V _I : Drivers	–0.3 V to V+ + 0.3 V
	±30 V
Output voltage range, V _O : Drivers	V– – 0.3 V to V+ + 0.3 V
	-0.3 V to V _{CC} + 0.3 V
Short-circuit duration: DOUT	Continuous
Package thermal impedance, θ_{JA} (see Notes 2 and	3): D package 73°C/W
	DW package
	N package 67°C/W
	PW package 108°C/W
Operating virtual junction temperature, T ₁	
	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to network GND.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4 and Figure 4)

		MIN	NOM	MAX	UNIT
	Supply voltage		5	5.5	V
VIH	Driver high-level input voltage DIN	2			V
V_{IL}	Driver low-level input voltage DIN			0.8	V
	Driver input voltage DIN	0		5.5	V
VI	Receiver input voltage	-30		30	V
-	SP2020	0		70	°C
T _A Operating free-air temp	Operating free-air temperature SP202I	-40		85	-0

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST	CONDITIONS	MIN	TYP‡	MAX	UNIT
ICC	Supply current	No load,	$V_{CC} = 5 V$		8	15	mA

[‡] All typical values are at $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VOH	High-level output voltage	D_{OUT} at $R_L = 3 k\Omega$ to GND,	D _{IN} = GND	5	9		V
VOL	Low-level output voltage	D_{OUT} at $R_L = 3 \text{ k}\Omega$ to GND,	$D_{IN} = V_{CC}$	-5	-9		V
ЧН	High-level input current	$V_I = V_{CC}$			15	200	μΑ
١ _{IL}	Low-level input current	V _I at 0 V			-15	-200	μA
los‡	Short-circuit output current	V _{CC} = 5.5 V,	$V_{O} = 0 V$		±10	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_{O} = \pm 2 V$	300			Ω

[†] All typical values are at V_{CC} = 5 V, and T_A = 25°C. [‡] Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT
	Maximum data rate	C _L = 50 to1000 pF, One D _{OUT} switching,	$R_L = 3 k\Omega$ to 7 kΩ, See Figure 1	120			kbit/s
^t PLH (D)	Propagation delay time, low- to high-level output	C _L = 2500 pF, All drivers loaded,	R _L = 3 kΩ, See Figure 1		2		μs
^t PHL (D)	Propagation delay time, high- to low-level output	C _L = 2500 pF, All drivers loaded,	R _L = 3 kΩ, See Figure 1		2		μs
^t sk(p)	Pulse skew§	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF},$	$R_L = 3 k\Omega$ to 7 kΩ, See Figure 2		300		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$C_L = 50 \text{ pF to } 1000 \text{ pF},$ $V_{CC} = 5 \text{ V}$	$R_L = 3 k\Omega$ to 7 kΩ,	3	6	30	V/µs

[†] All typical values are at V_{CC} = 5 V, and T_A = 25°C.

§ Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V.

ESD protection

PIN	TEST CONDITIONS	TYP	UNIT
D _{OUT} , R _{IN}	Human-Body Model	±15	kV

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER TEST CONDITIONS		MIN	TYP†	MAX	UNIT	
VOH	High-level output voltage	$I_{OH} = -1 \text{ mA}$		3.5V	V _{CC} -0.4 V		V
VOL	Low-level output voltage	I _{OL} = 1.6 mA				0.4	V
VIT+	Positive-going input threshold voltage	V _{CC} = 5 V,	$T_A = 25^{\circ}C$		1.7	2.4	V
V _{IT} –	Negative-going input threshold voltage	V _{CC} = 5 V,	$T_A = 25^{\circ}C$	0.8	1.2		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT} _)			0.2	0.5	1	V
ri	Input resistance	$V_{I} = \pm 3 \text{ V to } \pm 25 \text{ V}$		3	5	7	kΩ

[†] All typical values are at V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V ± 0.5 V.

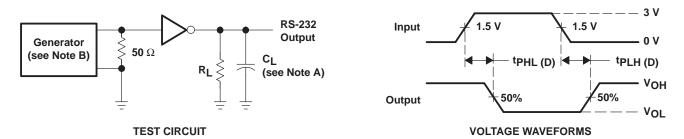
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
^t PLH (R)	Propagation delay time, low- to high-level output	C _L = 150 pF		0.5	10	μs
^t PHL (R)	Propagation delay time, high- to low-level output	C _L = 150 pF		0.5	10	μs
^t sk(p)	Pulse skew [‡]			300		ns

[†] All typical values are at $V_{CC} = 5$ V, and $T_A = 25^{\circ}$ C.

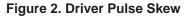
[‡] Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. NOTE 4: Test conditions are C1–C4 = 0.1 μ F, at V_{CC} = 5 V ± 0.5 V.

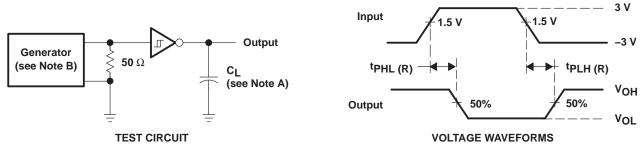
PARAMETER MEASUREMENT INFORMATION 3 V Input 1.5 V 1.5 V **RS-232** 0 V Output Generator Ś **50** Ω (see Note B) CL ^tPHL (D) ^tPLH (D) R_L ≥ (see Note A) ۷он 3 \ Output -3 Voi **TEST CIRCUIT VOLTAGE WAVEFORMS** 6 V SR(tr) = ^tPHL (D) ^{or t}PLH (D)


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 120 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

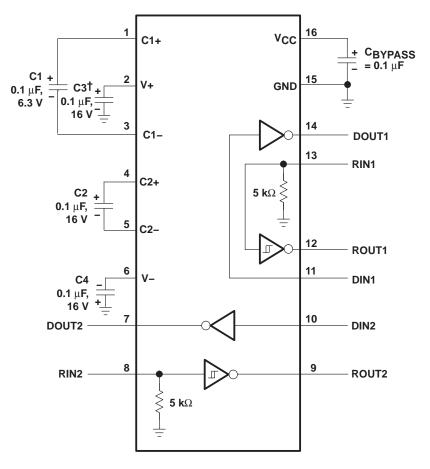
Figure 1. Driver Slew Rate




PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 120 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

APPLICATION INFORMATION

[†]C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 4. Typical Operating Circuit and Capacitor Values

APPLICATION INFORMATION

capacitor selection

The capacitor type used for C1–C4 is not critical for proper operation. The SP202 requires 0.1- μ F capacitors, although capacitors up to 10 μ F can be used without harm. Ceramic dielectrics are suggested for the 0.1- μ F capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2×) nominal value. The capacitors' effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V–.

Use larger capacitors (up to 10 μ F) to reduce the output impedance at V+ and V–.

Bypass V_{CC} to ground with at least 0.1 μ F. In applications sensitive to power-supply noise generated by the charge pumps, decouple V_{CC} to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).

ESD protection

SP202 devices have standard ESD protection structures incorporated on the pins to protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures were designed to successfully protect these bus pins against ESD discharge of ±15-kV when powered down.

ESD test conditions

Stringent ESD testing is performed by TI, based on various conditions and procedures. Please contact TI for a reliability report that documents test setup, methodology, and results.

Human-Body Model (HBM)

The HBM of ESD testing is shown in Figure 5. Figure 6 shows the current waveform that is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of concern, and subsequently discharged into the device under test (DUT) through a 1.5-k Ω resistor.

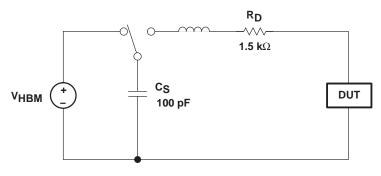


Figure 5. HBM ESD Test Circuit

APPLICATION INFORMATION

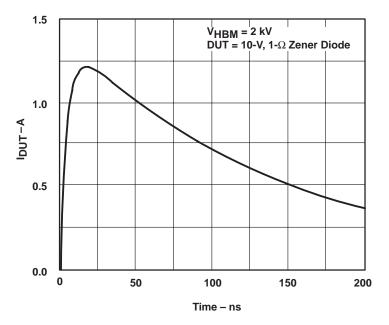


Figure 6. Typical HBM Current Waveform

Machine Model (MM)

The MM ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC board assembly, the MM test no longer is as pertinent to the RS-232 pins.

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.