

Sinai Power Technologies

<u>SPC18N50G</u>

www.sinai-power.com

N-channel Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V) at TJ max.	550			
R _{DS(on)} max. at 25°C (Ω)	V _{GS} =10V	0.30		
Q _g max. (nC)	8	8		
Q _{gs} (nC)	2	1		
Q _{gd} (nC)	2	8		
Configuration	single			

TO-220F

Schematic diagram

Features

- $I_D=18A(Vgs=10V)$
- Ultra Low Gate Charge
- Improved dv/dt Capability
- 100% Avalanche Tested
- ROHS compliant

Applications

- Switching Mode Power Supplies (SMPS)
- PWM Motor Controls
- DC to DC Converters
- LED Lighting
- Bridge Circuits

ORDERING INFORMATION

Device	SPC18N50G
Device Package	TO-220F
Marking	18N50G

ABSOLUTE MAXIMUM RATINGS ($T_c = 25^{\circ}C$, unless otherwise noted)				
Parameter	Symbol	Value	Unit	
Drain to Source Voltage	V _{DSS}	500	V	
Continuous Drain Current (@T _c =25°C)		18 ⁽¹⁾	A	
Continuous Drain Current (@T _c =100°C)		13 ⁽¹⁾	A	
Drain current pulsed ⁽²⁾	I _{DM}	72 ⁽¹⁾	A	
Gate to Source Voltage	V _{GS}	±30	V	
Single pulsed Avalanche Energy ⁽³⁾	E _{AS}	1200	mJ	
MOSFET dv/dt ruggedness (@V _{DS} =0~400V)	dv/dt	25	V/ns	
Peak diode Recovery dv/dt ⁽⁴⁾	dv/dt	15	V/ns	
Total power dissipation (@T _C =25°C)		40	W	
Derating Factor above 25°C	- P _D	0.3	W/ºC	
Operating Junction Temperature & Storage Temperature	T_{STG}, T_J	-55 to + 150	°C	
Maximum lead temperature for soldering purpose	TL	260	°C	
Mounting torque ⁽⁵⁾		0.4~0.6	N.m	

Notes

- 1. Drain current is limited by maximum junction temperature.
- 2. Repetitive rating : pulse width limited by junction temperature.
- 3. L = 6mH, I_{AS} = 18A, V_{DD} = 50V, R_{G} =25 Ω , Starting at T_{J} = 25°C
- 4. $I_{SD} \leq I_D$, di/dt = 100A/us, $V_{DD} \leq BV_{DSS}$, Starting at $T_J = 25^{\circ}C$

5. Mounting consideration for TO220 Fullpack:

M3 screw plus flat washer is suggested, free of burr between devices and contact area,

the devices are to be mounted to a hole not larger than 3.6mm in contact diameter (chamfer included).

Sinai Power Technologies

www.sinai-power.com

THERMAL CHARACTERISTICS				
Parameter	Symbol	Value		
	Symbol	SPC18N50G		
Thermal resistance, Junction to case	R _{thjc}	3.0	°C/W	
Thermal resistance, Junction to ambient	R _{thja}	46	°C/W	

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise specified)						
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Off Characteristics						
Drain to source breakdown voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	500			V
Breakdown voltage temperature coefficient	ΔBV _{DSS} / ΔTJ	I _D =250uA, referenced to 25°C		0.51		V/°C
Drain to source leakage current	I _{DSS}	V _{DS} =500V, V _{GS} =0V			1	uA
		V _{DS} =400V, T _C =125°C			50	uA
Gate to source leakage current, forward	1	V _{GS} =30V, V _{DS} =0V			100	nA
Gate to source leakage current, reverse	IGSS	V _{GS} =-30V, V _{DS} =0V			-100	nA
On Characteristics						
Gate threshold voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250uA	3		5	V
Drain to source on state resistance	R _{DS(ON)}	V _{GS} =10V, I _D =9 A		0.25	0.30	Ω
Forward Transconductance	Gfs	V _{DS} = 30 V, I _D = 9 A		18.5		S
Dynamic Characteristics		<u> </u>				
Input capacitance	Ciss	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 9 \text{ A}$		4670		pF
Output capacitance	Coss			315		
Reverse transfer capacitance	Crss			18.5		
Turn on delay time	t _{d(on)}			49		
Rising time	tr	V _{DS} =250V, I _D =18 ,		65		- ns
Turn off delay time	t _{d(off)}	R _G =25Ω		232		
Fall time	t _f			81		
Total gate charge	Qg	V _{DS} =400V, V _{GS} =10V, I _D =18A		88		
Gate-source charge	Q _{gs}			22		nC
Gate-drain charge	Q_gd			29		
Gate Resistance	Rg	V _{DS} =0V, Scan F mode		1		Ω

SOURCE TO DRAIN DIODE RATINGS CHARACTERISTICS						
Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous source current	Is	Integral reverse p-n Junction diode in the MOSFET			18	А
Pulsed source current	I _{SM}				72	А
Diode forward voltage drop.	V _{SD}	I _S =18A, V _{GS} =0V			1.3	V
Reverse recovery time	Trr	I _S =18A, V _{GS} =0V, dI⊧/dt=100A/us		461		ns
Reverse recovery Charge	Qrr			5.5		uC

17-0630-RevX1

Document Number: 17011

For technical questions, contact: <u>Tech@Sinai-power.com</u>. THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

SPC18N50G

www.sinai-power.com

Fig. 1. On-state characteristics

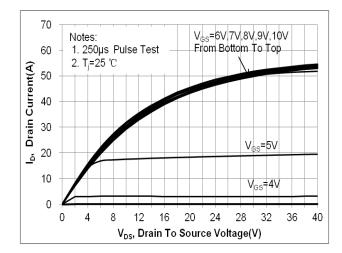


Fig. 3. On-resistance variation vs. drain current and gate voltage

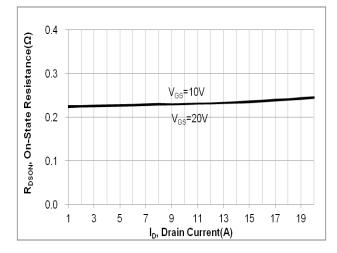


Fig 5. Breakdown voltage variation vs. junction temperature

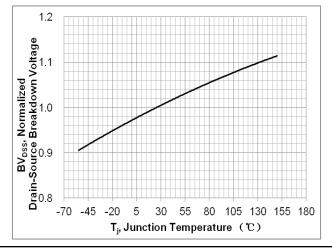


Fig. 2. Transfer Characteristics

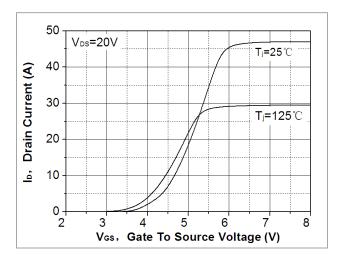


Fig. 4. On-state current vs. diode forward voltage

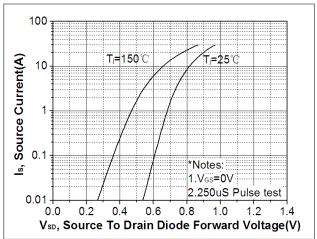
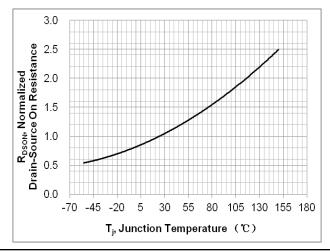



Fig. 6. On-resistance variation vs. junction temperature

17-0630-RevX1

3

Document Number: 17011

For technical questions, contact: <u>Tech@Sinai-power.com</u>. THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

SPC18N50G

www.sinai-power.com

Fig. 7. Gate charge characteristics

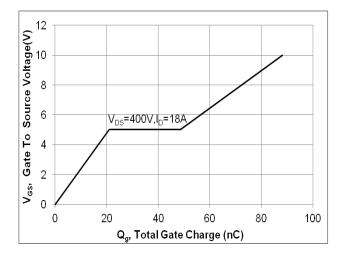


Fig. 9. Maximum safe operating area(TO-220F)

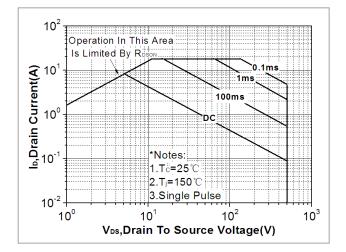


Fig. 11. Transient thermal response curve(TO-220F)



Fig. 8. Capacitance Characteristics

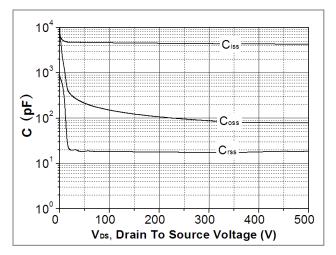
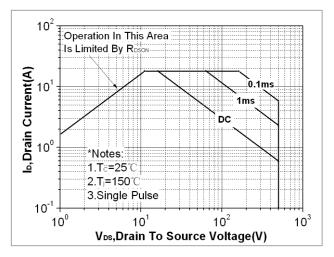
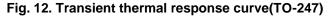
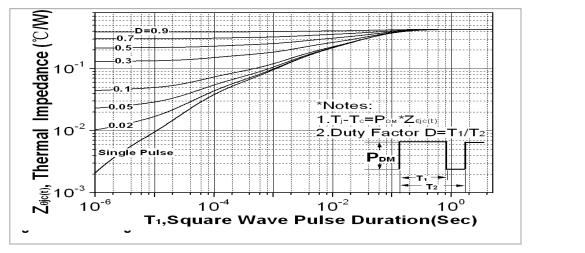



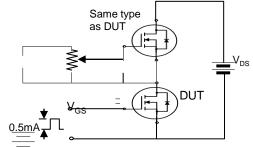
Fig. 10. Maximum safe operating area(TO-247)

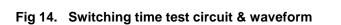

Document Number: 17011

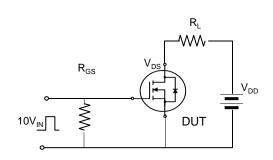

For technical questions, contact: <u>Tech@Sinai-power.com</u>. THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

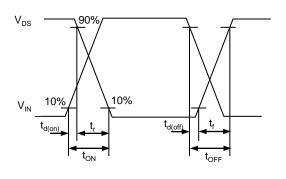
SPC18N50G

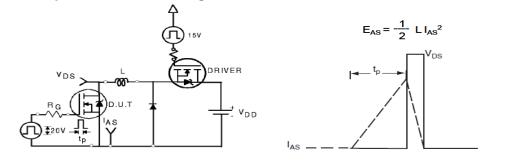
www.sinai-power.com




 V_{GS}


lGS


10V



 Q_G

 Q_{GD}

Charge

Fig 15. Unclamped Inductive switching test circuit & waveform

5 For technical questions, contact: <u>Tech@Sinai-power.com</u>. nC

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. © COPYRIGHT Sinai-Power Technologies. ALL RIGHTS RESERVED.

www.sinai-power.com

Fig 16. Peak diode recovery dv/dt test circuit & waveform

Disclaimer

- SINAI assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SINAI products described or contained herein.
- Specifications of any and all SINAI products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- In the event that any or all SINAI products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- This catalog provides information as of June. 2017. Specifications and information herein are subject to change without notice.