

Si8941/46/47 Data Sheet

Isolated Delta-Sigma Modulator for Current Shunt Measurement

The Si8941/46/47 is a galvanically isolated delta-sigma modulator which outputs a digital signal proportional to the voltage level at the input. The low-voltage differential input is ideal for measuring voltage across a current shunt resistor or for any place where a sensor must be isolated from the control system. Low noise, low error, and high precision ensure an accurate measurement of system current.

The output of the Si8941/46/47 comes from a 2nd order delta-sigma modulator. The modulator can be clocked either from an onboard oscillator (Si8946/47) or from an external clock (Si8941). The output is typically digitally filtered by a MCU or FPGA in the system.

The Si8941/46/47 isolated delta-sigma modulator utilizes Silicon Labs' proprietary isolation technology. It supports up to 5.0 kVrms withstand voltage per UL1577. This technology enables higher performance, reduced variation with temperature and age, tighter part-to-part matching, and longer lifetimes compared to other isolation technologies.

Applications:

- · Industrial, HEV and renewable energy inverters
- · AC, Brushless, and DC motor controls and drives
- · Variable speed motor control in consumer white goods
- · Isolated switch mode and UPS power supplies
- · Automotive BMS and charging

Safety Approvals (pending):

- UL 1577 recognized
 - Up to 5000 Vrms for 1 minute
- CSA component notice 5A approval
 - IEC 60950-1 (reinforced insulation)
- VDE certification conformity
 - VDE0884 Part 10 (basic/reinforced insulation)
- · CQC certification approval
 - GB4943.1

KEY FEATURES

- Low voltage differential input
 ±62.5 mV and ±250 mV options
- Modulator clock options
 - External clock up to 25 MHz (Si8941)
 - 10 MHz internal clock (Si8946)
 - · 20 MHz internal clock (Si8947)
- Typical input offset: ±40 μV
- Typical gain error: ±0.1%
- Excellent drift specifications
 ±0.15 μV/°C typical offset drift
 - ±14 ppm/°C typical gain drift
- Typical 14-bit (ENOB) precision
 High common-mode transient immunity: 75 kV/µs
- Typical SNR: 90 dB
- Typical THD: –97 dB
- Typical nonlinearity: 0.002
- Compact packages
 - 8-pin wide body stretched SOIC
- 8-pin narrow body SOIC
- –40 to 125 °C

1. Ordering Guide

New Ordering Part	Ordering Options					
Number (OPN)	Specified Input Range	Isolation Rating	Clock	Package Type		
Si8941AD-IS4	±62.5 mV	5.0 kVrms	Input	WB Stretched SOIC-8		
Si8941BD-IS4	±250 mV	5.0 kVrms	Input	WB Stretched SOIC-8		
SI8946AD-IS4	±62.5 mV	5.0 kVrms	10 MHz Output	WB Stretched SOIC-8		
SI8946BD-IS4	±250 mV	5.0 kVrms	10 MHz Output	WB Stretched SOIC-8		
SI8947AD-IS4	±62.5 mV	5.0 kVrms	20 MHz Output	WB Stretched SOIC-8		
SI8947BD-IS4	±250 mV	5.0 kVrms	20 MHz Output	WB Stretched SOIC-8		
Si8941AB-IS	±62.5 mV	2.5 kVrms	Input	NB SOIC-8		
Si8941BB-IS	±250 mV	2.5 kVrms	Input	NB SOIC-8		
SI8946AB-IS	±62.5 mV	2.5 kVrms	10 MHz Output	NB SOIC-8		
SI8946BB-IS	±250 mV	2.5 kVrms	10 MHz Output	NB SOIC-8		
SI8947AB-IS	±62.5 mV	2.5 kVrms	20 MHz Output	NB SOIC-8		
SI8947BB-IS	±250 mV	2.5 kVrms	20 MHz Output	NB SOIC-8		

Note:

1. All packages are RoHS-compliant.

2. "Si" and "SI" are used interchangeably.

Table of Contents

1.	Ordering Guide	2
2.	System Overview	4
	2.1 Modulator	5
3.	Current Sense Application	6
4.	Electrical Specifications	8
	4.1 Regulatory Information	14
	4.2 Typical Operating Characteristics.	16
5.	Pin Descriptions	25
6.	Packaging	26
	6.1 Package Outline: 8-Pin Wide Body Stretched SOIC	~~
		26
	6.2 Package Outline: 8-Pin Narrow Body SOIC	26 28
	6.2 Package Outline: 8-Pin Narrow Body SOIC	26 28 30
	 6.2 Package Outline: 8-Pin Narrow Body SOIC 6.3 Land Pattern: 8-Pin Wide Body Stretched SOIC 6.4 Land Pattern: 8-Pin Narrow Body SOIC 6.5 Land Pattern: 8-Pin Narrow Body SOIC 	26 28 30 31
	6.2 Package Outline: 8-Pin Narrow Body SOIC	26 28 30 31 32
	6.2 Package Outline: 8-Pin Narrow Body SOIC	26 28 30 31 32 33

2. System Overview

The input to the Si8941/46/47 is designed for low-voltage, differential signals. This is ideal for connection to low-resistance current shunt measurement resistors. The Si8941A/46A/47A has a specified full scale input range of \pm 62.5 mV, and the Si8941B/46B/47B has a specified full scale input range of \pm 250 mV. This allows the user to choose low-ohmic resistance value sense resistors to minimize system power loss.

The analog input stage of the Si8941/46/47 is a fully differential amplifier feeding the input of a second-order, delta-sigma ($\Delta\Sigma$) modulator that digitizes the input signal into a 1-bit output stream. The isolated data output ADAT pin of the converter provides a stream of digital ones and zeros that is synchronous to the ACLK pin. The Si8946/47 clock is generated internally while the Si8941 clock is provided externally. The time average of this serial bit-stream output is proportional to the analog input voltage.

The Si8941/46/47 implements a fail-safe output when the high-side supply voltage VDDA goes away. The fail-safe output is a steadystate logic 0 on ADAT for the externally clocked Si8941. The fail-safe output is a steady state logic 1 on ADAT for the internally clocked Si8946/47. The clock output ACLK of the Si8946/47 will stop after 256 cycles with a steady state logic 1. When the supply comes back, the clock will be turned back on and the normal DSM data stream will be output in approximately 250 µs. To differentiate from the failsafe output, a full-scale input signal will generate a single one or zero every 128 bits at ADAT, depending on the actual polarity of the signal being sensed.

When a loss of VDDA supply occurs, the part will automatically move into a lower power mode that reduces IDDB current to approximately 1 mA. Similarly, a loss of VDDB supply will reduce IDDA current to approximately 1 mA. When the supply voltage is returned, normal operation begins in approximately 250 µs.

Figure 2.1. Functional Block Diagram

2.1 Modulator

The output of the Si8941/46/47 comes from a 2nd order delta-sigma modulator (Figure 2.2 Typical 2nd Order Delta-Sigma Modulator Block Diagram on page 5). The modulator provides 1-bit datastream whose average represents the input analog voltage. 0 V across the inputs is represented at the output by a pulse train that has 50% ones density. Positive specified full-scale at the input (e.g., +250 mV for the Si8941B/46B/47B and +62.5 mV for the Si8941A/46A/47A) produces an output datastream that has 89.06% ones density, and negative specified full scale gives an output that has 10.94% ones density. Table Table 2.1 Modulator Output on page 5 shows the values for other input levels and for both full-scale input options of the device.

Figure 2.2. Typical 2nd Order Delta-Sigma Modulator Block Diagram

Table	2.1.	Modulator	Output
		mounded	output

Differen	Bitstream % Ones	
Si8941A/46A/47A	Si8941B/46B/47B	
+62.5 mV	+250 mV	89.06%
+31.25 mV	+125 mV	69.53%
0 mV	0 mV	50%
-31.25 mV	-125 mV	30.47%
-62.5 mV	-250 mV	10.94%

3. Current Sense Application

In the driver circuit presented below, the Si8941/46/47 is used to amplify the voltage across the sense resistor, RSENSE, where it is oversampled and converted into a 1-bit bitstream, then transmitted across the isolation barrier to be processed by the system controller/ FPGA. Placing the sense resistor before the load is known as high-side sensing and isolation is needed because the voltage of RSENSE with respect to ground will swing between 0 V and the high voltage rail connected to the drain of Q1.

Figure 3.1. Current Sense Application

The load in this application can be a motor winding or a similar inductive winding. In a three-phase motor drive application, this circuit would be repeated three times, one for each phase. RSENSE should be a small resistor value to reduce power loss. However, an excessively low resistance will reduce the signal-to-noise ratio of the measurement. Si8941/46/47 offers two specified linear full-scale input options, ± 62.5 mV (Si8941A/46A/47A) and ± 250 mV (Si8941B/46B/47B), for optimizing the value of RSENSE. Further product ordering options include whether the CLK pin is an input (Si8941) or an output (Si8946/47).

AIP and AIN connections to the RSENSE resistor should be made as close as possible to each end of the RSENSE resistor as trace resistance will add error to the measurement. The input to the Si8941/46/47 is differential, and the PCB traces back to the input pins should run in parallel. This ensures that any large noise transients that occur on the high-voltage side are coupled equally to the AIP and AIN pins and will be rejected by the Si8941/46/47 as a common-mode signal.

The Si8941/46/47 has intrinsic low-pass filtering at approximately 800 kHz. If further input filtering is required, a passive, differential RC low-pass filter can be placed between RSENSE and the input pins. Values of R1 = R2 = 20 Ω and C1 = 10 nF provides a cutoff at approximately 400 kHz. For the lowest gain error, R1 and R2 should always be less than 33 Ω to keep the source impedance sufficiently low compared to the Si8941/46/47 input impedance.

The common-mode voltage of AIN and AIP must be greater than -0.2 V but less than 1 V with respect to GNDA. To meet this requirement, route a trace from the GNDA pin of the Si8941/46/47 to one side of the RSENSE resistor. In this circuit, GNDA, RSENSE, the source of Q1, and the drain of Q2 are connected. The ground of the gate driver (one half of the Silicon Labs' Si8234 in this example) is also commonly connected to the same node.

The Q1 gate driver has a floating supply of 24 V. Since the input and output of the Si8941/46/47 are galvanically isolated from each other, separate power supplies are necessary on each side. Q3, R3, C3, and D1 make a regulator circuit for powering the input side of the Si8941/46/47 from this floating supply. D1 establishes a voltage of 5.6 V at the base of Q3. R3 is selected to provide a Zener current of 10 mA for D1. C3 provides filtering at the base of Q3, and the emitter output of Q3 provides approximately 5 V to VDDA. C2 is a bypass capacitor for the supply and should be placed at the VDDA pin with its return trace connecting to the GNDA connection at RSENSE.

C4, the local bypass capacitor for the B-side of Si8941/46/47, should be placed closed to VDDB supply pin with its return close to GNDB. The output signal typically goes directly to a digital filter for additional processing. The digital filter may be implemented by a dedicated FPGA in the system or may be a peripheral in the main system controller. The Si8941 expects an external clock to provide

the clock signal for the modulator. That external clock can be provided by the same device that implements the digital filtering or another device that syncs both the modulator and the digital filter. The Si8946/47 generates an internal clock to the digital filter.

4. Electrical Specifications

Table 4.1. Electrical Specifications

 V_{DDA} , V_{DDB} = 5 V, T_A = -40 to +125 °C; typical specs at 25 °C , SINC3 filter with 256 oversampling ratio and 20 MHz clock

Para	ameter	Symbol	Test Condition	Min	Тур	Max	Units
Input Side S	Supply Voltage	VDDA		3.0		5.5	V
Input Supply Current		IDDA	VDDA = 3.3 V	6.3	6.9	8.9	mA
Output Side Supply Voltage		VDDB		3.0		5.5	V
Output Supply	Si8941	אטטו			4		mA
Current	Si8946/47		VDDB - 3.3 V		8		mA
Amplifier Input							
Specified Linear	Si8941A/46A/47A	ΛΑΙΡ <u>–</u> ΛΑΙΝ		-62.5		62.5	mV
Input Range	Si8941B/46B/47B			-250		250	mV
Maximum Input	Si8941A/46A/47A				±80		mV
Clipping	Si8941B/46B/47B	VAIP – VAIN			±320		mV
Common-Mode	Operating Range ¹	VCM		-0.2		1	V
Inpu	t Offset	VOS	T _A = 25 °C, AIP = AIN = 0	-0.2	±0.04	0.2	mV
Input Offset Drift		VOS _T		-0.4	±0.15	2	μV/°C
Gain Error		E _G	T _A = 25 °C	-0.3	±0.1	0.3	%
Gain Error Drift		E _{GT}		-40	±14	40	ppm/°C
Differential Input	Si8941A/46A/47A	DIN			6.3		kΩ
Impedance	Si8941B/46B/47B				21.4		kΩ
Differential Inpu	ut Impedance Drift	RIN _T			850		ppm/°C
Dynamic Charact	eristics						
	Si8941A/46A/47A		F _{IN} = 5 kHz	80	86		dB
SNR	Si00/10//60//70	SNR	BW = 40 kHz (Si8941/47)	04	00		dD
	31094 1D/40D/47 D		BW = 20 kHz (Si8946)	04	30		UD I
Nonlinearity	Si8941A/46A/47A		T ₄ = 25 °C	-0.032	0.004	0.032	%
Noninearity	Si8941B/46B/47B		TA = 25 °C	-0.016	0.002	0.016	%
Nonlinearity Drift	Si8941/46/47		T _A = 25 °C	-0.46		0.46	ppm/°C
			F _{IN} = 5 kHz				
	Si8941A/46A/47A	THD	BW = 40 kHz (Si8941/47)		-95	-82	dB
Total Harmonic			BW = 20 kHz (Si8946)				
Distortion			F _{IN} = 5 kHz				
	Si8941B/46B/47B	THD	BW = 40 kHz (Si8941/47)		-97	-84	dB
			BW = 20 kHz (Si8946)				

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
		PSRR vs. VDDA at DC		-100		dB
Dewer Overly Dejection Datie		PSRR vs. VDDA at 100 mV and 10 kHz ripple		-100		dB
Power-Supply Rejection Ratio	PSKK	PSRR vs. VDDB at DC		-100		dB
		PSRR vs. VDDB at 100 mV and 10 kHz ripple		-100		dB
Common-Mode Transient Immunity	CMTI		50	75		kV/μs
Digital						
Logic high input threshold	V _{IH}		70% of VDDB			V
Logic low input threshold	V _{IL}				20% of VDDB	V
Input hysteresis	VIHYST			120		mV
Output load capacitance	C _{LOAD}			15		pF
External Clock (Si8941)						
Clock Frequency	FCLKIN		5		25	MHz
Duty Cycle	FDUTY		45	50	55	%
Delay to Data Valid	TDELAY				23	ns
Data Hold Time	THOLD		6			ns
Internal Clock (Si8946)						
		T _A = 25 °C	9.9	10	10.1	MHz
	FULKOUT	T _A = –40 °C to 125 °C	9.8	10	10.2	MHz
Duty Cycle	FDUTY		45	50	55	%
Delay to Data Valid	TDELAY				60	ns
Data Hold Time	THOLD		40			ns
Internal Clock (Si8947)		•				
		T _A = 25 °C	19.8	20	20.2	MHz
	FULKUUT	T _A = -40 °C to 125 °C	19.6	20	20.4	MHz
Duty Cycle	FDUTY		45	50	55	%
Delay to Data Valid	TDELAY				30	ns
Data Hold Time	THOLD		20			ns
Note:					·	

1. Average value of VCM = 0 with example circuit shown in Figure 3.1 Current Sense Application on page 6.

Figure 4.3. Common-Mode Transient Immunity Characterization Circuit

Parameter	Symbol	Test Condition	Characteristic	Unit
Safety Temperature	Τ _S		150	°C
		$\theta_{JA} = 90 \ ^{\circ}C/W$		
		VDD = 5.5 V	252	_
		T _J = 150 °C	200	
Sefety leave Current (M/D Stratched SOLO 8)	L	T _A = 25 °C		
Salety input Current (WB Stretched SOIC-8)	IS	$\theta_{JA} = 90 \text{ °C/W}$		
		VDD = 3.6 V	200	
afety Input Current (NB SOIC-8)		T _J = 150 °C	380	mA
		T _A = 25 °C		
		θ _{JA} = 112 °C/W		
		VDD = 5.5 V	310	
Safety Temperature Safety Temperature Safety Input Current (WB Stretched SOIC-8) Safety Input Current (NB SOIC-8) Safety Input Power (WB Stretched SOIC-8) Safety Input Power (NB SOIC-8) Device Power Dissipation (WB Stretched SOIC-8) Note:		T _J = 150 °C		mA
		T _A = 25 °C		
	IS	θ _{JA} = 112 °C/W	203	mA
		VDD = 3.6 V		
		T _J = 150 °C		
		T _A = 25 °C		
		$\theta_{JA} = 90 \ ^{\circ}C/W$		
Safety Input Power (WB Stretched SOIC-8)	P _S	T _J = 150 °C	1389	mW
		T _A = 25 °C		
		θ _{JA} = 112 °C/W		
Safety Input Power (NB SOIC-8)	Ps	T _J = 150 °C	1116	mW
		T _A = 25 °C		
Device Power Dissipation (WB Stretched SOIC-8)	PD		1.39	W
Device Power Dissipation (NB SOIC-8)			1.12	w
Note:	1	1		1

Table 4.2. IEC Safety Limiting Values¹

1. Maximum value allowed in the event of a failure. Refer to the thermal derating curves below.

Parameter	Symbol	WB Stretched SOIC-8	NB SOIC-8	Unit
IC Junction-to-Air Thermal Resistance	θ_{JA}	90	112	°C/W

Figure 4.4. WB Stretched SOIC-8 Thermal Derating Curve for Safety Limiting Current

Figure 4.5. NB SOIC-8 Thermal Derating Curve for Safety Limiting Current

Parameter	Symbol	Min	Мах	Unit
Storage Temperature	T _{STG}	-65	150	°C
Ambient Temperature Under Bias	T _A	-40	125	°C
Junction Temperature	TJ	_	150	°C
Supply Voltage	VDDA, VDDB	-0.5	6.0	V
Input Voltage respect to GNDA	VAIP, VAIN	-0.5	VDDA+ 0.5	V
Output Sink or Source Current	Ι _Ο	—	5	mA
Total Power Dissipation	P _T	_	212	mW
Lead Solder Termperature (10 s)		_	260	°C
Human Body Model ESD Rating		6000	—	V
Capacitive Discharge Model ESD Rating WB Stretched SOIC-8		2000	—	V
Maximum Isolation (WB Stretched SOIC-8 Input to Output) (1 s)		_	6500	V _{RMS}
Maximum Isolation (NB SOIC-8 package Input to Output) (1 s)		_	3250	V _{RMS}

Table 4.4. Absolute Maximum Ratings¹

Note:

1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of the data sheet.

4.1 Regulatory Information

Table 4.5. Regulatory Information (pending)^{1, 2}

CSA

The Si8941/46/47 is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873.

60950-1, 62368-1: Up to 600 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage.

VDE

The Si8941/46/47 is certified according to VDE 0884-10. For more details, see File 5006301-4880-0001.

VDE 0884-10: Up to 1414 V_{peak} for reinforced insulation working voltage.

UL

The Si8941/46/47 is certified under UL1577 component recognition program. For more details, see File E257455.

Rated up to 5000 V_{RMS} isolation voltage for basic protection.

CQC

The Si8941/46/47 is certified under GB4943.1-2011.

Rated up to 600 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage.

Note:

1. Regulatory Certifications apply to 5 kV_{RMS} rated devices which are production tested to 6.0 kV_{RMS} for 1 sec.

2. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.

Table 4.6. Insulation and Safety-Related Specifications

			Va	lue	
Parameter	Symbol	Test Condition	WB Stretched SOIC-8	NB SOIC-8	Unit
Nominal External Air Gap (Clearance)	CLR		9.0 ¹	4.9	mm
Nominal External Tracking (Creepage)	CPG		8.0 ¹	4.01	mm
Minimum Internal Gap (Internal Clearance)	DTI		0.762	0.254	mm
Tracking Resistance (Proof Tracking Index)	PTI or CTI	IEC60112	600	600	V
Erosion Depth	ED		0.04	0.04	mm
Resistance (Input-Output) ²	R _{IO}		10 ¹²	10 ¹²	Ω
Capacitance (Input-Output) ²	C _{IO}	f = 1 MHz	1	1	pF

Note:

1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage limits as x.x mm minimum. UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and creepage limits as x.x mm minimum.

2. To determine resistance and capacitance, the Si8941/46/47 is converted into a 2-terminal device. Pins 1–4 are shorted together to form the first terminal, and pins 5–8 are shorted together to form the second terminal. The parameters are then measured between these two terminals.

		Specification
Parameter	Test Conditions	WB Stretched SOIC-8
Basic Isolation Group	Material Group	I
	Rated Mains Voltages \leq 150 V _{RMS}	I-IV
Installation	Rated Mains Voltages ≤ 300 V _{RMS}	I-IV
Classification	Rated Mains Voltages \leq 450 V _{RMS}	1-111
	Rated Mains Voltages \leq 600 V _{RMS}	1-111

Table 4.7. IEC 60664-1 (VDE 0884) Ratings

Table 4.8. VDE 0884-10 Insulation Characteristics¹

			Characteristic	Unit
Parameter	Symbol	Test Condition	WB Stretched SOIC-8	
Maximum Working Insulation Voltage	V _{IORM}		1414	V peak
		Method b1		
Input to Output Test Voltage	V _{PR}	(V _{IORM} x 1.875 = V _{PR} , 100%	2650	V peak
		Production Test, t _m = 1 sec,	2050	
		Partial Discharge < 5 pC)		
Transient Overvoltage	V _{IOTM}	t = 60 sec	8000	V peak
Pollution Degree (DIN VDE 0110, Table 1)			2	
Insulation Resistance at T_S , V_{IO} = 500 V	R _S		>10 ⁹	Ω

Note:

1. This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The Si8941/46/47 provides a climate classification of 40/125/21.

Figure 4.8. Si894x Gain Error vs. DSM Clock Frequency

Figure 4.9. Si894x Nonlinearity vs. Temperature

Figure 4.10. Si894x Nonlinearity vs. DSM Clock Frequency

Figure 4.11. Si8941 Signal-to-Noise Ratio vs. VDDA

Figure 4.12. Si8941 Signal-to-Noise Ratio vs. Frequency

Figure 4.13. Si8941 Signal-to-Noise Ratio vs. Temperature

Figure 4.14. Signal-to-Noise Ratio vs. DSM Clock Frequency

Figure 4.15. Si8941B Signal-to-Noise Ratio vs. Input Signal Amplitude

Figure 4.16. Si8941A Signal-to-Noise Ratio vs. Input Signal Amplitude

Figure 4.17. Si8941 Total Harmonic Distortion vs. Input Signal Frequency

Figure 4.18. Si8941 Total Harmonic Distortion vs. Temperature

Figure 4.19. Total Harmonic Distortion vs. VDDA

Figure 4.20. Total Harmonic Distortion vs. DSM Clock Frequency

Figure 4.21. Si8941B Total Harmonic Distortion vs. Input Signal Amplitude

Figure 4.22. Si8941A Total Harmonic Distortion vs. Input Signal Amplitude

5. Pin Descriptions

Name	WB Stretched SOIC-8 Pin #	Description
VDDA	1	Input side power supply
AIP	2	Analog input high
AIN	3	Analog input low
GNDA	4	Input side ground
GNDB	5	Output side ground
ADAT	6	Delta-Sigma modulator data output
ACLK	7	Delta-Sigma modulator clock (input on Si8941, output on Si8946/47)
VDDB	8	Output power supply

6. Packaging

6.1 Package Outline: 8-Pin Wide Body Stretched SOIC

The figure below illustrates the package details for the Si8941/46/47 in a 8-Pin Wide Body Stretched SOIC package. The table lists the values for the dimensions shown in the illustration.

Figure 6.1. 8-Pin Wide Body Stretched SOIC Package

Table 6.1. 8-Pin Wide Body	Stretched SOIC Package	Diagram Dimensions
----------------------------	------------------------	--------------------

Dimension	MIN	МАХ
A	2.49	2.79
A1	0.36	0.46
b	0.30	0.51
C	0.20	0.33
D	5.74	5.94
E	11.25	11.76
E1	7.39	7.59
e	1.27	BSC
L	0.51	1.02
h	0.25	0.76
θ	0°	8°

Dimension	MIN	MAX
ааа	—	0.25
bbb	_	0.25
ccc	_	0.10

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Outline MS-013, Variation AA.

4. Recommended reflow profile per JEDEC J-STD-020C specification for small body, lead-free components.

6.2 Package Outline: 8-Pin Narrow Body SOIC

The figure below illustrates the package details for the Si8941/46/47 in an 8-Pin Narrow Body SOIC package. The table lists the values for the dimensions shown in the illustration.

Figure 6.2. 8-Pin Narrow Body SOIC Package

Table 6.2. 8-Pin Narrow Body SOIC Package Diagram Dimensions

Dimension	Min	Мах
А	1.35	1.75
A1	0.10	0.25
A2	1.40 REF	1.55 REF
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
E	3.80	4.00
e	1.27	BSC
н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Max

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1982.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020B specification for Small Body Components.

6.3 Land Pattern: 8-Pin Wide Body Stretched SOIC

The figure below illustrates the recommended land pattern details for the Si8941/46/47 in a 8-Pin Wide Body Stretched SOIC package. The table lists the values for the dimensions shown in the illustration.

Figure 6.3. 8-Pin Wide Body Stretched SOIC Land Pattern

Table 6.3. 8-Pin Wide Body Stretched SOIC Land Pattern Dimensions²

Dimension	Feature	(mm)
C1	Pad Column Spacing	10.60
E	Pad Row Pitch	1.27
X1	Pad Width	0.60
Y1	Pad Length	1.85

Note:

General

- 1. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60mm minimum, all the way around the pad.

Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.4 Land Pattern: 8-Pin Narrow Body SOIC

The figure below illustrates the recommended land pattern details for the Si8941/46/47 in an 8-Pin Narrow Body SOIC package. The table lists the values for the dimensions shown in the illustration.

Figure 6.4. 8-Pin Narrow Body SOIC Land Pattern

Table 6.4. 8-Pin Narrow Body	y SOIC Land Pattern Dimensions
------------------------------	--------------------------------

Symbol	mm
C1	5.40
E	1.27
X1	0.60
Y1	1.55

Note:

1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

6.5 Top Marking: 8-Pin Wide Body Stretched SOIC

The figure below illustrates the top markings for the Si8941/46/47 in an 8-Pin Wide Body Stretched package. The table explains the top marks shown in the illustration.

Table 6.5. 8-Pin Wide Body Stretched SOIC Top Mark Explanation

Line 1 Mark- ing:	Customer Part Number	Si8941 or Si8946 or Si8947 Delta-Sigma Modulators X = Clock Source/Speed • 1 = external (Si8941) • 6 = internal 10 MHz (Si8946) • 7 = internal 20 MHz (Si8947) S = Input Range: • A = $\pm 62.5 \text{ mV}$ • B = $\pm 250 \text{ mV}$ V = Insulation rating: • D = 5.0 kV
Line 2 Mark- ing:		Manufacturing Code from the Assembly Purchase Order form.
Line 3 Mark- ing:	YY = Year WW = Work Week Circle = 43 mils Diameter Left-Justified	Assigned by the Assembly House. Corresponds to the year and work week of the mold date.

6.6 Top Marking: 8-Pin Narrow Body SOIC

The figure below illustrates the top markings for the Si8941/46/47 in an 8-Pin Narrow Body SOIC package. The table explains the top marks shown in the illustration.

Figure 6.6. 8-Pin Narrow Body SOIC Top Marking

Table 6.6.	8-Pin Narrow Boo	ly SOIC Top	Mark Explanation
------------	------------------	-------------	------------------

Line 1 Mark- ing:	Customer Part Number	Si8941 or Si8946 or Si8947 Delta-Sigma Modulators X = Clock Source/Speed • 1 = external (Si8941) • 6 = internal 10 MHz (Si8946) • 7 = internal 20 MHz (Si8947) S = Input Range: • $A = \pm 62.5 \text{ mV}$ • $B = \pm 250 \text{ mV}$ V = Insulation rating: • $B = 2.5 \text{ kV}$
Line 2 Mark- ing:	CC = Country of Origin ISO Code Ab- breviation YY = Year WW = Work Week	Assigned by the Assembly House. Corresponds to the year and work week of the mold date.
Line 3 Mark- ing:	TTTTTT = Mfg Code Circle = 19.7 mils Diameter Left-Justified	Manufacturing Code from the Assembly Purchase Order form.

7. Revision History

Revision 0.5

March, 2019

- Updated specifications.
- Added narrow body SOIC package.
- Added timing diagram.

Revision 0.1

January, 2018

· Preliminary draft.

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for althorized for military applications. Silicon Labs product shall not be responsible or liable for any injuries or demages related to use of a Silicon Labs product applications. Silicon Labs resorves and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com