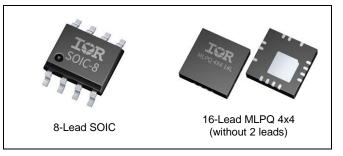
International

IRS2008(S,M)PBF

200-V half-bridge driver with shutdown and Vcc & VBS UVLO

Features

- Gate drive supplies up to 20 V per channel
- Undervoltage lockout for V_{CC}, V_{BS}
- 3.3 V, 5 V, 15 V input logic compatible
- Tolerant to negative transient voltage
- Designed for use with bootstrap power supplies
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- High-side output in phase with input
- Shutdown input turns off both channels
- -40°C to 125°C operating range
- RoHS compliant

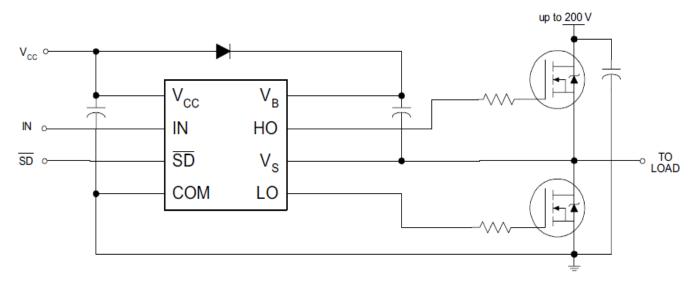

Description

The IRS2008 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 V. Propagation delays are matched to simplify the HVIC's use in high frequency applications.

Product Summary

Voffset	≤ 200V
Vout	10 V – 20 V
V001	10 V - 20 V
I _{o+} & I _{o-} (typ.)	290 mA & 600 mA
ton & toff (typ.)	680 ns & 150 ns
Deadtime (typ.)	520 ns

Package Options



Typical Applications

- Appliance motor drives, Stepper motor, Servo drives
- Micro inverter drives
- General purpose three phase inverters
- Light electric vehicles (e-bikes, e-scooters, e-toys)
- Wireless Charging
- General battery driven applications

Deer Dert Neuelan	De la contraction	Standard Pack		Standard Pack		
Base Part Number	Package Type Form		Quantity	Orderable Part Number		
		Tape and Reel	2500	IRS2008STRPBF		
<u>IRS2008S</u>	8-Lead SOIC	Tube/Bulk	95	IRS2008SPBF		
<u>IRS2008M</u>	14-Lead MLPQ 4x4	Tape and Reel	3000	IRS2008MTRPBF		

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer tour Application Notes & DesignTips for proper circuit board layout.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
Vcc	Low side supply voltage		-0.3	25 [†]	
V _{IN}	Logic input voltage (IN & S	D)	COM - 0.3	V _{CC} + 0.3	
VB	High-side floating well supp	oly voltage	-0.3	225	
Vs	High-side floating well supp	oly return voltage	V _B - 25	V _B + 0.3	V
Vно	Floating gate drive output	voltage	Vs - 0.3	V _B + 0.3	
VLO	Low-side output voltage		COM - 0.3	Vcc + 0.3	
СОМ	Power ground	Power ground		V _{CC} + 0.3	
dVs/dt	Allowable Vs offset supply	transient relative to COM	_	50	V/ns
P	Package power	8-Lead SOIC	_	0.625	14/
PD	dissipation @ T _A ≤+25⁰C	14-Lead MLPQ 4x4	_	2.08	W
D.I.	Thermal resistance,	8-Lead SOIC	_	200	00.00/
RthJA	junction to ambient			36	•C/W
TJ	Junction temperature		_	150	
Ts	Storage temperature			150	°C
T∟	Lead temperature (solderin	ng, 10 seconds)	_	300	1

t

All supplies are tested at 25V.

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The offset rating is tested with supplies of $(V_{CC} - COM) = (V_B - V_S) = 15V$.

Symbol	Definition	Min	Max	Units
Vcc	Low-side supply voltage	10	20	
Vin	Logic input voltage(IN & SD)	0	Vcc	
VB	High-side floating well supply voltage	Vs+10	Vs + 20	V
Vs	High-side floating well supply offset voltage [†]	COM - 8 [†]	200	V
V _{но}	Floating gate drive output voltage	Vs	VB	
VLO	Low-side output voltage	COM	Vcc	
TA	Ambient temperature	-40	125	°C

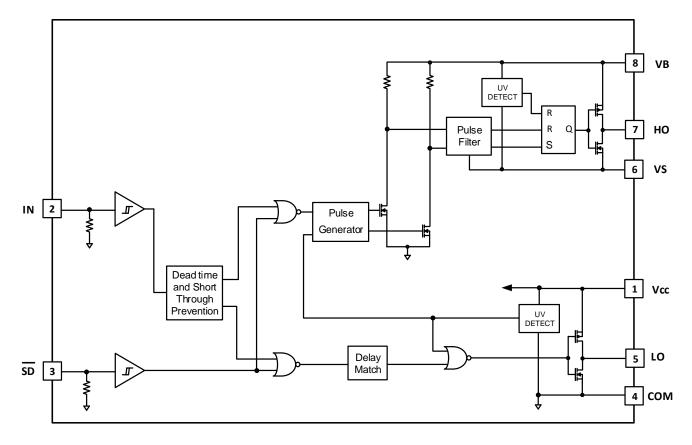
t

Logic operation for VS of –8 V to 200 V. Logic state held for V_S of –8 V to – V_{BS} . Please refer to Design Tip DT97-3 for more details.

Static Electrical Characteristics

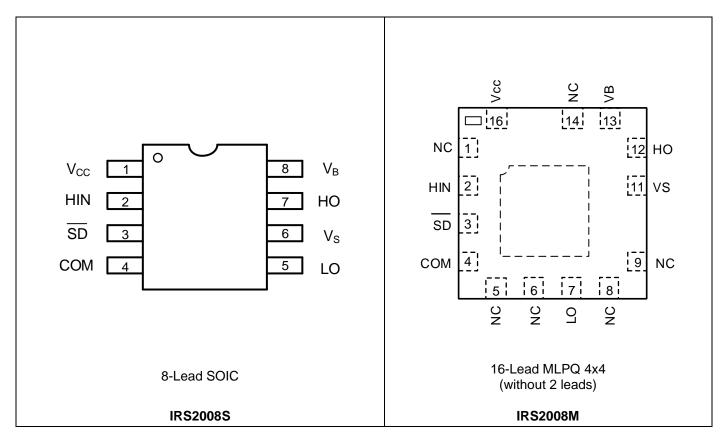
 $(V_{CC} - COM) = (V_B - V_S) = 15V$. $T_A = 25^{\circ}C$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM. The V₀ and I₀ parameters are referenced to respective V_S and COM and are applicable to the respective output leads HO or LO. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
V _{BSUV+}	V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8			
V _{BSUV} -	$V_{\rm BS}$ supply undervoltage negative going threshold	7.4	8.2	9			
V _{BSUVHY}	V _{BS} supply undervoltage hysteresis	—	0.7	—			
V _{CCUV+}	V_{CC} supply undervoltage positive going threshold	8.0	8.9	9.8	V		
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9			
V _{CCUVHY}	Vcc supply undervoltage hysteresis		0.7	—			
I _{LK}	High-side floating well offset supply leakage	—	—	50		$V_B = V_S = 200V$	
I _{QBS}	Quiescent V _{BS} supply current		45	75	μΑ	All inputs are in the	
I _{QCC}	Quiescent V _{CC} supply current	_	300	520		off state	
V _{OH}	High level output voltage drop, V_{BIAS} - V_{O}	—	0.05	0.2	v	$I_0 = 2 \text{ mA}$	
V _{OL}	Low level output voltage drop, Vo —		0.02	0.1	v	10 = 2 IIIA	
I _{o+}	Output high short circuit pulsed current	200	290	_	mA	Vo = 0V PW ≤ 10µs	
I _{o-}	Output low short circuit pulsed current	420	600	—	ША	V _O = 15V PW ≤ 10µs	
V _{IH}	Logic "1" (HO) & Logic "0" (LO) input voltage	2.5	—	—			
VIL	Logic "0" (HO) & Logic "1" (LO) input voltage	—	—	0.8			
V _{SD,TH+}	SD input positive going threshold 2.5 — —		—	V	Vcc=10V to 20V		
V _{SD,TH-}	SD input negative going threshold	—	—	0.8			
l _{IN+}	Logic "1" Input bias current	—	3	10		$V_{IN} = 5V$	
I _{IN-}	Logic "0" Input bias current	_	_	5	μA	$V_{IN} = 0V$	


Dynamic Electrical Characteristics

 $V_{CC} = V_B = 15V$, $V_S = COM$, $T_A = 25^{\circ}C$, and $C_L = 1000pF$ unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{ON}	Turn-on propagation delay	—	680	870		
toff	Turn-off propagation delay	_	150	220		Vs = 0V or 200V
t _{SD}	Shutdown propagation delay	—	160	220		
t _R	Turn-on rise time	—	70	170	ns	$V_{S} = 0V$
t⊨	Turn-off fall time		30	90		$v_{S} = 0v$
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400	520	650		
MT	Delay matching time (ton, toff)		_	60		


Functional Block Diagram

Lead Definitions

Symbol	Description
Vcc	Low-side and logic supply voltage
VB	High-side gate drive floating supply
VS	High voltage floating supply return
IN	Logic inputs for high and low side gate driver output (HO and LO), in phase with HO
SD	Logic inputs for shutdown
НО	High-side driver output
LO	Low-side driver output
COM	Low-side gate drive return

Lead Assignments

www.infineon.com/gdHalfBridge

April 23, 2020

Application Information and Additional Details

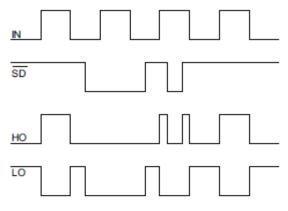


Figure 1. Input/Output Timing Diagram

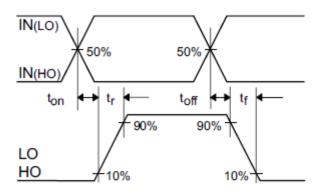
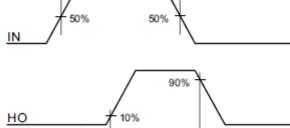
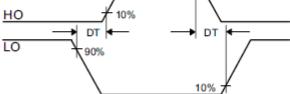




Figure 2. Switching Time Waveform Definitions

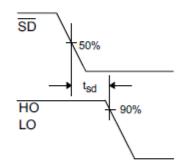


Figure 3. Shutdown Waveform Definitions

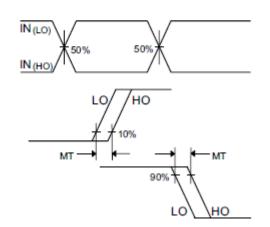


Figure 5. Delay Matching Waveform Definitions

Figure 6A. Turn-On Time vs. Temperature

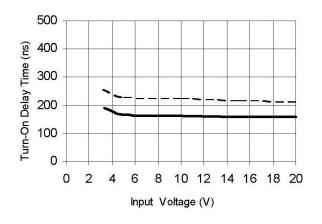


Figure 6C. Turn-On Time vs. Input Voltage

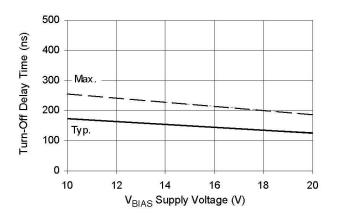


Figure 7B. Turn-Off Time vs. Supply Voltage

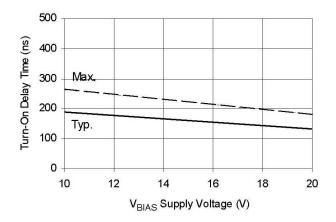


Figure 6B. Turn-On Time vs. Supply Voltage

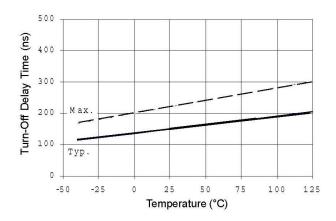


Figure 7A. Turn-Off Time vs. Temperature

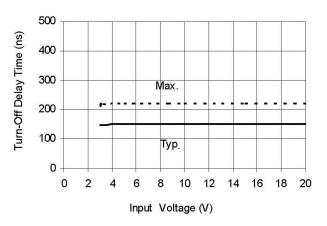
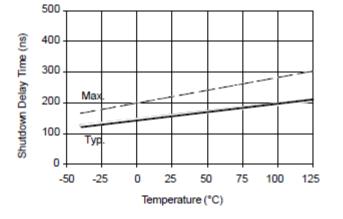



Figure 7C. Turn-Off Time vs. Input Voltage

IRS2008(S,M)PBF

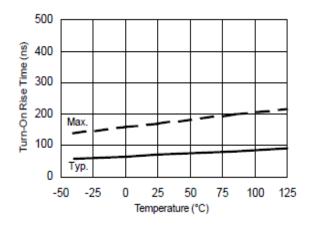


Figure 9A. Turn-On Rise Time vs. Temperature

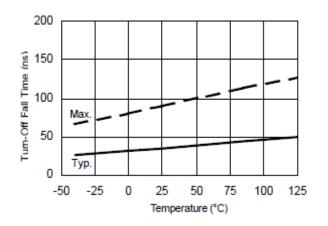


Figure 10A. Turn-Off Fall Time vs. Temperature

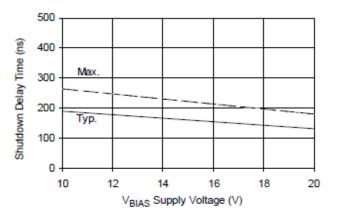


Figure 8B. Shutdown Time vs. Voltage

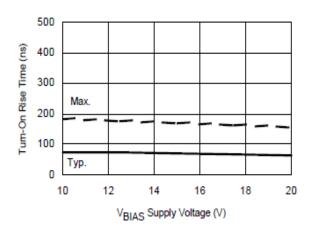


Figure 9B. Turn-On Rise Time vs. Voltage

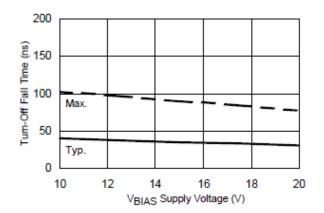


Figure 10B. Turn-Off Fall Time vs. Voltage

IRS2008(S,M)PBF

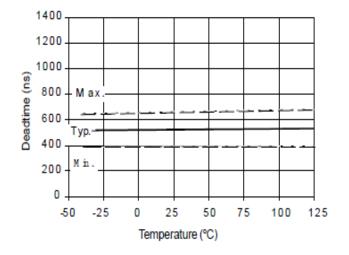
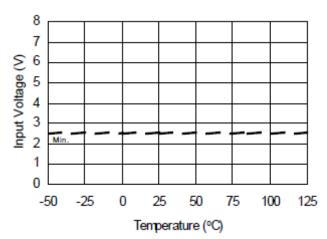
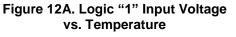




Figure 11A. Deadtime vs. Temperature

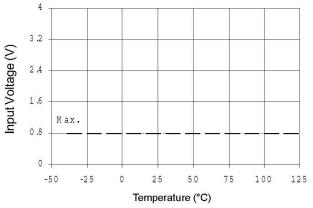


Figure 13A. Logic "0"(HO) & Logic "1"(LO) & Active SD Input Voltages vs. Temperature

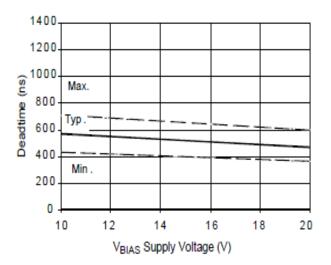


Figure 11B. Deadtime vs. Voltage

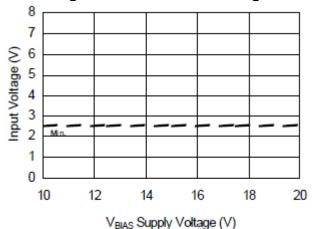
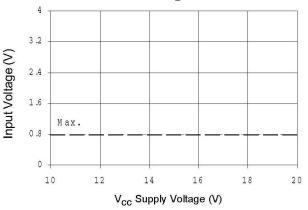
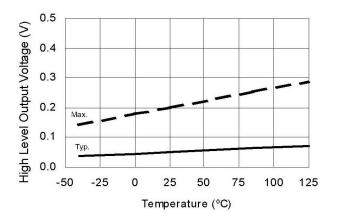
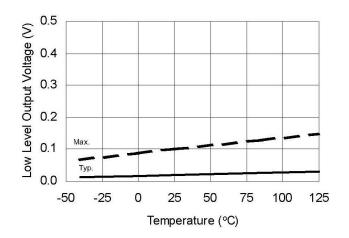
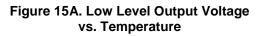
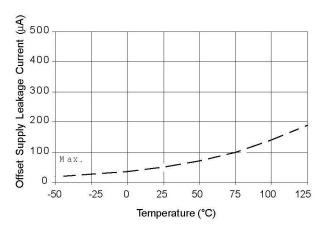


Figure 12B. Logic "1" Input Voltage vs. Voltage


Figure 13B. Logic "0"(HO) & Logic "1"(LO) & Active SD Input Voltages vs Supply Voltage



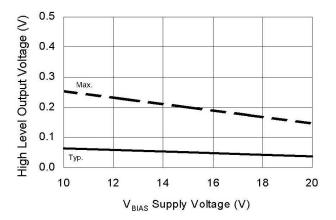


Figure 14B. High Level Output Voltage vs. Supply Voltage

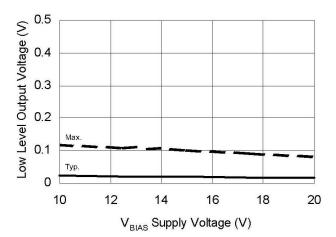


Figure 15B. Low Level Output Voltage vs. Supply Voltage

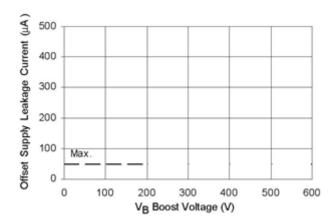
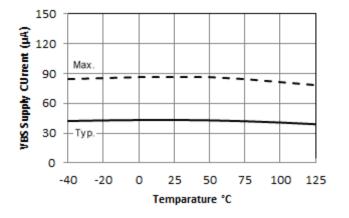



Figure 16B. Offset Supply Current vs. Voltage

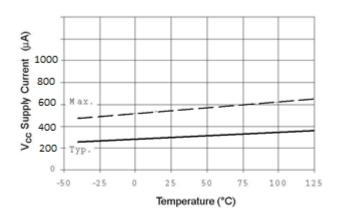


Figure 18A. V_{CC} Supply Current vs. Temperature

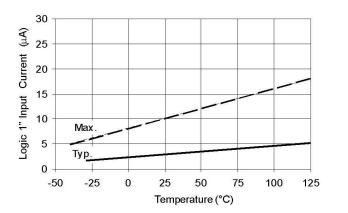


Figure 19A. Logic "1" Input Current vs. Temperature

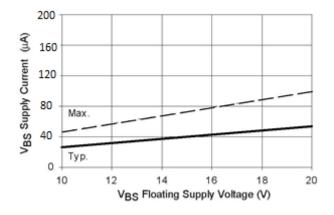


Figure 17B. V_{BS} Supply Current vs. Voltage

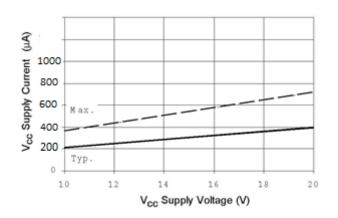


Figure 18B. V_{cc} Supply Current vs. Voltage

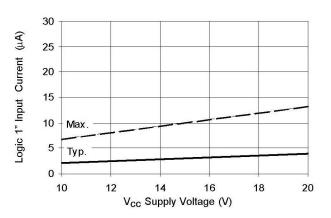


Figure 19B. Logic "1" Input Current vs. Voltage

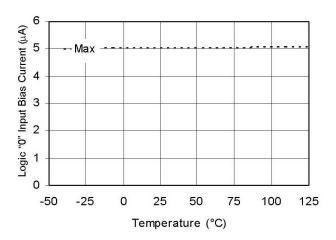


Figure 20A. Logic "0" Input Bias Current

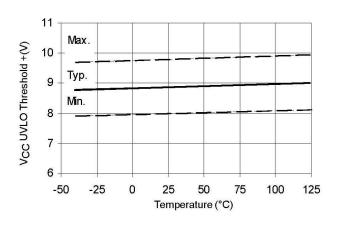
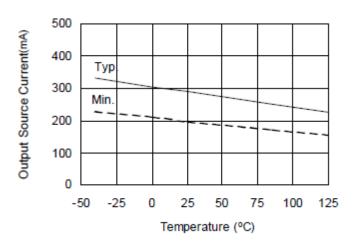
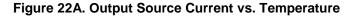
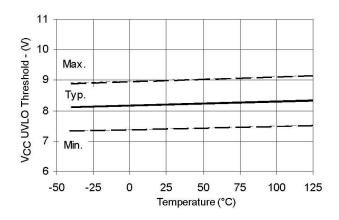
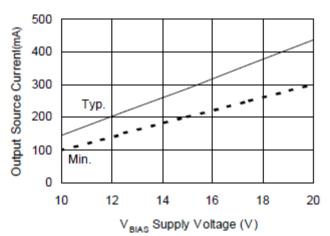
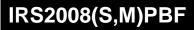




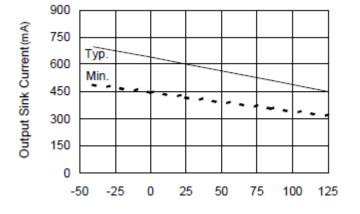
Figure 21A. V_{CC} V_{BS} Undervoltage Threshold(+) vs. Temperature

6 Max 4 3 2 10 12 14 16 18 20

Figure 20B. Logic "0" Input Bias Current

Supply Voltage (V)


Figure 21B. V_{CC}\V_{BS} Undervoltage Threshold(-) vs. Temperature

IRS2008(S,M)PBF

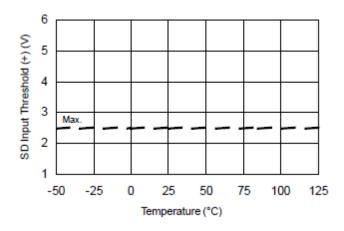


Figure 24A. SD input Positive Going Threshold(+) vs. Temperature

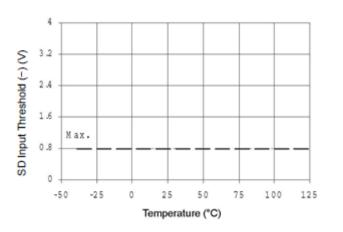


Figure 25A. SD input Negative Going Threshold(-) vs. Temperature

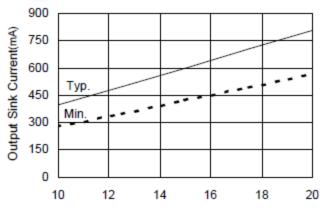


Figure 23B. Output Sink Current vs. Supply Voltage

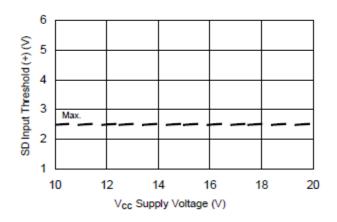
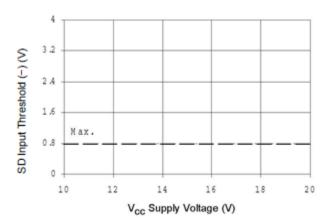
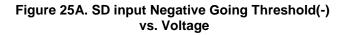
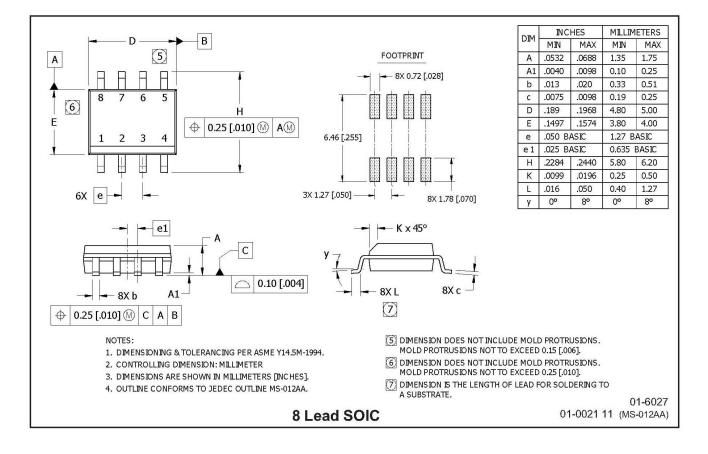
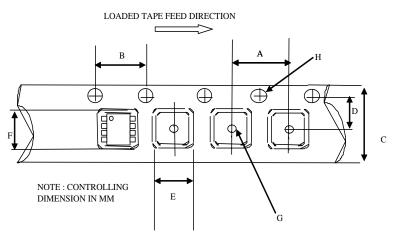
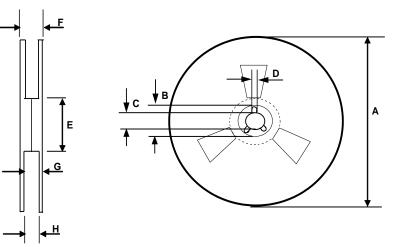





Figure 24B. SD input Positive Going Threshold(+) vs. Supply Voltage

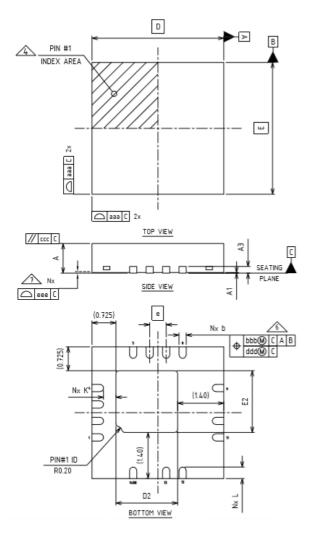


Package Details: 8-Lead SOIC



Tape and Reel Details: 8-Lead SOIC

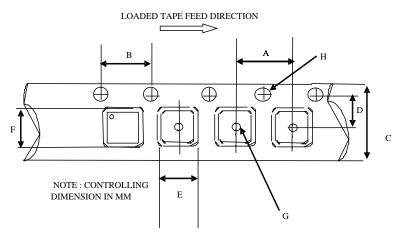
CARRIER TAPE DIMENSION FOR 8SOICN


	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

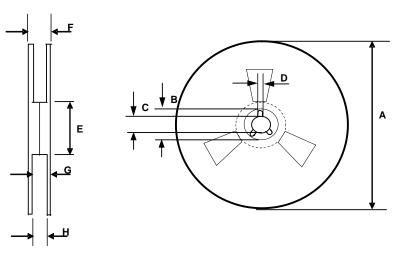
	Metric		Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Package Details: 14-Lead MLPQ 4x4


NOTE:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- 4 The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals on each D and E side respectively.
- Immediate the interview of the metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.

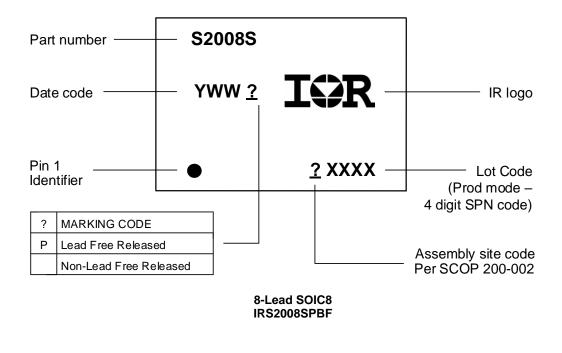
A Coplanarity applies to the terminals and all other bottom surface metalization.

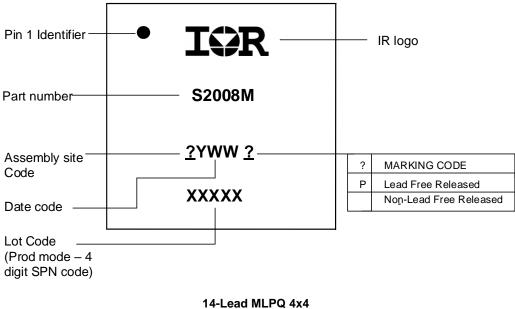

	Dimension Table				
Symbol A		V			
mbol	MINIMUM	NOMINAL	MAXIMUM		
A	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A3		0.20 Ref			
b	0.18	0.25	0.30	6	
D		4.00 BSC			
E		4.00 BSC			
e		0.50 BSC			
D2	1.725	1.875	1.975		
E2	1.725	1.875	1.975		
K	0.20				
L	0.25	0.35	0.45		
999		0.05			
bbb		0.10			
CCC		0.10			
ddd	0.05				
eee	0.08				
N	14			3	
ND	SEE FIGURE			5	
NE				,	
NOTES		1, 2			

Tape and Reel Details: 14-Lead MLPQ 4x4

CARRIER TAPE DIMENSION FOR MLPQ4x4

	Metric		lm	perial
Code	Min	Max	Min	Max
А	7.90	8.10	0.311	0.358
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.461	0.484
D	5.45	5.55	0.215	0.219
E	4.25	4.45	0.168	0.176
F	4.25	4.45	0.168	0.176
G	1.50	n/a	0.069	n/a
Н	1.50	1.60	0.069	0.063




REEL DIMENSIONS FOR MLPQ4x4

	Metric		lm	perial
Code	Min	Max	Min	Max
А	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

IRS2008MPBF

Qualification Information[†]

Qualification Level			Industrial [†]	
		Comments: This family of ICs is qualified according to relevant tests of JEDEC47/22/20. IR's Consumer qualification level is granted by extension of the higher Industrial level.		
Moisture Sensitivity Level		8 Lead SOIC	MSL2 ^{††} , 260°C (per IPC/JEDEC J-STD-020)	
		14-Lead MLPQ 4x4		
ESD	Human Body Model	Class 2 (per JEDEC standard JESD22-A114)		
	Machine Model	Class A (per EIA/JEDEC standard EIA/JESD22-A115)		
IC Latch-Up Test			Class I (per JESD78)	
RoHS Compliant			Yes	

According to IR Qualification Requirements for IC products.

† †† Higher MSL ratings may be available for the specific package types listed here. Please contact your Infineon sales representative for further information.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2020 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.