Internal HV Start-up Non-isolated quasi-resonant mode Converter for LED Driver

General Description

The PN8313 consists of a high precision quasi-resonant mode CC primary side controller and a power MOSFET, specifically designed for a high performance low power LED lighting with minimal external components and single-inductance. The chip adopts buck topology and work in quasi-resonant mode; The chip adopts a patent HV DMOS self-supply technology, so auxiliary winding and HV Start-up resistance could be eliminated. The chip offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting protection (OCP) and feedback loop open protection (OLP), over temperature regulation, Rcs open/short Protection and LED-open/short circuit protection etc. Internal HV Start-up circuit and the chip's very low consumption help to meet high efficiency. In CC control, the current and output power setting can be adjusted externally by the sense resistor Rcs at CS pin.

Features

- Integrated 530V avalanche-rugged power MOSFET
- Integrated HV Soft Start Circuit without additional Start-up resistance
- Rapid self-supply patent technology without additional power supply circuit
- $\pm 3\%$ precision LED current
- Adjustable constant current output values
- Good Protection Coverage With
 - ♦ over temperature regulation
 - ♦ over current limiting (OCP)
 - \diamond LED open and short circuit protection
 - \diamond Auto- recovery protection Mode
 - ♦ Rcs open/short Protection

Applications

- LED Fluorescent Lamp
- LED Bulb

Package/Order Information

	SOP8	_	
cs ⊑́)þ	SW
		р	SW
FB 🗌	litina	þ	NC
gnd	Ľ	庐	NC

Order codes	Package	Input Voltage	Typical power
DN92128EC D1T	SOD	90-265V	7.5W
PN05155EC-KII	50P8	176-265V	11W

Note: the maximum output power should be tested in open frame

at 85°C ambient temperature.

Diagram Block

Pin Definitions

Table 1. Pin Definitions

Pin Number	Pin Name	Pin Function Description	
1	CS	Current sense input pin.	
2	VDD	Power supply pin	
3	FB	Fly Back Pin	
4	GND	Ground.	
5	NC	Electing	
6	ne	rioating	
7	SW	Drain of the internal MOSEET	
8	5 W		

Note: NC Pin could not be connected

Typical Power

Table 2. Typical Power

Part number	Input voltage	Open frame ⁽¹⁾
DN9212 COD9	90-265 V _{AC}	7.5W ⁽²⁾
FN8313 SUF8	176-265 V _{AC}	$11W^{(3)}$

Note:

1) the maximum output power should be tested in open frame at $85^{\circ}C$ ambient temperature

2) Suggested output current is less than 120mA for maximum power application when input voltage range is 90-265V

3) Suggested output current is less than 145mA for maximum power application when input voltage range is 176-265V

Absolute Maximum Ratings

VDD max support voltage	40V
SW max support voltage	500V
CS, FB work voltage	-0.35V
Junction Ambient Temperature	-40℃ to 150℃
Package Thermal Temperature (SOP-8)	80°C/W
Storage Temperature Range	-55~150℃
Lead Temperature (Soldering, 10secs)	260℃
ESD (HBM, , ESDA/JEDEC JDS-001-2014)	2.0kV
The biggest drain pulse current	0.8A

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
Power Section	on					
V _{BVDSS}	Break-down voltage	$I_{sw} = 250 uA,$ $V_{cs} = 0.4V,$ $T_{J} = 25^{\circ}C$		530		v
I _{OFF}	Off-state drain current	$V_{sw} = 500 V, V_{cs} = 0.4V$			150	uA
R _{DS(on)}	Drain-source on state resistance	$I_{sw} = 0.4A, T_{J} = 25 ^{\circ}C$		14		Ω
Supply Vol	tage Section					
V _{SW_START}	Start up voltage		45		75	v
I _{DD_CH}	Start up charging current	$V_{SW} = 105 V,$ $V_{CS} = 0.4V,$ $V_{DD} = 11 V$		-6		mA
V _{DDon}	V _{DD} start up threshold		11.5	13.0	14.5	v
V _{DDoff}	V_{DD} under voltage shutdown threshold		7.0	8.0	9.0	V
V _{ddchon}	Self-powered turn off voltage		12.0	13.0	14.5	v
V _{ddchoff}	Self-powered turn on voltage		9.0	11.0	12.0	V
V _{DDclamp}	V _{DD} clamp voltage		18	20	22	V
Supply Cuure	nt Section			1	I	1
I _{DD1}	Operating supply current	$V_{CS} = 1 V, V_{FB} = 0.6 V,$ $V_{DD} = 14.5V$	0.19		0.4	mA
I _{DD2}	supply current when ic shutdown	$V_{CS} = 1 V, V_{FB} = 0.6 V,$ $V_{DD} = 7.0 V$			0.24	mA
I _{DD-FAULT}	supply current when ic in fault	$V_{cs} = 0.2 V, V_{FB} = 0.1 V$	0.1		0.24	mA
Current Sense	Section					
T _{LEB}	Leading edge blanking time			450		ns
V_{TH_OC}	Current limiting threshold voltage		535	550	565	mV
T _{ON_MAX}	Maximal turn ON time		40		100	us
FB Section						
FB _{OVP}	FB over voltage protect			3.3		v
FB _{SHORT}	FB low-voltage protection			0.3		v
T _{OFF-MIN}	Minimum turn off time			3.8		us
T _{OFF-MAX}	Maximal turn off time			150		us
Thermal Secti	on	,		1	1	1
Treg	Thermal regulation temperature			150		°C

Electrical Characteristics ($T_J = 25^{\circ}C$, $V_{DD} = 15 V$; Special circumstances shall be separately noted)

Typical Application

90~265Vac 65V120mA

Functional Description

1. Startup

At start up, the internal high-voltage current source supplies the internal bias and charges the external VDD capacitor. When VDD reaches 13V, the device starts switching and the internal high-voltage current source stops charging the capacitor. The device is in normal operation provided VDD does not drop below 11V.

2. CC Operation Mode

In CC operation, PN8313 captures the flyback signal at FB pin through a resistor divider network. The pulse width of the flyback signal determines the PN8313 oscillator frequency. The chip work in quasi-resonant mode. The higher the output voltage is, the shorter the pulse width is. And the chip oscillator frequency is higher, thus the constant output current can be achieved.

3. Current Sense & Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in PN8313. The switch current is detected by a sense resistor into the CS pin. The CC set-point and maximum output power can be externally adjusted by external current sense resistor at CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial power MOSFET on state so that the external RC filtering on sense input is no longer needed.

4. Protection Control

The PN8313 has several self-protection functions, such as Over-Voltage Protection, Over Temperature Regulation, Feedback Loop open Protection, Output short circuit Protection, CS resistor short circuit Protection and Under Voltage Lockout on VDD. All protections are implemented as auto-restart mode.

Package Dimensions

 Table 3.
 SOP8 mechanical data

Dimensions Symbol	Min.(mm)	Mid.(mm)	Max.(mm)	Dimensions Symbol	Min.(mm)	Mid.(mm)	Max.(mm)
А	1.35	1.55	1.75	L	0.45	0.60	0.80
A1	0.10	0.15	0.25	L1		1.04REF	
A2	1.25	1.40	1.65	L2		0.25BSC	
A3	0.50	0.60	0.70	R	0.07	_	—
b	0.38	_	0.51	R1	0.07	_	—
b1	0.37	0.42	0.47	h	0.30	0.40	0.50
с	0.17	_	0.25	θ	0°	_	8°
c1	0.17	0.20	0.23	θ1	15°	17°	19°
D	4.80	4.90	5.00	θ2	11°	13°	15°
Е	5.80	6.00	6.20	θ3	15°	17°	19°
E1	3.80	3.90	4.00	θ4	11°	13°	15°
е		1.270 (BSC)					

Figure 1. Package dimensions

TOP MARK	Package	
PN8313	CODE	
YWWXXXXX	SOF8	

Note: YY: Year Code; WW: Week Code; XXXXX: Internal Code