

Data sheet acquired from Harris Semiconductor SCHS180C

High Speed CMOS Logic Hex Buffer/Line Driver, Three-State Non-Inverting and Inverting

November 1997 - Revised October 2003

Features

- · Buffered Inputs
- . High Current Bus Driver Outputs
- Typical Propagation Delay t_{PLH} , t_{PHL} = 8ns at V_{CC} = 5V, C_1 = 15pF, T_{Δ} = 25°C
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \leq 1 \mu \text{A}$ at $V_{\mbox{\scriptsize OL}}, \, V_{\mbox{\scriptsize OH}}$

Description

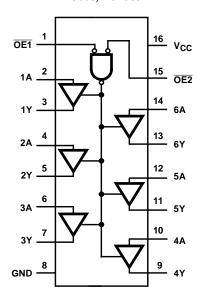
The 'HC365, 'HCT365, and 'HC366 silicon gate CMOS threestate buffers are general purpose high-speed non-inverting and inverting buffers. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.

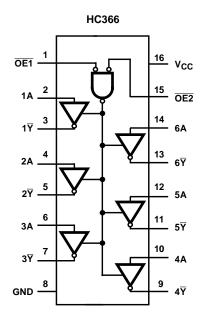
The 'HC365 and 'HCT365 are non-inverting buffers, whereas the 'HC366 is an inverting buffer. These devices have two three-state control inputs $(\overline{OE1}$ and $\overline{OE2})$ which are NORed together to control all six gates.

The 'HCT365 logic families are speed, function and pin compatible with the standard LS logic family.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC365F3A	-55 to 125	16 Ld CERDIP
CD54HC366F3A	-55 to 125	16 Ld CERDIP
CD54HCT365F3A	-55 to 125	16 Ld CERDIP
CD74HC365E	-55 to 125	16 Ld PDIP
CD74HC365M	-55 to 125	16 Ld SOIC
CD74HC365MT	-55 to 125	16 Ld SOIC
CD74HC365M96	-55 to 125	16 Ld SOIC
CD74HC366E	-55 to 125	16 Ld PDIP
CD74HC366M	-55 to 125	16 Ld SOIC
CD74HC366M96	-55 to 125	16 Ld SOIC
CD74HCT365E	-55 to 125	16 Ld PDIP
CD74HCT365M	-55 to 125	16 Ld SOIC
CD74HCT365MT	-55 to 125	16 Ld SOIC
CD74HCT365M96	-55 to 125	16 Ld SOIC


NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and real. The suffix T denotes a small-quantity reel of 250.


Pinout

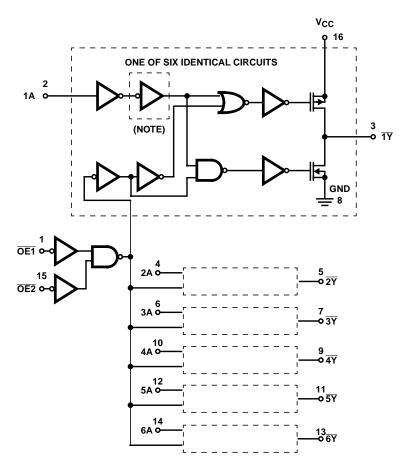
CD54HC365, CD54HC366, CD54HC366 (CERDIP) CD74HC365, CD74HC365, CD74HC366 (PDIP, SOIC) TOP VIEW

Functional Diagrams

HC365, HCT365

TRUTH TABLE

	INPUTS		OUTPUTS (Y)					
OE1	OE2	Α	HC/HCT365	HC366				
L	L	L	L	Н				
L	L	Н	Н	L				
Х	Н	Х	Z	Z				
Н	Х	Х	Z	Z				


NOTE:

H = High Voltage Level L = Low Voltage Level

X = Don't Care

Z = High Impedance (OFF) State

Logic Diagram

NOTE: Inverter not included in HC/HCT365.

FIGURE 1. LOGIC DIAGRAM FOR THE HC/HCT365 AND HC366 (OUTPUTS FOR HC/HCT365 ARE COMPLEMENTS OF THOSE SHOWN, i.e., 1Y, 2Y, ETC.)

Absolute Maximum Ratings

DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ + 0.5V ± 35 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$... ± 50 mA

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (oC/W)
E (PDIP) Package	. 67
M (SOIC) Package	
Maximum Junction Temperature	
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300 ⁰ C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range, T _A 55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			ST ITIONS	DNS		25°C		-40°C T	O 85°C	-55°C TO 125°C			
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS	
HC TYPES													
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V	
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V	
				6	4.2	-	-	4.2	-	4.2	-	V	
Low Level Input	V _{IL}	-	-	2	ı	-	0.5	-	0.5	-	0.5	V	
Voltage				4.5	ı	-	1.35	-	1.35	-	1.35	V	
				6	ı	-	1.8	-	1.8	-	1.8	V	
High Level Output	VoH	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	-	V	
Voltage CMOS Loads		V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V	
			-0.02	6	5.9	ı	-	5.9	-	5.9	-	V	
High Level Output	1		-6	4.5	3.98	-	-	3.84	-	3.7	-	V	
Voltage TTL Loads			-7.8	6	5.48	-	-	5.34	-	5.2	-	V	
Low Level Output	V _{OL}	V _{IH} or	0.02	2	ı	1	0.1	ı	0.1	-	0.1	V	
Voltage CMOS Loads		V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V	
OMOG Esads			0.02	6	-	-	0.1	-	0.1	-	0.1	V	
Low Level Output	1		6	4.5	-	-	0.26	-	0.33	-	0.4	V	
Voltage TTL Loads			7.8	6	ı	1	0.26	i	0.33	-	0.4	V	
Input Leakage Current	Ι _Ι	V _{CC} or GND	-	6	1	-	±0.1	-	±1	-	±1	μΑ	
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА	

DC Electrical Specifications (Continued)

		TEST CONDITIONS				25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Three-State Leakage Current	l _{OZ}	V _{IL} or V _{IH}	V _O = V _{CC} or GND	6	-	-	±0.5	-	±5.0	-	±10	μА
HCT TYPES	•						•			•	•	•
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{ОН}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lį	V _{CC} to GND	0	5.5	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load (Note 2)	Δl _{CC}	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ
Three-State Leakage Current	loz	V _{IL} or V _{IH}	V _O = V _{CC} or GND	5.5	-	-	±0.5	-	±5.0	-	±10	μА

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS				
ŌE1	0.6				
All Others	0.55				

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μ A max at 25 o C.

Switching Specifications - HC/HCT365 Input t_{r} , t_{f} = 6ns

		TEST		25°C		-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	PARAMETER SYMBOL CO		V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES					_			
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	105	130	160	ns
Data to Outputs HC/HCT365			4.5	-	21	26	32	ns
			6	-	18	22	27	ns
		C _L = 15pF	5	8	-	-	-	ns

^{2.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Switching Specifications - HC/HCT365 Input $t_{\rm f},\,t_{\rm f}$ = 6ns (Continued)

		TEST		25	o°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	110	140	165	ns
Data to Outputs HC366			4.5	-	22	28	33	ns
			6	-	19	24	28	ns
		C _L = 15pF	5	9	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	150	190	225	ns
Output Enable and Disable to Outputs			4.5	-	30	38	45	ns
			6	-	26	33	38	ns
		C _L = 15pF	5	12	-	-	-	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	60	75	90	ns
			4.5	-	12	15	18	ns
			6	-	10	13	15	ns
Input Capacitance	Cl	-	-	-	10	10	10	pF
Three-State Output Capacitance	CO	-	-	-	20	20	20	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	40	-	-	-	pF
HCT TYPES					1			
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	25	31	38	ns
Data to Outputs HC/HCT365		C _L = 15pF	5	9	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	27	34	41	ns
Data to Outputs HC366		C _L = 15pF	5	11	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	35	44	53	ns
Output Enable and Disable to Outputs		C _L = 15pF	5	14	-	-	-	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	12	15	18	ns
Input Capacitance	C _{IN}	-	-	-	10	10	10	pF
Three-State Capacitance	CO	-	-	-	20	20	20	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	42	-	-	-	pF

^{3.} $\ensuremath{\text{C}_{\text{PD}}}$ is used to determine the dynamic power consumption, per buffer.

^{4.} $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

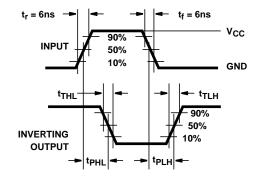


FIGURE 2. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

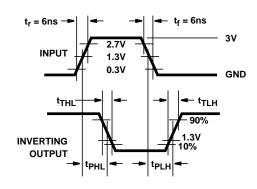


FIGURE 3. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

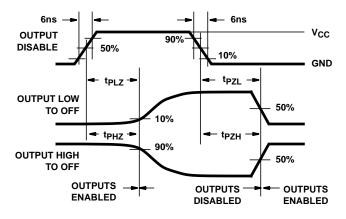


FIGURE 4. HC THREE-STATE PROPAGATION DELAY WAVEFORM

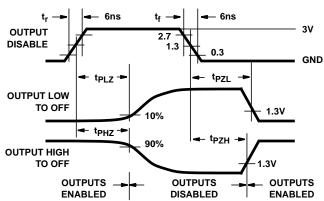
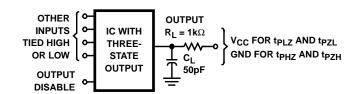



FIGURE 5. HCT THREE-STATE PROPAGATION DELAY WAVEFORM

NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$.

FIGURE 6. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD54HC365F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8500101EA CD54HC365F3A	Samples
CD54HC366F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8682801EA CD54HC366F3A	Samples
CD54HCT365F3A	ACTIVE	CDIP	J	16	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54HCT365F3A	Samples
CD74HC365E	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC365E	Samples
CD74HC365M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC365M	Samples
CD74HC365M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC365M	Samples
CD74HC365M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC365M	Samples
CD74HC365MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC365M	Samples
CD74HC366E	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC366E	Samples
CD74HC366M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC366M	Samples
CD74HC366M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC366M	Samples
CD74HCT365E	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT365E	Samples
CD74HCT365M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT365M	Samples
CD74HCT365M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT365M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

6-Feb-2020

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

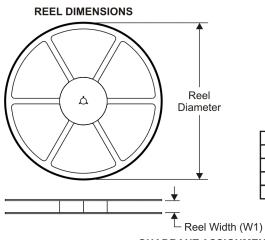
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

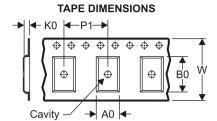
OTHER QUALIFIED VERSIONS OF CD54HC365, CD54HC366, CD54HCT365, CD74HC365, CD74HC366, CD74HCT365;

- Catalog: CD74HC365, CD74HC366, CD74HCT365
- Automotive: CD74HC366-Q1, CD74HC366-Q1
- Military: CD54HC365, CD54HC366, CD54HCT365

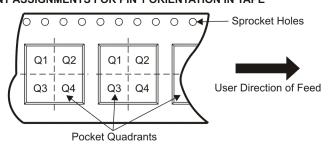
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

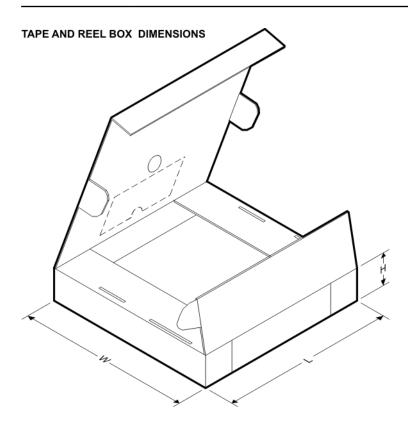

PACKAGE OPTION ADDENDUM


6-Feb-2020

• Military - QML certified for Military and Defense Applications

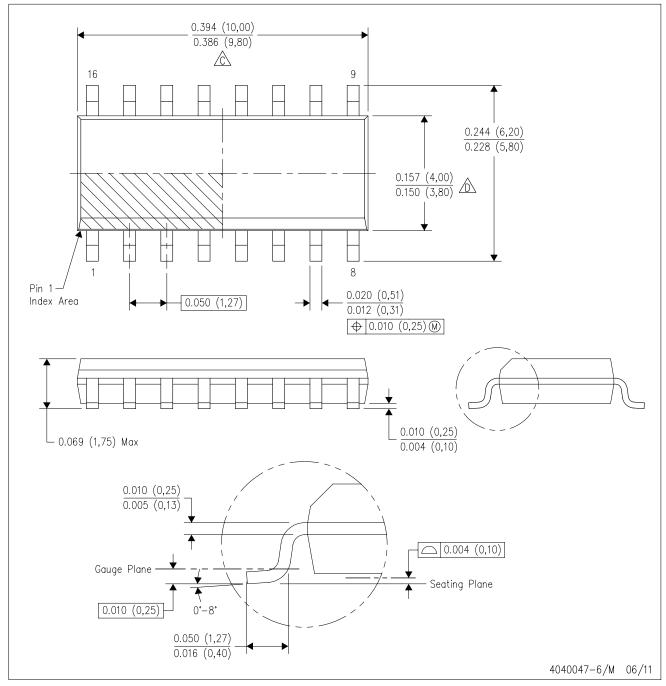

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC365M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC366M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT365M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

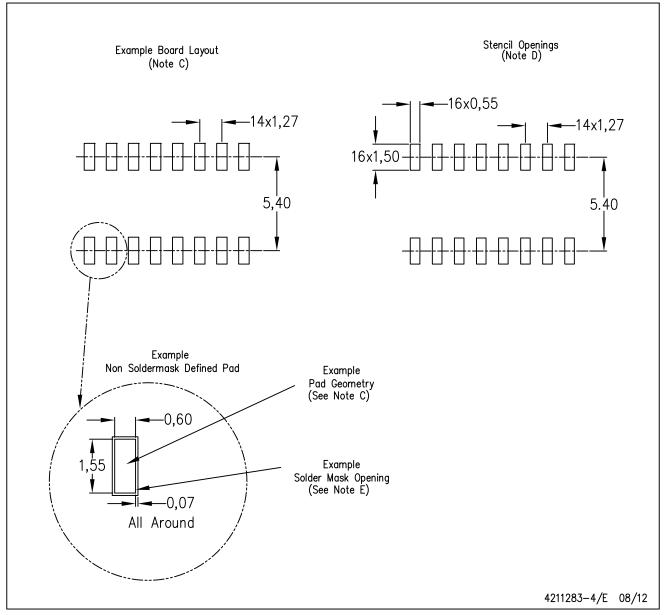


*All dimensions are nominal

7 th difficition die frommidi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC365M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HC366M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT365M96	SOIC	D	16	2500	333.2	345.9	28.6

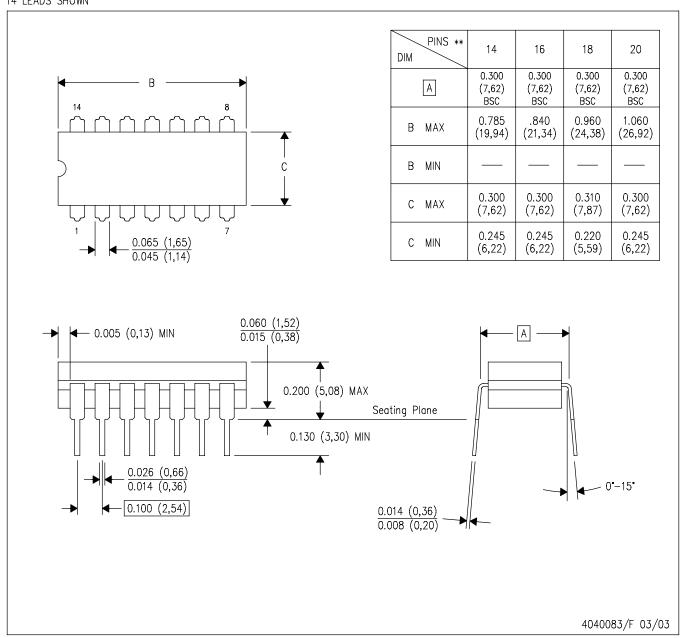
D (R-PDS0-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)


PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated