BGSX22G5A10

DPDT Antenna Cross Switch

Features

- RF CMOS DPDT antenna cross switch with power handling capability of up to 37 dBm
- Suitable for multi-mode LTE and WCDMA multi antenna applications
- Ultra-low insertion loss and harmonics generation
- 0.1 to 6.0 GHz coverage
- High port-to-port-isolation
- No decoupling capacitors required if no DC applied on RF lines
- General Purpose Input-Output (GPIO) Interface
- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$
- No power supply blocking required

- High EMI robustness
- RoHS and WEEE compliant package

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

 DPDT Antenna Cross Switch

Table of Contents

Table of Contents

Table of Contents 1
1 Features 2
2 Maximum Ratings 3
3 Operation Ranges 4
4 RF Characteristics 5
5 Modes of Operation 9
6 Application Information 9
7 Package Information 10

DPDT Antenna Cross Switch

Features

1 Features

- RF CMOS DPDT antenna cross switch with power handling capability of up to 37 dBm
- Suitable for multi-mode LTE and WCDMA multi antenna applications
- Ultra-low insertion loss and harmonics generation
- 0.1 to 6.0 GHz coverage

- High port-to-port-isolation
- No decoupling capacitors required if no DC applied on RF lines
- General Purpose Input-Output (GPIO) Interface
- Small form factor $1.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$
- No power supply blocking required
- High EMI robustness
- RoHS and WEEE compliant package

Description

The BGSX22G5A10 RF MOS switch is specifically designed for LTE and WCDMA triple antenna applications. This DPDT offers low insertion loss and low harmonic generation paired with high isolation between RF ports.
The switch is controlled via a GPIO interface. The on-chip controller allows power-supply voltages from 1.65 V to 3.4 V . The switch features direct-connect-to-battery functionality and DC-free RF ports. Unlike GaAs technology, external DC blocking capacitors at the RF Ports are only required if DC voltage is applied externally. The BGSX22G5A10 RF Switch is manufactured in Infineon's patented MOS technology, offering the performance of GaAs with the economy and integration of conventional CMOS including the inherent higher ESD robustness. The device has a very small size of only $1.1 \times 1.5 \mathrm{~mm}^{2}$ and a maximum thickness of 0.55 mm .

Product Name	Marking	Package
BGSX22G5A10	X5	ATSLP-10-50

DPDT Antenna Cross Switch

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings Table at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Frequency Range	f	0.1	-	6.0	GHz	1)
Supply voltage ${ }^{\text {2) }}$	$V_{\text {DD }}$	-0.5	-	3.6	V	-
Storage temperature range	$\mathrm{T}_{\text {STG }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-
Junction temperature	T_{j}	-	-	125	${ }^{\circ} \mathrm{C}$	-
RF input power at all RF ports	P_{RF}	-	-	39	dBm	CW / VSWR 1:1 / 50Ω
ESD capability, CDM ${ }^{3)}$	$\mathrm{V}_{\text {ESD_CDM }}$	-1	-	+1	kV	
ESD capability, $\mathrm{HBM}^{4)}$	$\mathrm{V}_{\text {ESD_HBM }}$	-1	-	+1	kV	
ESD capability, system level ${ }^{5}$	VESD_RF	-8	-	+8	kV	RF versus system GND, with 27 nH
Thermal resistance junction soldering point	$\mathrm{R}_{\text {th }} \mathrm{S}$	-	-	60	K/W	-
Maximum DC-voltage on RFPorts and RF-Ground	$\mathrm{V}_{\text {RFDC }}$	0	-	0	V	No DC voltages allowed on RFPorts
GPIO control voltage levels	$V_{\text {Ctrlx }}$	-0.7	-	$\begin{aligned} & V_{D D}+0.7 \\ & (\max . \\ & 3.6 \mathrm{~V} \text {) } \end{aligned}$	V	-

[^0]Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions. DPDT Antenna Cross Switch

Operation Ranges

3 Operation Ranges

Table 2: Operation Ranges at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$, Supply Voltage $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \ldots 3.4 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply voltage	V_{DD}	1.65	-	3.4	V	-
Supply current	I_{DD}	-	55	-	$\mu \mathrm{A}$	-
GPIO control voltage high	$\mathrm{V}_{\text {CtrI_H }}$	1.35	-	$\mathrm{V}_{\mathrm{DD}}+0.3$ $(\mathrm{max}$. $3.6 \mathrm{~V})$	V	-
GPIO control voltage low		$\mathrm{V}_{\text {CrrI_L }}$	-0.3	-	0.45	V
GPIO control input capacitance	$\mathrm{C}_{\text {Crrl }}$	-	-	2	pF	-
Ambient temperature	T_{A}	-40	25	85	${ }^{\circ} \mathrm{C}$	-

Table 3: RF Input Power

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
RF input power		P_{RF}	-	-	37	dBm

DPDT Antenna Cross Switch

RF Characteristics

4 RF Characteristics

Table 4: RF Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$, Supply Voltage $\mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Insertion Loss ${ }^{1)}$						
All RF ports	IL	-	0.28	0.35	dB	699 to 960 MHz
		-	0.37	0.50	dB	1710 to 2200 MHz
		-	0.45	0.60	dB	2300 to 2690 MHz
		-	0.60	1.20	dB	3300 to 4200 MHz
		-	0.80	1.30	dB	4400 to 5000 MHz
		-	1.10	1.50	dB	5150 to 5925 MHz
Return Loss ${ }^{1)}$						
All RF ports	RL	19	24	-	dB	699 to 960 MHz
		15	17	-	dB	1710 to 2200 MHz
		14	16	-	dB	2300 to 2690 MHz
		12	15	-	dB	3300 to 4200 MHz
		10	13	-	dB	4400 to 5000 MHz
		7	10	-	dB	5150 to 5925 MHz

${ }^{1)}$ Measured on application board without any external matching components.

Table 5: RF Characteristics at $T_{A}=-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}, \mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$, Supply Voltage $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \ldots 3.4 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Insertion Loss ${ }^{1)}$						
All RF ports	IL	-	0.28	0.4	dB	699 to 960 MHz
		-	0.37	0.6	dB	1710 to 2200 MHz
		-	0.45	0.7	dB	2300 to 2690 MHz
		-	0.60	1.3	dB	3300 to 4200 MHz
		-	0.80	1.4	dB	4400 to 5000 MHz
		-	1.10	1.8	dB	5150 to 5925 MHz
Return Loss ${ }^{1)}$						
All RF ports	RL	19	24	-	dB	699 to 960 MHz
		14	17	-	dB	1710 to 2200 MHz
		13	16	-	dB	2300 to 2690 MHz
		10	15	-	dB	3300 to 4200 MHz
		9	13	-	dB	4400 to 5000 MHz
		6	10	-	dB	5150 to 5925 MHz

[^1]DPDT Antenna Cross Switch

RF Characteristics

Table 6: RF Characteristics at $T_{A}=-40^{\circ} \mathrm{C} . .85^{\circ} \mathrm{C}, \mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$, Supply Voltage $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \ldots 3.4 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Isolation ${ }^{1 /}$						
State 1 RF1-RF3, RF2-RF4	ISO	47	49	-	dB	699 to 960MHz
		41	43	-	dB	1710 to 2200 MHz
		39	41	-	dB	2300 to 2690 MHz
		37	39	-	dB	3300 to 4200 MHz
		36	39	-	dB	4400 to 5000 MHz
		34	38	-	dB	5150 to 5925 MHz
Isolation ${ }^{1)}$						
State 2 RF1-RF3, RF2-RF4	ISO	41	44	-	dB	699 to 960 MHz
		35	37	-	dB	1710 to 2200 MHz
		33	35	-	dB	2300 to 2690 MHz
		31	33	-	dB	3300 to 4200 MHz
		31	33	-	dB	4400 to 5000 MHz
		33	35	-	dB	5150 to 5925 MHz
Isolation ${ }^{1)}$						
State 1 RF1-RF4, RF3-RF2	ISO	56	58	-	dB	699 to 960 MHz
		49	52	-	dB	1710 to 2200 MHz
		48	50	-	dB	2300 to 2690 MHz
		44	49	-	dB	3300 to 4200 MHz
		41	46	-	dB	4400 to 5000 MHz
		38	43	-	dB	5150 to 5925 MHz
Isolation ${ }^{1 /}$						
State 2 RF1-RF2, RF3-RF4	ISO	39	41	-	dB	699 to 960 MHz
		32	34	-	dB	1710 to 2200 MHz
		31	33	-	dB	2300 to 2690 MHz
		28	30	-	dB	3300 to 4200 MHz
		28	29	-	dB	4400 to 5000 MHz
		29	31	-	dB	5150 to 5925 MHz
Harmonic Generation						
H2	Pharm	-	-85	-65	dBm	$25 \mathrm{dBm}, 50 \Omega$, CW mode
H3		-	-90	-75	dBm	$25 \mathrm{dBm}, 50 \Omega$, CW mode
H2, GSM LB		-	-70	-55	dBm	$35 \mathrm{dBm}, 50 \Omega, 50 \%$ duty cycle
H3, GSM LB		-	-60	-55	dBm	$35 \mathrm{dBm}, 50 \Omega, 50 \%$ duty cycle
H2, GSM HB		-	-70	-55	dBm	$33 \mathrm{dBm}, 50 \Omega, 50 \%$ duty cycle
H3, GSM HB		-	-60	-55	dBm	$33 \mathrm{dBm}, 50 \Omega, 50 \%$ duty cycle
Intermodulation Distortion IMD2						
IIP2, low	IIP2,1	110	125	-	dBm	IIP2 conditions, Tab. 7
IIP2, high	IIP2,h	110	130	-	dBm	
Intermodulation Distortion IMD3						
IIP3	IIP3	65	80	-	dBm	IIP3 conditions, Tab. 8

[^2]DPDT Antenna Cross Switch

RF Characteristics

Table 7: IIP2 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1 Low	2140	1950	24	190	-10
Band 1 High	2140	835	24	4090	-10
Band 5 High	880	2535	24	1715	-10
Band 7 Low	2655	2535	24	120	-10
Band 7 High	2655	5190	-10		

Table 8: IIP3 conditions table

Band	In-Band Frequency $[\mathrm{MHz}]$	Blocker Frequency 1 $[\mathrm{MHz}]$	Blocker Power 1 $[\mathrm{dBm}]$	Blocker Frequency 2 $[\mathrm{MHz}]$	Blocker Power 2 $[\mathrm{dBm}]$
Band 1 Low	2140	1950	24	95	-10
Band 1 Mid	2140	1950	24	1760	-10
Band 1 High	2140	835	24	6040	-10
Band 5 Low	880	835	24	22.5	-10
Band 5 Mid	880	835	24	790	-10
Band 5 High	880	2535	24	2550	-10
Band 7 Low	2655	2535	24	-10	
Band 7 Mid	2655	2535	24	2415	-10
Band 7 High	2655		7725	-10	

DPDT Antenna Cross Switch
RF Characteristics

Table 9: Switching Time at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$, Supply Voltage $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \ldots 3.4 \mathrm{~V}$, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Switching Time						
RF Rise Time	$t_{R T}$	-	-	1	$\mu \mathrm{s}$	10 \% to 90 \% RF signal
Switching Time	$t_{S T}$	-	3	4	$\mu \mathrm{s}$	50 \% Ctrl signal to 90 \% RF signal
Power Up Settling Time	$t_{\text {Pup }}$	-	10	25	$\mu \mathrm{s}$	After power down mode

Figure 1: Power Up Settling Time and Switching Time

Figure 2: Power On and Off Sequence

DPDT Antenna Cross Switch
Application Information
5 Modes of Operation

Table 10: Modes of Operation (Truth Table)

		Control Input
State	Mode	CTRL
1	RF1-RF2	0
	2	RF3-RF4

6 Application Information

Pin Configuration and Function

Figure 3: BGSX22G5A10 Pin Configuration (top view)

Table 11: Pin Definition and Function

Pin No.	Name	Function
1	GND	DC ground
2	RF4	RF port 4
3	GND	RF ground
4	RF3	RF port 3
5	GND	RF ground
6	RF1	RF port 1
7	GND	RF ground
8	RF2	RF port 2
9	CTRL	GPIO control pin
10	VDD	Power supply

Package Information

7 Package Information

Table 12: Mechanical Data

Parameter	Symbol	Value	Unit
X-Dimension	X	1.1 ± 0.05	mm
Y-Dimension	Y	1.5 ± 0.05	mm
Size	Size	1.65	$\mathrm{~mm}^{2}$
Height	H	0.55 ± 0.05	mm

Figure 4: ATSLP-10-50 Package Outline (top, side and bottom views)

DPDT Antenna Cross Switch

Package Information

Figure 5: Footprint Recommendation

DPDT Antenna Cross Switch

Package Information

Figure 6: Marking Specification (top view): Date code digits Y and W defined in Table 13/14

Table 13: Year date code marking - digit " Y "

Year	"Y"	Year	"Y"	Year	"Y"
2010	0	2020	0	2030	0
2011	1	2021	1	2031	1
2012	2	2022	2	2032	2
2013	3	2023	3	2033	3
2014	4	2024	4	2034	4
2015	5	2025	5	2035	5
2016	6	2026	6	2036	6
2017	7	2027	7	2037	7
2018	8	2028	8	2038	8
2019	9	2029	9	2039	9

Table 14: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	A	12	N	23	4	34	h	45	v
2	B	13	P	24	5	35	j	46	x
3	C	14	Q	25	6	36	k	47	y
4	D	15	R	26	7	37	l	48	Z
5	E	16	S	27	a	38	n	49	8
6	F	17	T	28	b	39	p	50	9
7	G	18	U	29	C	40	q	51	2
8	H	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42			
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

DPDT Antenna Cross Switch
Package Information

Figure 7: ATSLP-10-50 Carrier Tape

Revision History	
Page or Item	Subjects (major changes since previous revision)
Revision 8.1, 2018-10-01	
5	RF Characteristics update

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-10-01
Published by
Infineon Technologies AG
81726 Munich, Germany
(C) 2018 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

[^0]: ${ }^{1)}$ Switch has a lowpass response. For higher frequencies, losses have to be considered for their impact on thermal heating. The DC voltage at RF ports VRFDC has to be 0V.
 ${ }^{2)}$ Note: Consider potential ripple voltages on top of $V_{D D}$. Including RF ripple, $V_{D D}$ must not exceed the maximum ratings: $V_{D D}=V_{D C}+V_{R i p p l e}$. Furthermore, high pulse voltages at $V_{D D}$ pin will cause the ESD structure to trigger.
 ${ }^{3)}$ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.
 ${ }^{4)}$ Human Body Model ANSI/ESDA/JEDEC JS-001 (R=1,5 k $\Omega, \mathrm{C}=100 \mathrm{pF}$).
 ${ }^{5)}$ IEC 61000-4-2 ($\mathrm{R}=330 \Omega, \mathrm{C}=150 \mathrm{pF}$), contact discharge.

[^1]: ${ }^{1)}$ Measured on application board without any external matching components.

[^2]: ${ }^{1)}$ Measured on application board without any external matching components.

