

OpenNCC 说明书

日期		内容	编制
20200515	V1.0	制定	Jerry
20200515	V1.1	增加计算棒模式	Jerry

杭州眼云智家科技有限公司

H	沢

1.硬件介绍	3
1.1 概述	3
1.2 硬件规格	3
1.3 技术参数	7
2.CDK 开发包介绍	8
3.OpenNCC View 使用说明	10
4.协处理计算棒模式	

1.硬件介绍

1.1 概述

OpenNCC DK 是一款开源的 AI CAM 硬件平台,搭载了 Intel Movidius Myriad X 视觉 处理单元 (VPU),它是一种低功耗片上系统 (SoC),用于无人机、移动机器人、工业智 能相机、VR/AR 等设备的深度学习及其他人工智能视觉应用加速。Myriad X 将会在同样 功耗条件下提供 Myriad 2 十倍的深度神经网络 (DNN)性能。Myriad X 理论计算能力 4+ TOPS 的基础上达到超过每秒万亿次 (TOPS)的 DNN 峰值吞吐量。Myriad X 的向 量单元是针对计算机视觉工作负载优化的专门 SHAVE 处理器。Myriad X 同样也支持最 新的 LPDDR4。

OpenNCC DK 是由 SENSOR 板和 CORE 板组成,搭载了 2MP 像素的传感器。同时 OpenNCC DK 的 CORE 板采用 CSI_MIPI_RX 4lane 接口,与 CORE 板进行数据交互传输, 最大支持 sensor 分辨率为 20M@30fps,同时也支持 3D 模组、红外模组。CORE 板输出 接口 USB2.0/3.0。

1.2 硬件规格

	分辨率 (Resolution)		3 Megapixe	21	
	像面尺寸 (Image format)		1/2.7″		
	焦距 (Focal length)		6mm	6mm	
	通光孔径 (Aperture)		F2. 2		
	接口 (Mount)		M12		
		~	1/2.7	1/3	
	视场角 (Field Angle)	D	63	58	
	$D \times H \times V(^{\circ})$	Н	50	43	
		V	36	30	
	畸变(Optical Distortion)		-19.50%	-13.70%	
	最近物距(M. O. D.)		0.3m		
	外形尺寸(Dimension)		Φ 14×15.6mm		
	重量(Weight)		/		
	法兰后焦距(Flange BFL)		/		
	光学后焦距(BFL)		8.16mm		
	机械后焦距(MBF)				
	日夜共焦(IR Correctio	日夜共焦 (IR Correction)		Yes	
		光圈	(Iris)	固定光圈 (Fixed)	
	操作万法 (Operation)	聚焦	(Focus)	/	
	(Operation)	变焦	(Zoom)	/	
	工作温度 (Operating te		ture)	-20 °C∼+60 °C	

模组特性:

OpenNCC CM2

分辨率: 1920*1080 (2MP)

帧率: 30fps

传感器尺寸: 1/2.9

核心板:

结构尺寸: 38mm*38mm (标准 38 板)

接口定义:

USB 接口:

TYPE C(插入图片,说明插入方向,此方向支持 USB3.0)

FPC 座接口定义:

	序号	管脚定义	描述	电气特性	
	1	VDD_5V	5V 电源输出		
]3	2	VDD_5V	5V 电源输出	输出电流 ≤1A	
	3	VDD_5V	5V 电源输出		

4	GND	参考地	/
5	GND	参考地	/
6	GND	参考地	/
7	CAM_A_AUX	通用 GPIO	1.8V
8	CAM_A_RST	通用 GPIO/复位	1.8V
9	I2C1_SCL	I2C 时钟线	1.8V
10	COM_IO1	通用 GPIO	1.8V
11	CAM_A_CLK	通用 GPIO/时钟	1.8V
12	CAM_B_AUX	通用 GPIO/断电	1.8V
13	COM_IO2	通用 GPIO	1.8V
14	CAM_A_PWM/RST	通用 GPIO	1.8V
15	I2C1_SDA	I2C 数据线	1.8V
16	GND	参考地	/
17	CAM_A_D1_P	MIPI 数据对 1 差分信号+	/
18	CAM_A_D1_N	MIPI 数据对 1 差分信号-	/
19	GND	参考地	/
20	CAM_A_D0_P	MIPI 数据对 0 差分信号+	/
21	CAM_A_D0_N	MIPI 数据对 0 差分信号-	/
22	GND	参考地	/
23	CAM_A_L_C_P	MIPI 时钟线 差分信号+	/
24	CAM_A_L_C_N	MIPI 时钟线 差分信号-	/
25	GND	参考地	/
26	CAM_A_D2_P	MIPI 数据对 2 差分信号+	/
27	CAM_A_D2_N	MIPI 数据对 2 差分信号-	/
28	GND	参考地	/
29	CAM_A_D3_P	MIPI 数据对 3 差分信号+	/
30	CAM_A_D3_N	MIPI 数据对 3 差分信号-	/

1.3 技术参数

型号	OpenNCC DK		
	Al		
算力	最高 4TFlops		
支持模型	所有 OpenVINO 的模型		
支持框架	ONNX, TensorFlow, Caffe, MXNet, Kaldi		
	软件		
图像信号处理	\checkmark		
开源资料	相机开发包 OpenNCC CDK, 开发技术文档, 配置工具 OpenNCC View		
支持的开发语言	C/C++/Python		
SDK 支持功能	 获取视频流 AI 模型下载和更换 获取模型运算结果 相机拍照、重置等 		
OpenView 功能	配置相机参数,配置相机本地 AI 模型		
OpenNCC CDK 支持的操作系统	Linux 和 windows		
OpenNCC View 支持的操作系统	Linux		
	硬件		
尺寸	38 mm x 38 mm x 45mm		
重量	相机净重 31 克		
VPU	Intel Movidius Myriad X MV2085		
内存	4Gb		
数据接口	USB Type-C 2.0/3.0		
电源	5V / 2A		
摄像头模组	2MP 可见光模组		
分辨率	1920 × 1080		
帧率	30Hz		
水平视场角	50±5°		

2.CDK 开发包

OpenNCC DK 提供专用 OpenNCC CDK 开发包,用户可方便调用相关 API 接口,实现相机参数设置,模型下载,输出视频参数设置,快速实现智能相机的算法部署。OpenNCC

模型支持 openvino 提供的官方模型,同时也支持用于自定义算法模型的部署,快速实现产品化。

OpenNCC CDK 支持以下硬件和环境

OpenNCC DK 套件 R1

主机环境: Ubuntu16.04,Ubuntu18.04, Windows 10、树莓派、Arm Linux(需提供

工具链交叉编译)

OpenNCC View 支持的环境

Ubuntu16.04,Ubuntu18.04

QT 5.9.9 及以上

目录	内容概要	
ncc_cdk/Docs	OpenNCC 离线文档集合	
ncc_cdk/NCC_View/Linux	Linux版本的OpenNCC View 可执行文件	
ncc_cdk/Public/Firmwares	OpeNCC 适配的固件目标文件	
ncc_cdk/Public/Library/For_C&C++/Linux	Linux 系统下 C/C++ OpenNCC CDK 静态库和 VPU 的 USB 启动引导程序	
ncc_cdk/Public/Library/For_C&C++/Windows	Windows 系统下 C/C++ OpenNCC CDK 静态库和 VPU 的 USB 启动引导程 序	
ncc_cdk/Public/Library/For_Python	Python 版本 OpenNCC CDK 包,及演 示程序	
ncc_cdk/Public/Pretrained_models/Intel_models	Intel 免费模型集合	
ncc_cdk/Samples/How_to/Capture video	示例程序,使用 OpenNCC CDK 库获取 视频流	
ncc_cdk/Samples/How_to/load a model	示例程序,使用 OpenNCC CDK 库下载 一个 Blob 格式的深度学习模型	
ncc_cdk/Samples/How_to/work with OpenVINO	示例程序,使用 OpenNCC CDK 库让 OpenNCC 相机集成兼容 OpenVINO	

ncc_cdk/Tools/myriad_compiler	Blob 格式文件转换工具
ncc_cdk/Tools/deployment	OpenNCC 部署脚本

了解更详细开发包内容请访问 OpenNCC 官网:

https://www.openncc.com.cn

3.OpenNCC View 使用说明

OpenNCC View 是一款用于快速体验 OpenNCC DK 开发套件的软件,运行 OpenNCC View 下默认模型不依赖 OpenVINO,NCC View 集成了 NCC CDK 全部 API, 可以完成 OpenNCC DK 在独立模式下实现对相机的连接,固件和 AI 模型的下载,及完成视 频流显示与算法结果的后处理。用户可以通过友好的界面,来操作和控制相机。

3.1 运行 OpenNCC View

a. 运行 OpenNCC 的 CDK 包下 Tools/deployment 目录下 install_NCC_udev_rules.sh 脚本:

在命令终端输入: sudo ./install_NCC_udev_rules.sh, 以获取 OpenNCC 相机自动挂载 权限, 然后重启电脑。

b. 进入 CDK 下的 OpenNCC 的目录,终端输入命令:

./OpenNCC 打开 OpenNCC View 软件界面(若运行失败,可尝试 sudo ./OpenNCC)

3.2 OpenNCC View 界面操作说明

8 🔵 OpenNCC View		
Get device info	Region of interest for model	
Stream Format: H.264 MJPEG		
Stream Resolution: 1080P 👻		
1st network model: None 👻		
Display Scaler: 50 🗘 ———————————————————————————————————	Add model	Del model
Model Score: 50		
Start running model		
Log:	Algorithm output results:	
Support: OpenVINO Introduction Get online		Version:1.1.5

3.2.1 **Get Device Info:** 软件初始状态展示的功能为基础功能, 隐藏功能需要用户先点击 Get Device Info, 获取设备与电脑 usb 连接信息及 OpenNCC 设备模块信息, 若连接的设 备支持, 能够解锁更多功能选项。(例如 NCC 与电脑通过 usb 3.0 连接, 可解锁 yuv 出流 显示视频; NCC 装配了 4K 模组, 可解锁 4K 分辨率显示)

3.2.2 Stream Format:选择 OpenNCC 相机 USB 视频输出格式,目前支持 YUV420P,
H.264, MJPEG 格式。(选择 YUV420P 前需先点击 Get Device Info,仅在 usb 3.0 连接 时可选)

3.2.3 Stream Resolution: 更换 OpenNCC 相机的视频分辨率,可选 1080P 或 4K. 4K
 分辨率支持需要选装相应 4K 摄像模块。 (选择 4K 前需先 Get Device Info,仅在模组支持 4K 时可选)

3.2.4 **1st network model:**选择算法模型,选择 None 即不加载模型,仅出流显示视频, 而选择加载算法模型后,可以通过框选 ROI 区域,仅对区域内的场景进行识别。

3.2.5 **Model Score**:加载算法后,对物品的识别计算结果是有分数的,当超过了某一分数阈值,才会在视频中框选,而 Model Score 即为控制阈值的选项,根据用户需求,实时 调整识别的最低分数 (默认值为 0.5)

3.2.6 ROI: 配合算法模型使用,加载模型后,如果需要仅对某一区域进行算法识别,可以 手动点击鼠标左键拖动,框选出自己感兴趣的区域,仅对区域内的场景进行识别。

3.2.7 **Display Scaler:** 视频显示时,由于不同电脑的分辨率不同,按原本尺寸显示 1080P 或 4K 的视频,可能会出现视频大小超出桌面大小的情况,用户可通过 Display Scaler 实时 控制视频显示窗体大小 (默认值为 0.5)

3.2.8 Add model: 导入用户自己的模型文件,添加后即可在 1st network model 中选择自己的模型,但由于不同模型的算法解析方式不同,OpenNCC View 无法提供通用的解析器对用户自定义的算法模型进行解析,用户可参考 OpenNCC View 的代码,自行开发适用于自己算法的解析器。

3.2.9 **Del model**: 删除用户导入的模型文件, 删除后即会在 1st network model 中移除 用户自己的模型。 3.2.10 Start running model: 点击即开始加载固件和模型,并根据用户的选项,显示视频窗口。

3.2.11 Log: 显示 OpenNCC 相机工作时的 log,用户可在此处查看设备的运行状况,以及关于设备异常状态的提示信息。

3.2.12 **Algo Results:**显示算法结果,当用户选择加载算法模型,且在实际场景中有被 识别到的算法模型,即会有算法结果在此处打印(如被识别模型相对当前窗口的坐标信息, 及算法计算出的识别分数等)

4.协处理计算棒模式

OpenNCC 的协处理模式, 类似与 Intel NCS2 计算棒。这种工作模式下, OpenNCC 的 视觉传感器不工作, 用户可以单独使用 OpenNCC SoM 来实现完全兼容 OpenVINO 环境。 OpenVINO 典型的深度学习模型部署流程如下:

按照 OpenVINO 文档,为特定的训练框架配置模型优化器(Configure Model

Optimizer)

运行模型优化器(Model Optimizer)产生一个优化后的 IR 文件,基于训练好的网络拓扑、权值和偏差值等可选参数。

将优化生成的 IR 文件下载到 OpenNCC 上运行推理引擎(Inference Engine),具体参考 OpenVINO 文档: Inference Engine validation application 和 sample applications 。

将 Public/Firmwares/MvNCAPI-ma2480.mvcmd 复制并且替换 openvino 安装目 录下的 openvino/inference_engine/lib/intel64/MvNCAPI-ma2480.mvcmd.

(备注: 替换前必须备份 MvNCAPI-ma2480.mvcmd,使用 NCS2 推理时需要恢复该 文件)