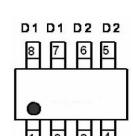


 $\boldsymbol{m}\Omega$

Α

30

11.5

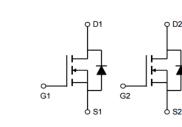

11.8

Features

- Dual N-Channel,5V Logic Level Control
- Enhancement mode
- Fast Switching
- High Effective

Application

- Power Management in Inverter System
- Synchronous Rectification


S1 G1 S2 G2

 V_{DSS}

 I_D

 $R_{DS(ON)\text{-}Max}$

Product Summary

top view

Absolute Maximum Ratings@Tj=25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Drain Current, V _{GS} @ 10V ³	11,8	Α
I _D @T _A =70°C	Drain Current, V _{GS} @ 10V ³	9.4	Α
I _{DM}	Pulsed Drain Current ¹	40	Α
P _D @T _A =25°C	Total Power Dissipation	2,5	W
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	50	°C/W

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	٧
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =11A	-	9.5	11.5	mΩ
		V _{GS} =4.5V, I _D =7A	-	13.8	18	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1	-	3	٧
g _{fs}	Forward Transconductance	V _{DS} =10V, I _D =11A	-	22	-	S
DSS	Drain-Source Leakage Current	V _{DS} =30V, V _{GS} =0V	-	-	10	uA
GSS	Gate-Source Leakage	V _{GS} = <u>+</u> 12V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Qg	Total Gate Charge	I _D =11A	-	10,5	16.8	nC
Q _{gs}	Gate-Source Charge	V _{DS} =15V	-	2.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	6	-	nC
t _{d(on)}	Turn-on Delay Time	V _{DS} =15V	-	7	-	ns
t _r	Rise Time	I _D =1A	-	6	-	ns
t _{d(off)}	Turn-off Delay Time	R _G =3.3Ω,V _{GS} =10V	-	23	-	ns
t _f	Fall Time	R _D =15Ω	-	5	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	790	1280	pF
Coss	Output Capacitance	V _{DS} =25V	-	125	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	105	-	pF
R_g	Gate Resistance	f=1,0MHz	-	2,1	-	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =2.1A, V _{GS} =0V	1	-	1.2	٧
t _{rr}	Reverse Recovery Time	I _S =11A, V _{GS} =0V,	ı	22	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	1	14	-	nC

Notes:

- 1.Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in² copper pad of FR4 board, t ≤10sec ; 125 °C/W when mounted on Min. copper pad.

Typical Characteristics

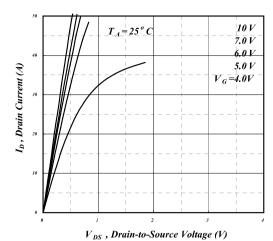


Fig 1. Typical Output Characteristics

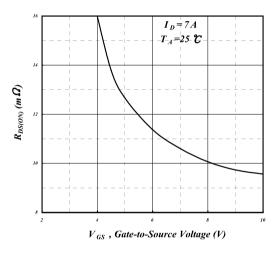


Fig 3. On-Resistance v.s. Gate Voltage

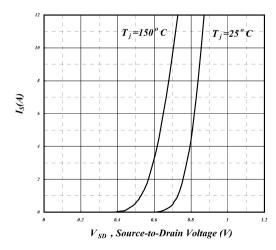


Fig 5. Forward Characteristic of Reverse Diode

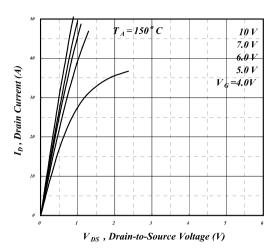


Fig 2. Typical Output Characteristics

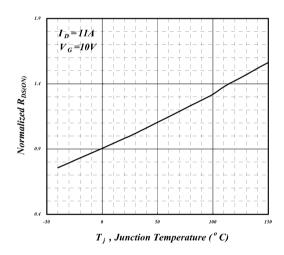


Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

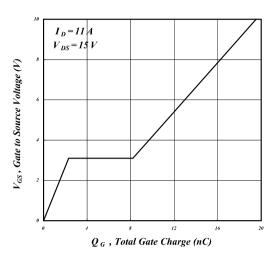


Fig 7. Gate Charge Characteristics

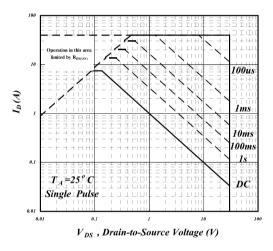


Fig 9. Maximum Safe Operating Area

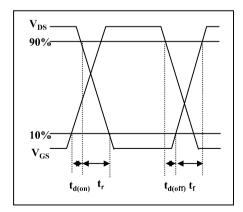


Fig 11. Switching Time Waveform

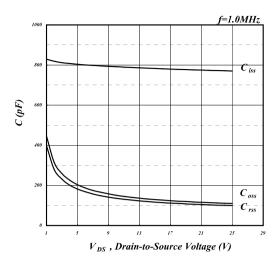


Fig 8. Typical Capacitance Characteristics

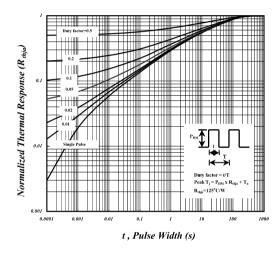


Fig 10. Effective Transient Thermal Impedance

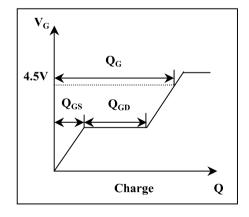
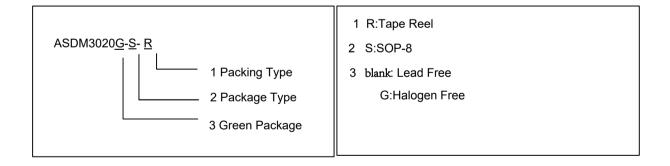
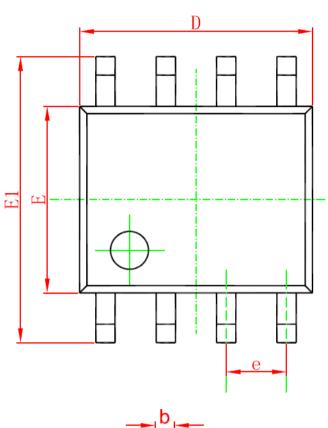


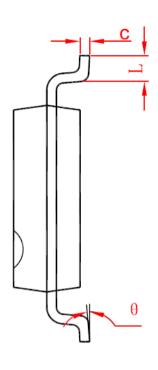
Fig 12. Gate Charge Waveform

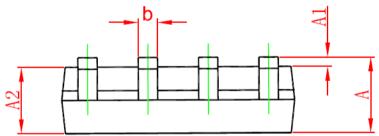


Ordering and Marking Information

Device	Marking	Package	Packing	Quantity
ASDM3020S	3020	SOP-8	Tape Reel	4000


PACKAGE	MARKING
SOP-8	Lead Free Date Code
301 -0	Lot Number 3020 → Halogen Free □□□□ → Date Code


Ordering	Dealtone	
Lead Free	Halogen Free	Package
ASDM3020-S-R	ASDM3020G-S-R	SOP8



SOP-8 PACKAGE IN FORMATION

Ch l	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0. 053	0. 069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270	(BSC)	0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

Xi'an Ascend Semiconductor incorporated MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Xi'an Ascend Semiconductor Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Xi'an Ascend Semiconductor Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Xi'an Ascend Semiconductor Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume

all risks of such use and will agree to hold Ascendsemi Incorporated and all the companies whose products are represented on Xi'an Ascend Semiconductor Incorporated website, harmless against all damages.

Xi'an Ascend Semiconductor Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Xi'an Ascend Semiconductor Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Xi'an Ascend Semiconductor Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

www.ascendsemi.com

NOV 2018 Version1.0 7/7 Ascend Semicondutor Co.,Ltd