3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE

FEATURES

- Designed to Meet and Exceed PC133 SDRAM Registered DIMM Specification
Rev. 1.1
- Spread Spectrum Clock Compatible
- Operating Frequency 20 MHz to 175 MHz
- Static Phase Error Distribution at 66 MHz to 166 MHz is $\pm 125 \mathrm{ps}$
- Jitter (cyc-cyc) at 66 MHz to 166 MHz is |70| ps
- Advanced Deep Submicron Process Results in More Than 40\% Lower Power Consumption vs Current Generation PC133 Devices
- Auto Frequency Detection to Disable Device (Power-Down Mode)
- Available in Plastic 24-Pin TSSOP
- Distributes One Clock Input to One Bank of 10 Outputs
- External Feedback (FBIN) Terminal is Used to Synchronize the Outputs to the Clock Input
- 25- Ω On-Chip Series Damping Resistors
- No External RC Network Required
- Operates at 3.3 V

APPLICATIONS

- DRAM Applications
- PLL Based Clock Distributors
- Non-PLL Clock Buffer

DESCRIPTION

The CDCVF2510A is a high-performance, low-skew, low-jitter, phase-lock loop (PLL) clock driver. The CDCVF2510A uses a phase-lock loop (PLL) to precisely align, in both frequency and phase, the feedback (FBOUT) output to the clock (CLK) input signal. It is specifically designed for use with synchronous DRAMs. The CDCVF2510A operates at a 3.3-V V_{CC} and also provides integrated series-damping resistors that make it ideal for driving point-to-point loads.
One bank of 10 outputs provides 10 low-skew, low-jitter copies of CLK. Output signal duty cycles are adjusted to 50%, independent of the duty cycle at CLK. Outputs are enabled or disabled via the control (G) input. When the G input is high, the outputs switch in phase and frequency with CLK; when the G input is low, the outputs are disabled to the logic-low state. The device automically goes into power-down mode when no input signal ($<1 \mathrm{MHz}$) is applied to CLK; the outputs go into a low state.
Unlike many products containing PLLs, the CDCVF2510A does not require external RC networks. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost.
Because it is based on PLL circuitry, the CDCVF2510A requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization time is required following power up and application of a fixed-frequency, a fixed-phase signal at CLK, or following any changes to the PLL reference or feedback signals. The PLL can be bypassed by strapping $A V_{C C}$ to ground to use as a simple clock buffer.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION CONTINUED

The CDCVF2510A is characterized for operation from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
For application information see the application reports High Speed Distribution Design Techniques for CDC509/516/2509/2510/2516 (literature number SLMA003) and Using CDC2509A/2510A PLL With Spread Spectrum Clocking (SSC) (literature number SCAA039).

FUNCTION TABLE

INPUTS			OUTPUTS		PLL
AVDD	G	CLK	$\mathbf{1 Y (0 : 9)}$	FBOUT	
GND	L	Signal	L	Signal (delayed)	Bypassed / Off
GND	H	Signal	Signal (delayed)	Signal (delayed)	Bypassed / Off
$3.3 V$ (nom)	L	CLK $>1 \mathrm{MHz}$	L	CLK (in phase)	On
3.3 V (nom)	H	CLK $>1 \mathrm{MHz}$	CLK (in phase)	CLK (in phase)	On
3.3 V (nom)	X	CLK $<1 \mathrm{MHz}$	L	L	Off

FUNCTIONAL BLOCK DIAGRAM

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE
	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Terminal Functions

TERMINAL		TYPE	DESCRIPTION
NAME	NO.		
CLK	24	I	Clock input. CLK provides the clock signal to be distributed by the CDCVF2510A clock driver. CLK is used to provide the reference signal to the integrated PLL that generates the clock output signals. CLK must have a fixed frequency and fixed phase for the PLL to obtain phase lock. Once the circuit is powered up and a valid CLK signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to its reference signal.
FBIN	13	1	Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be hard-wired to FBOUT to complete the PLL. The integrated PLL synchronizes CLK and FBIN so that there is nominally zero phase error between CLK and FBIN.
G	11	1	Output bank enable. G is the output enable for outputs $1 \mathrm{Y}(0: 9)$. When G is low, outputs $1 \mathrm{Y}(0: 9)$ are disabled to a logic-low state. When G is high, all outputs $1 \mathrm{Y}(0: 9)$ are enabled and switch at the same frequency as CLK.
FBOUT	12	O	Feedback output. FBOUT is dedicated for external feedback. It switches at the same frequency as CLK. When externally wired to FBIN, FBOUT completes the feedback loop of the PLL. FBOUT has an integrated $25-\Omega$ series-damping resistor.
$1 \mathrm{Y}(0: 9)$	$\begin{gathered} 3,4,5,8,9 \\ 15,16,17,20 \\ 21 \end{gathered}$	O	Clock outputs. These outputs provide low-skew copies of CLK. Output bank $1 \mathrm{Y}(0: 9)$ is enabled via the G input. These outputs can be disabled to a logic-low state by deasserting the G control input. Each output has an integrated $25-\Omega$ series-damping resistor.
$\mathrm{AV}_{\mathrm{CC}}$	23	Power	Analog power supply. $\mathrm{AV}_{\mathrm{CC}}$ provides the power reference for the analog circuitry. In addition, $\mathrm{AV}_{\mathrm{CC}}$ can be used to bypass the PLL. When $A V_{C C}$ is strapped to ground, PLL is bypassed and CLK is buffered directly to the device outputs.
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
$V_{C C}$	2, 10, 14, 22	Power	Power supply
GND	6, 7, 18, 19	Ground	Ground

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

$\mathrm{AV}_{\text {cc }}$	Supply voltage range ${ }^{(1)}$	$\mathrm{AV}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CC}}+0.7 \mathrm{~V}$
V_{CC}	Supply voltage range	-0.5 V to 4.3 V
V_{1}	Input voltage range ${ }^{(2)}$	-0.5 V to 4.6 V
V_{O}	Voltage range applied to any output in the high or low state ${ }^{(2)(3)}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{K}	Input clamp current, ($\mathrm{V}_{1}<0$)	$-50 \mathrm{~mA}$
l_{OK}	Output clamp current, ($\mathrm{V}_{\mathrm{O}}<0$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$	$\pm 50 \mathrm{~mA}$
l_{0}	Continuous output current, ($\mathrm{V}_{\mathrm{O}}=0$ to V_{CC})	$\pm 50 \mathrm{~mA}$
	Continuous current through each V_{CC} or GND	$\pm 100 \mathrm{~mA}$
$\mathrm{Z}_{\text {өJA }}$	Junction-to-ambient package thermal impedance ${ }^{(4)}$	$114.5^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{Z}_{\text {өJC }}$	Junction-to-case thermal impedance ${ }^{(4)}$	$25.7^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Maximum allowable junction temperature	$125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

(1) $A V_{C C}$ must not exceed $V_{C C}+0.7 \mathrm{~V}$.
(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(3) This value is limited to 4.6 V maximum.
(4) The package thermal impedance and junction-to-case thermal impedance are calculated in accordance with JESD51 (no air flow condition) and JEDEC252P (high-k board).

InSTRUMENTS

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

		MIN	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}}, \mathrm{AV}_{\mathrm{CC}}$	Supply voltage	3	3.6	V
V_{IH}	High-level input voltage	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8	V
V_{1}	Input voltage	0	V_{CC}	V
IOH	High-level output current		-12	mA
lOL	Low-level output current,		12	mA
$\mathrm{f}_{\mathrm{clk}}$	Clock frequency ${ }^{(2)}$	20	175	MHz
	Input clock duty cycle	40\%	60\%	
	Stabilization time		1	ms

(1) Unused inputs must be held high or low to prevent them from floating.
(2) Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{Cc}}, \mathrm{AV}_{\mathrm{cc}}$	MIN	TYP ${ }^{(1)}$ MAX	UNIT
V_{IK}	Input clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	3 V		-1.2	V
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	MIN to MAX	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3 V	2.1		
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	3 V	2.4		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	MIN to MAX		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	3 V		0.8	
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	3 V		0.55	
${ }_{\mathrm{OH}}$	High-level output current	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	3 V	-28		mA
		$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	3.3 V		-36	
		$\mathrm{V}_{\mathrm{O}}=3.135 \mathrm{~V}$	3.6 V		-8	
loL	Low-level output current	$\mathrm{V}_{\mathrm{O}}=1.95 \mathrm{~V}$	3 V	30		mA
		$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	3.3 V		40	
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	3.6 V		10	
1	Input current	$\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND	3.6 V		± 5	$\mu \mathrm{A}$
$\mathrm{ICC}^{(2)}$	Supply current (static, output not switching)	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0 \text {, }$ Outputs: low or high	$3.6 \mathrm{~V}, 0 \mathrm{~V}$		40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Change in supply current	One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND	3.3 V to 3.6 V		500	$\mu \mathrm{A}$
C_{i}	Input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.3 V		2.5	pF
C_{0}	Output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	3.3 V		2.8	pF

(1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
(2) For dynamic I_{CC} vs Frequency, see Figure 9 and Figure 10.

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ (see Note ${ }^{(1)}$ and Figure 1 and Figure 2) ${ }^{(2)}$

PARAMETER		FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}, \mathrm{AV}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT	
		MIN		TYP MAX			
${ }^{\text {(}}$ ($)$	Phase error time-static (normalized) (see Figure 4 through Figure 7)		CLK $\uparrow=25 \mathrm{MHz}$ to 65 MHz	FBIN \uparrow	-150	150	ps
		$\mathrm{CLK} \uparrow=66 \mathrm{MHz}$ to 175 MHz	-125		125		
$\mathrm{t}_{\text {sk(0) }}$	Output skew time ${ }^{(3)}$	Any Y	Any Y		100	ps	
	Phase error time-jitter ${ }^{(4)}$	CLK $=66 \mathrm{MHz}$ to 175 MHz	Any Y or FBOUT	-50	50	ps	
	$\mathrm{Jitter}_{\text {(cycle-cycle) }}($ see Figure 8)	CLK $=25 \mathrm{MHz}$ to 40 MHz	Any Y or FBOUT		500	ps	
		CLK $=41 \mathrm{MHz}$ to 59 MHz			200		
		CLK $=60 \mathrm{MHz}$ to 175 MHz			$65 \quad 125$		
$\mathrm{t}_{\mathrm{d}(\mathrm{\phi})}$	Dynamic phase offset ${ }^{(5)}$	$\mathrm{CLK} \uparrow=25 \mathrm{MHz}$ to 65 MHz	FBIN \uparrow		1.5	ns	
		CLK $\uparrow=66 \mathrm{MHz}$ to 175 MHz			0.4		
	Duty cycle	$\mathrm{f}_{(\mathrm{CLK})}>60 \mathrm{MHz}$	Any Y or FBOUT	45\%	55\%		
tr_{r}	Rise time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2 V	Any Y or FBOUT	0.3	1.1	ns/V	
t_{f}	Fall time	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ to 0.4 V	Any Y or FBOUT	0.3	1.1	ns / V	
$\mathrm{tPLH}^{\text {l }}$	Low-to-high propagation delay time, bypass mode	CLK	Any Y or FBOUT	1.8	3.9	ns	
$\mathrm{t}_{\text {PHL }}$	High-to-low propagation delay time, bypass mode	CLK	Any Y or FBOUT	1.8	3.9	ns	

(1) The specifications for parameters in this table are applicable only after any appropriate stabilization time has elapsed.
(2) These parameters are not production tested.
(3) The $\mathrm{t}_{\mathrm{sk}(0)}$ specification is only valid for equal loading of all outputs.
(4) Calculated per PC DRAM SPEC ($t_{\text {phase error, }}$ static - jitter ${ }_{\text {(cycle-to-cycle) })}$).
(5) The parameter is assured by design but cannot be 100% production tested.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 133 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1.2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 1.2 \mathrm{~ns}$.
C. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

Figure 2. Skew Calculations

$$
t_{(\Phi)}=\frac{\sum_{1}^{n=N} t_{(\Phi) n}}{N} \quad(N \text { is a large number of samples })
$$

a) Static Phase Offset

b) Dynamic Phase Offset

Figure 3. Static and Dynmaic Phase Offset

InSTRUMENTS

TYPICAL CHARACTERISTICS

Figure 4.
STATIC PHASE ERROR
SUPPLY VOLTAGE AT FBOUT

Figure 6.
A. Trace length FBOUT to $\mathrm{FBIN}=5 \mathrm{~mm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
B. $\quad \mathrm{C}_{(\mathrm{LY})}=$ Lumped capacitive load $\mathrm{Y}_{1-\mathrm{n}}$
C. $\mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$

Figure 5.

Figure 7.

TYPICAL CHARACTERISTICS (continued)

Figure 8.

Figure 9.

Figure 10.
A. Trace length FBOUT to $\mathrm{FBIN}=5 \mathrm{~mm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
B. $\quad \mathrm{C}_{(\mathrm{LY})}=$ Lumped capacitive load $\mathrm{Y}_{1-\mathrm{n}}$
C. $\mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$
D. $\mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$

Revision History

Table 1. Revision History

Date	Rev	Page	Section	Description
$04 / 11 / 05$	B	6	Switching Characteristics	Added static phase error -25 MHz to 65 MHz
				Added jitter -25 MHz to 65 MHz
		7	Added Dynamic Phase Offset specification	
		8	Figure 3	Revised into two figures
		2	Function Table	Added Figure 3 for a diagram of dynamic phase offset
$2 / 09 / 09$	C			Revised for clarity

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CDCVF2510APW	ACTIVE	TSSOP	PW	24	60	TBD	Call TI	Call TI	0 to 85	CKV2510A	Samples
CDCVF2510APWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 85	CKV2510A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDCVF2510APWR | TSSOP | PW | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCVF2510APWR	TSSOP	PW	24	2000	367.0	367.0	38.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

