

Data Sheet Supplement Version 1.0

Dynamic Differential Hall Effect Sensor

TLE4928

For all parameters not specified in this document the TLE4926C-HT E6947 data sheet is valid.

Туре	Marking	Ordering Code	Package	
TLE4928	28	SP000700818	PG-SSO-3-6	

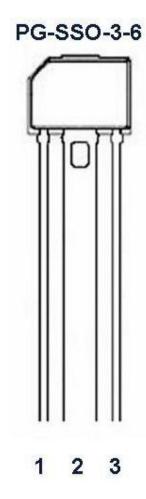


Figure 1: Pin configuration in PG-SSO-3-6

Pin definition and Function

Pin No.	Symbol	Function
1	$V_{\mathbb{S}}$	Supply Voltage
2	GND	Ground
3	Q	Open Drain Output

1.1 Absolute Maximum Ratings

No.	Parameter	Symbol	min.	typ.	max.	Unit	Conditions
1.1.1	Junction temperature	T _j	-40			°C	-
					155	°C	2000 h (not additive)
					165	°C	1000 h (not additive)
					175	°C	168 h (not additive)
					195	°C	3x1 h (additive to the other life times).
1.1.2	Thermal resistance	R _{th JA}			190	K/W	Lower values are
	junction-air for						possible with
	PG-SSO-3-6						overmoulded devices.

1.2 ESD Protection

No.	Parameter	Symbol	max	Unit	Remarks
1.2.1	ESD – protection PG-SSO-3-6	V _{ESD}	± 6	kV	According to standard EIA/JESD22-A114-B Human Body Model (HBM 1500 Ohm/100pF)

1.3 Operating Range

No.	Parameter	Symbol	min.	typ.	max.	Unit	Conditions
1.3.1	Operating junction	T _j	-40			°C	-
	temperature				155	°C	2000 h (not additive)
					165	°C	1000 h (not additive)
					175	°C	168 h (not additive)
							reduced signal
							quality permittable
							(e.g. jitter).
1.3.2	Power on time	t _{on}			1	ms	Time to achieve
							specified accuracy
							After power on the
							output of the IC is
							always in high-state.
							After internal resets
							output is locked ¹ .

Output of the IC is locked in present state (high-state or low-state) after an internal reset is launched. This reset happens typically every 195ms when there is no output switching in either case. See also 1.4.4. A voltage reset causes a release of the output and output is in high state after power on again.

1.4 AC/DC Characteristics

No.	Parameter	Symbol	min	typ	max	Unit	Remarks
1.4.1	Output rise time	t _r ²					
			4	12	20	μs	$V_{Load} = 4.5 \text{ to } 24V$
							$R_{Load} = 1.2k\Omega;$
							C _{Load} = 4.7nF external capacitor
1.4.2	Output fall time	t _f ³					
			0.5	0.9	1.3	μs	$V_{Load} = 5V$
			0.65	1.15	1.65	μs	V _{Load} = 12V
							$R_{Load} = 1.2k\Omega;$
							C _{Load} = 4.7nF external capacitor
1.4.3	Frequency range ⁴	f	0.006		8	kHz	Operation below 6Hz ⁵
1.4.4	Offset recalibration time after last output change ⁴	t _{reset}	165	195	225	ms	Valid for calibrated mode
							Output locked to state
							before recalibration

 $^{^2}$ The rise time is defined as the time between the 10 and 90% value. 3 The fall time is defined as the time between the 10 and 90% value. 4 Not part of production testing, verified by design and characterisation 5 Output will switch if magnetic signal is changing more that $2x \left| \Delta B_{\text{min}} \right|$ within offset recalibration time even below 6Hz once per magnetic edge, increased phase error is possible. Page 4 of 9

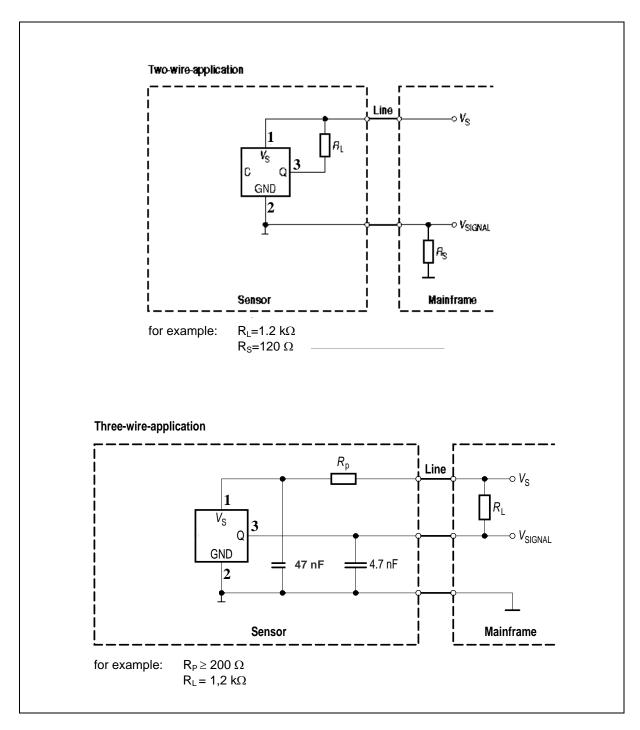


Figure 2: Application Circuits (capacitors to be added externally)

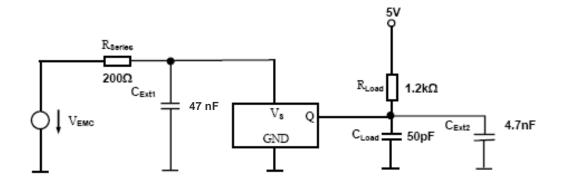


Figure 3: Test Circuit for EMC tests

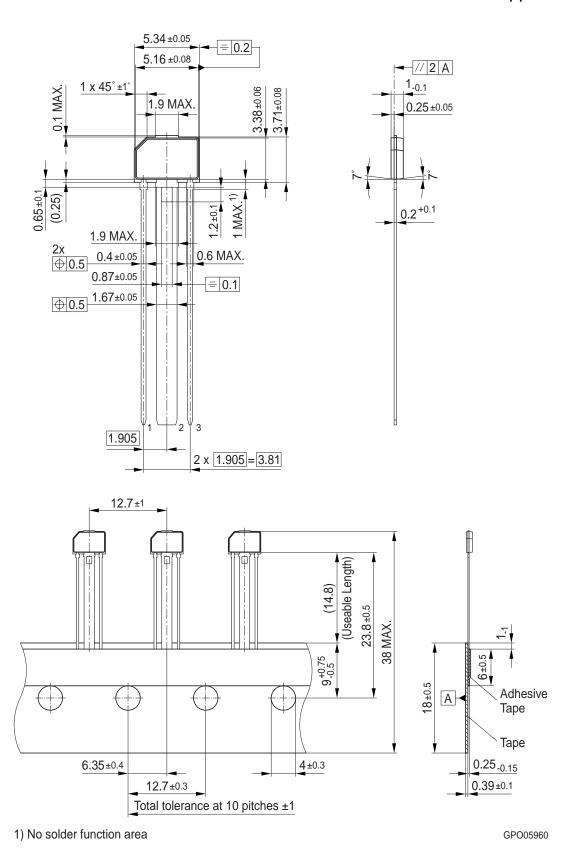


Figure 4: PG-SSO-3-6 package drawing

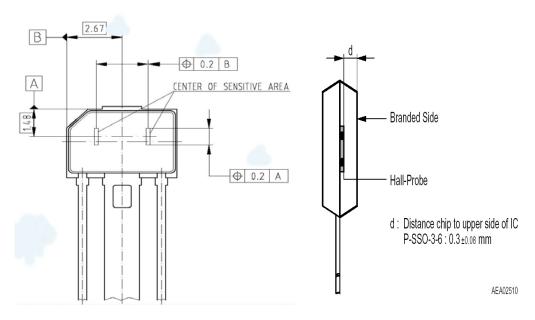
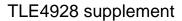



Figure 5: Hall probe spacing in the PG-SSO-3-6 package

Revision History: November 2009 Version 1.0

Previous Version: 0.9				
Page Subjects (major changes since last revision)				
-	Change to Final Data Sheet			

Infineon Technologies AG
© Infineon Technologies AIM SC
All Rights Reserved.

http://www.infineon.com/products/sensors

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

Sensors@infineon.com